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Background: Previous studies have revealed the importance of introducing surface correction into a phenomeno-
logical model for inclusive (n, n′x) and (p, p′x) reactions. These findings have contributed significantly to the
improvement of nuclear data evaluation. However, the necessity for the surface correction in an inclusive (d, d ′x)
reaction has hardly been investigated.
Purpose: The purpose of this study is to investigate the difference in the peripherality of the (p, p′x) and (d, d ′x)
reactions by a theoretical analysis using a quantum mechanical model, and to obtain a theoretical basis on the
surface correction in the (d, d ′x) reaction.
Methods: The energy spectra and their radial distributions for the (p, p′x) and (d, d ′x) reactions are calculated
by the one-step semiclassical distorted wave model.
Results: The radial distribution of the energy spectra for the (d, d ′x) reaction is shifted toward the outer region
of the nucleus compared to the (p, p′x) reaction. Based on this finding, we consider a larger surface correction
into a phenomenological model for the (d, d ′x) reaction than that for the (p, p′x) reaction, and calculated values
reproduce the experimental (d, d ′x) spectra well.
Conclusion: The peripherality of the (d, d ′x) reaction is more prominent than that of the (p, p′x) reaction. The
stronger surface correction thus should be introduced for the (d, d ′x) reaction than for the (p, p′x) reaction.

DOI: 10.1103/PhysRevC.110.014616

I. INTRODUCTION

Phenomenological models have played an important role
in the nuclear data evaluation for nucleon-induced reactions
[1–5]. For the calculation of preequilibrium processes, which
are prominent at incident energies above about 10 MeV, the
two-component exciton model [6] has been widely used. This
phenomenological model has achieved great success in com-
bination with global parametrization based on analyses of
a large number of experimental data for (N, N ′x) reactions
[7–9]. It has been argued in these analyses that the correction
related to surface localization is important in reproducing the
shape of experimental energy spectrum [7,8]. Note that we
will refer to the above correction as “surface correction” in
this paper even though the correction has been referred to as
“surface effects” in previous literature, including Refs. [7–9].
This is because the term “surface effects” is actually inter-
preted as a correction within the phenomenological model, as
explained below.

The surface correction is a simple means to effectively
incorporate the peripherality of the (N, N ′x) reaction into the
exciton model by restricting a hole degree of freedom with
respect to the excitation energy. The original exciton model

*Contact author: nakada27@rcnp.osaka-u.ac.jp

[10] assumes that the hole states could extend to infinite depth.
This model was later modified by considering a finite well
depth in the density of states [11]. The modification restricts
the region where the hole states are generated to a more real-
istic range. In the surface correction, the finite well depth is
made shallower only in the one-hole state, i.e., the state where
the number of collisions is small, as discussed in Ref. [7]. This
is an idea based on the following two matters in the exciton
model that does not have a radial dependence: (i) reactions
with fewer collisions would be more likely to occur around the
nuclear surface, (ii) nuclear potential is shallower around the
nuclear surface than the interior. It is worth mentioning that
in Refs. [12,13] it is indicated that the first NN collision in
(N, N ′x) reactions is localized on the nuclear surface using a
semiclassical approach. Furthermore, the peripherality of the
(p, p′x) reaction is clarified by the theoretical analysis [14]
using the semiclassical distorted wave (SCDW) model, which
has no free adjustable parameter [15–19].

On another front, evaluation activities of deuteron nu-
clear data have gradually begun [1,4,20], mainly motivated
by the development of deuteron accelerator-based intensive
neutron sources [21,22]. In the evaluation of deuteron nu-
clear data, phenomenological models [23,24] using state
densities similar to those in the exciton model are often
employed to calculate the components of direct inelastic scat-
tering to continuum states. These components correspond to
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inelastic scattering processes involving excitation of a nucleon
particle-hole pair in the target nucleus. The evaluation of the
inelastic scattering is important since it affects the transport
of deuterons in a material. Therefore, as is the case with the
exciton model, whether the surface correction should be taken
into account in the state densities used in the above inelastic
scattering model, and if so, to what extent, is an important
factor in the deuteron nuclear data evaluation. However, since
experimental data for the (d, d ′x) reactions are very limited,
there is concern that making this judgment based on a com-
parison with specific experimental data may give unphysical
results under other conditions. A theoretical basis for the
surface correction of the (d, d ′x) reaction founded on a deep
and comprehensive understanding of the peripherality of the
reaction is required.

Under these circumstances, in Ref. [25], the one-step
SCDW model [15] has been successfully applied to describe
the inclusive (d, d ′x) reactions. This SCDW model has two
noteworthy features. First, the model possesses the property
of representing the inclusive cross section as an incoherent
integral of contributions at individual collision points [14,26].
This property allows us to analyze the peripherality of the
inclusive reaction, i.e., to investigate where and to what extent
the reaction occurs in the nucleus. The second is the adoption
of local Fermi gas (LFG) to the single-particle (s.p.) states.
Although LFG would be unrealistic for describing a specific
nuclear state, it can reasonably describe the overall response
of a nucleus, involving many initial and final states. Note that,
in Ref. [18], the SCDW model adopts the Wigner transform
of one-body density matrices calculated with a single-particle
state model for nuclei instead of LFG. On the other hand, we
use LFG for reducing numerical tasks in this work.

The purpose of this study is to investigate the peripherality
in the inclusive (d, d ′x) reaction and the cause of the differ-
ence from that in the inclusive (p, p′x) reaction. The analyses
are performed utilizing the above-mentioned property of the
SCDW model. Exploring the difference in the peripherality of
the two reactions is of interest from the viewpoint not only
of nuclear data evaluation but also of fundamental nuclear
physics. Furthermore, we apply the findings from the SCDW
analysis to the implementation of the surface correction into
the phenomenological deuteron inelastic scattering model.

The construction of this paper is as follows. In Sec. II
we briefly describe the one-step SCDW model for the in-
clusive (p, p′x) and (d, d ′x) reactions. We also explain the
phenomenological inelastic scattering model. In Sec. III we
compare the calculated energy spectrum of the inclusive
(p, p′x) and (d, d ′x) reactions with experimental data and
clarify the difference of the peripherality between the two
reactions. Improvements of the phenomenological model are
also suggested. Finally, a summary is given in Sec. IV.

II. METHODS

A. SCDW model

We briefly describe the inclusive (p, p′x) and (d, d ′x) reac-
tions with the one-step SCDW model. The double differential
cross section for the energy E f and the solid angle � f of the

emitted particle c (=p or d ) is expressed with [25]

∂2σc

∂E f ∂� f
=

[
AcA

Ac + A

]2 k f

ki

∫
dR

× |χ (−)
f (R)|2|χ (+)

i (R)|2
[

∂2σc

∂E f ∂� f

]
R

ρ(R), (1)

where Ac and A are the mass numbers of the particle c and the
target nucleus, respectively. ki (k f ) is the asymptotic momen-
tum of the incident (emitted) particle, and R is the coordinate
of the collision point with respect to the center of the target
nucleus. The distorted waves for c in the initial and final states
are denoted by χi and χ f , respectively. ρ(R) is the nuclear
density at R. The averaged double differential cross section of
the elementary process at R is given by

[
∂2σc

∂E f ∂� f

]
R

= 1

(4π/3)k3
F (R)

[
Ac + 1

Ac

]2

×
∫

kα�kF (R)
dkα

(
dσcN

d�

)
θcN (R),EcN (R)

× δ(Ei + εα − E f − εβ ), (2)

where kα is the momentum of the nucleon of the target in the
initial state. kF (R) represents the local Fermi momenta of nu-
cleon. dσcN/d� is the free scattering cross section determined
by the local scattering angle θcN (R) and the local scattering
energy EcN (R) between c and the nucleon of the target. The
incident energy of c is represented by Ei and εα (εβ ) is the
kinetic energy of the nucleon of the target nucleus in the initial
(final) state. Equations (1) and (2) are the same as Eqs. (19)
and (20) of Ref. [25], respectively, and the derivation of the
equations is discussed in detail in Ref. [25].

From Eq. (1), one can see that the inclusive cross section is
described by an incoherent integral of R. This description
is made possible by the short-ranged property of the kernel,
Eq. (2.8) of Ref. [15], which is realized when a large num-
ber of s.p. states are involved; see Fig. 11 of Ref. [15]. In
other words, the interference between the transition through
different interacting points disappears in the situation. Thus,
the projectile-nucleus cross section is given by integrating a
product of the probability of the projectile reaching the point
R, that of the ejectile being emitted from R, and the averaged
cross section of the elementary process at R. For more details,
readers are referred to Ref. [15].

By applying the local Fermi gas model (LFG) to the ini-
tial and final nuclear single-particle states, kF (R) is given by
kF (R) = [3π2ρ(R)/2]1/3 [15]. Therefore, LFG can takes into
account the spread of nucleon density on the nuclear surface.
To clearly show the contribution of the nuclear surface to the
inclusive cross section, we also consider the Fermi gas model
(FG), which gives a uniform Fermi momentum distribution.
When FG is used instead of LFG, kF (R) becomes step func-
tions with respect to R in Eq. (2). On the other hand, the
Fermi momentum in LFG decreases smoothly as R increases,
as shown later in Fig. 1.
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FIG. 1. The R dependence of the Fermi momenta of 58Ni. The
solid (dashed) line represents the Fermi momentum with LFG (FG).

The energy spectra of the (p, p′x) and (d, d ′x) reactions are
obtained by integrating Eq. (1) over � f :

dσc

dE f
=

∫
d� f

∂2σc

∂E f ∂� f
. (3)

We use the proton- and deuteron-nucleus global optical
potentials by Koning-Delaroche [27] and An-Cai [28] for
describing projectile-nucleus scattering, respectively. The nu-
clear density ρ(R) is assumed to be the Woods-Saxon form,
where the radial parameter is defined as Rρ = rρA1/3, with
rρ = 1.15 fm, and the diffuseness parameter is set to aρ =
0.5 fm as in Ref. [25]. For the differential cross sections of
d-N scattering used in the (d, d ′x) calculation, we utilize the
numerical table from Ref. [29], which was made by fitting ex-
perimental data of p-d elastic scattering. In the calculations of
the (p, p′x) process, the free p-N scattering cross sections are
calculated by using the nucleon-nucleon t matrix provided by
Franey and Love [30,31].

B. Phenomenological model by Kalbach

As a phenomenological model for continuum deuteron in-
elastic scattering, we adopt the model proposed by Kalbach
[32]. Although this model was originally developed for α-
particle-induced reactions, the model itself is considered to
be applicable to deuteron-induced ones [23]. Note that what
is calculated in this model is the direct process component,
which is not included in the exciton model.

According to Ref. [32], the energy spectrum of the direct
deuteron inelastic scattering with a nucleon particle-hole pair
creation is calculated by

dσd

dE f
=C

σrea (Ei)

E3
i

(2s + 1)E f σrea (E f )
DF (U )

A2

× 0.12

(
MeV2

mb

)
, (4)

where C is a normalization constant determined from fitting
experimental energy spectrum, σrea (E ) is the deuteron total

reaction cross section at scattering energy E , and Ei and E f

are the incident and emitted deuteron energies, respectively.
According to Ref. [32], the overall normalization constant C
can vary in the range of a factor of 3 depending on the target.
As shown later in Sec. III C, in this study, C is adjusted so that
the peak of the spectrum matches available experimental data.
σrea (E ) is obtained from the optical model calculation with the
global potential by An-Cai [28]. s is the spin of the emitted
deuteron. A denotes the mass number of the target, and U
represents the effective excitation energy of residual nucleus
considering the paring effect [33]. The final state density DF

is expressed as follows:

DF (U ) = (
g2

nU + g2
pU

)
f (V,U ), (5)

where gn = N/(13 MeV), gp = Z/(13 MeV), and N and Z
are the numbers of neutrons and protons in the target. The
setting of values for gn and gp follows the original paper by
Kalbach [32]. The squaring of gn and gp corresponds to con-
sidering the 1p-1h states of nucleons. The finite well function
f (V,U ) with the well depth V is defined for the 1p-1h states as
follows [11]:

f (V,U ) = 1 −
[

U − V

U

]

(U − V ), (6)

where 
 is the unit step function. Note that the finite well
function is not taken into account in the original Kalbach
model [32] and the first application of the model to the
deuteron-induced reaction [23]. The introduction of the finite
well function enables us to consider the surface correction as
shown below.

As mentioned in Sec. I, a simple method to include the
peripherality of the nuclear reaction in the exciton model was
proposed in Ref. [7], and has been successfully applied to
the analysis of (N, N ′x) reactions [8,9]. In the method, the
peripherality is effectively taken into account by fixing the
small value of V for the h = 1 state only. In this work we
apply this method to Eq. (4). In other words, we set V in
Eq. (6) smaller than the typical value of 38 MeV associated to
the Fermi energy. By introducing F (U,V ), DF (U ) is replaced
by smaller density of states DF (V ) when U > V . Therefore,
giving a smaller V corresponds to making the reaction more
likely occur in the peripheral region of the nucleus, based
on the fact that the nuclear potential is shallower around the
nuclear surface than in the interior. The details of fixing the
value of V are described later in Sec. III C.

Following the idea in Kalbach’s original paper [32], the
values calculated with the inelastic scattering model are
treated as the direct component in this study. Therefore, we
do not consider in the model the reduction of the composite
nucleus production cross section caused by other direct pro-
cesses, such as the breakup reactions. The use of the total
reaction cross section obtained from the optical model as σrea

in Eq. (4) reflects the above idea. The interference with other
direct processes is not considered.
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FIG. 2. Comparison of the calculated energy spectra and the experimental data [34] of the (p, p′x) reaction on 54Fe at (a) 39 MeV and
(b) 62 MeV and (c) 120Sn at 62 MeV. (d) The energy spectrum and the experimental data [35] of the (d, d ′x) reaction on 58Ni at 80 MeV. (e)
and (f) are same as (b) and (c) but for the (d, d ′x) reaction at 124 MeV. The horizontal axis represents the energy transfer ω ≡ Ei − Ef . The
solid and dashed lines represent the calculated results with LFG and FG, respectively.

III. RESULTS AND DISCUSSION

A. Influence of nuclear surface on energy spectrum

We compare the energy spectra of inclusive (p, p′x) and
(d, d ′x) reactions calculated with SCDW using LFG and FG,
and experimental data. Figure 1 shows the radial distributions
of the Fermi momenta of 58Ni calculated with LFG (solid line)
and FG (dashed line).

In FG, no reaction is allowed in R � 4.4 fm because kF (R)
is zero in the region. On the other hand, in LFG, reactions
are allowed beyond the boundary because LFG incorporates
the diffuseness around the nuclear surface. Therefore, the
difference between the SCDW calculation with LFG and that
with FG can be tied to the influence of considering the nuclear
surface. Figure 2 shows the energy spectra of the (p, p′x) and
(d, d ′x) reactions for several incident energies and targets.
The horizontal axis is the energy transfer ω ≡ Ei − E f . The
solid (dashed) lines are calculated results with LFG (FG). The
experimental data are taken from Refs. [34,35]. In order to
make the velocity of projectile same, the incident energies per
nucleon in Figs. 2(e) and 2(f) are the same as those in Figs.
2(b) and 2(c), respectively. Note that these results are calcu-
lated with SCDW which has no free adjustable parameter.

For the (p, p′x) reactions, the energy spectra calculated
with SCDW using LFG reproduces the experimental data
well except for the region with large energy transfer ω as
shown in Figs. 2(a)–2(c). For the (d, d ′x) reactions, the en-
ergy spectra calculated with LFG reasonably reproduce the

experimental data in the region with ω � 15 MeV, as shown
in Fig. 2(d). In both reactions, the calculated energy spec-
trum undershoot the experimental data in the region with
low emission energies. This is because the contributions of
particle emission from the multistep direct process and the
compound process are dominant in that region [23,26]. For
this reason, in what follows, we will discuss the energy spec-
tra in the region with 5 � ω � 15 MeV, where the one-step
process is dominant and the elastic scattering events are not
included.

By comparing the energy spectra calculated with LFG and
FG, we can see that consideration of the nuclear surface is
necessary to reproduce experimental data in both the (p, p′x)
and (d, d ′x) reactions. The importance of considering the nu-
clear surface does not depend so much on the incident energy
and target nucleus in both reactions. We can also find that the
influence of the nuclear surface gets larger as ω decreases.
This result implies that the peripherality of the reactions be-
comes stronger as ω decreases. Moreover, the ω dependence
is more prominent in the (d, d ′x) reactions than the (p, p′x)
reactions.

B. Difference in peripherality of (p, p′x) and (d, d ′x) reactions

To analyze the difference in the influence of nuclear sur-
face between the (p, p′x) and (d, d ′x) reactions in more
detail, we discuss the radial distribution of the energy
spectra.
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FIG. 3. fc(ω, R) on 54Fe at 62 MeV per nucleon as a function of
R in the (a) (p, p′x) and (b) (d, d ′x) reactions. The solid, dashed, and
dotted lines show fc(ω, R) with ω = 5, 10, and 15 MeV, respectively.
The vertical dash-dotted lines represent R = 4.4 fm, where the Fermi
momentum with FG of 54Fe becomes zero.

The radial distribution of the energy spectra is defined
by

fc(ω, R) ≡
[

AcA

Ac + A

]2 k f

ki

∫
d� f R2

∫
d�

× |χ (−)
f (R)|2|χ (+)

i (R)|2
[

∂2σc

∂E f ∂� f

]
R

ρ(R), (7)

where � is the solid angle of R. Note that fc(ω, R) satisfies
dσc/dE f = ∫

fc(ω, R)dR.
Figure 3 shows the fc(ω, R) in the calculation with LFG

for (a) the 54Fe(p, p′x) reaction at 62 MeV and (b) the
54Fe(d, d ′x) reaction at 124 MeV (62 MeV per nucleon). The
solid, dashed, and dotted lines represent fc(ω, R) with ω = 5,
10, and 15 MeV, respectively. The vertical dash-dotted lines
indicate R � 4.4 fm, where the Fermi momentum of 54Fe is
zero in FG.

As shown in Fig. 3, for a given ω, the peak position is
almost the same for the (p, p′x) and (d, d ′x) reactions and
the peak positions shift outwards as ω decreases. In contrast,
the ω dependence of the peak heights of the two reactions is
opposite. The peak height of the (p, p′x) reaction becomes
smaller as ω decreases, while that of the (d, d ′x) reaction
becomes larger as ω decreases.

To clearly show how this significant difference affects the
peripherality of these reactions, we present in Fig. 4 the

FIG. 4. The radial distributions of the integration of fc(ω, R)
over ω in the range of 5 to 15 MeV. The solid and dashed lines
show the results for (d, d ′x) and (p, p′x) reactions, respectively. Each
distribution is normalized so that the integral value over R is unity.

integrated values of fc(ω, R) in the range of 5 � ω � 15 MeV.
The solid and dashed lines represent the calculated values of
the (d, d ′x) and (p, p′x) reactions, respectively. Each of them
is normalized so that the integrated value over R is unity. It
is seen that the radial peak position is about 4.3 fm for the
(p, p′x) reaction. On the other hand, for the (d, d ′x) reaction,
the peak position is about 6.0 fm and a large proportion of
the reaction occurs in the outer region of the nucleus. This
result clearly shows that the (d, d ′x) reaction has a stronger
peripherality than the (p, p′x) reaction.

Next, we discuss the cause of the difference in the periph-
erality of the two reactions. Figure 5 is the same as Fig. 4 but
for the calculations ignoring the absorption of the protons and
deuterons by the nucleus; the imaginary part of the optical
potential is set to zero in the calculations. When we ignore
the absorption, the radial distributions of the two reactions
are almost identical. Therefore, we can see that the stronger
peripherality of the (d, d ′x) reaction than that of the (p, p′x)
reaction is attributed to the strong absorption of deuteron by
the nucleus. We can also confirm that in Fig 3, the strong
absorption of the deuteron suppresses the reaction in the

FIG. 5. Same as Fig. 4 but without the absorption by 54Fe.
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FIG. 6. Comparison of the experimental and calculated energy
spectrum of the inclusive (d, d ′x) reaction on 58Ni at 80 MeV. The
solid line denotes the calculation using a well depth of 10 MeV
optimized to fit the experimental spectrum. The dashed and dotted
lines are the results with a well depth of 17 and 25 MeV obtained
from the parametrization for proton-induced reactions in Refs. [8,9],
respectively. The dash-dotted line is the calculation with a typical
well depth of 38 MeV, and this means the surface correction are not
introduced. The horizontal axis represents the energy transfer ω. The
experimental data are taken from Ref. [35].

inner region of the nucleus in the (d, d ′x) than in the (p, p′x)
reaction.

C. Application to phenomenological model

Next, we apply the findings obtained from the previous
sections to the implementation of the surface correction into
the phenomenological model. Figure 6 shows the comparison
of the experimental data and the energy spectra calculated
with the Kalbach model presented in Sec. II B. The horizontal
axis represents the energy transfer ω. The experimental data
are obtained from Ref. [35].

Four lines are shown in the figure. The solid line is the
result of the calculation in which the well depth V is optimized
to reproduce the experimental spectrum. The optimized value
of V is 10 MeV. The normalization factor C is adjusted so that
the peak of the spectrum matches the experimental data. This
adjustment holds true also for the three calculations below.
The dashed line shows the result of using 17 MeV as the value
of V . In Ref. [8], a value of 17 MeV was proposed as the
optimum value of V for the (p, p′x) reaction, independent of
the incident energy and target nucleus. A local optimum value
of V = 12(+3/ − 4) MeV was also derived in Ref. [8]. On
the other hand, it is also discussed in Ref. [8] that the value of
V can vary depending on the background of the experiments
being compared. We thus adopted the global optimum value
of V = 17 MeV, obtained from the analysis of several tens
of experiments, as one of the targets for comparison. The
dotted line is the result with the parametrization optimized for
proton-induced reactions derived in Ref. [9]. In Ref. [9], the
analyses using the exciton model were performed for (N, N ′x)
reactions up to 200 MeV for various targets, and the different
parametrizations for neutron- and proton-induced reactions

were given based on the results. The value of V in the case
of proton-induced reactions is given as follows:

V = 22 + 16
E4

E4 + (450/A1/3)4
MeV, (8)

where E and A are the incident energy and the target mass,
respectively. In the case shown in Fig. 6, Eq. (8) gives about
25 MeV as the value of V . On the other hand, finally, the dash-
dotted line is the calculation with a typical well depth of 38
MeV. Using this value of V corresponds to not introducing
the surface correction.

Note that in Ref. [23] we have performed an analysis of
the double differential cross sections for the same target and
incident energy at 20°. At such a forward angle, the compo-
nents corresponding to giant resonance states were dominant
in the region of 10 � ω � 20 MeV. On the other hand, the
use of angle-integrated energy spectrum as in Fig. 6 makes
it easier to discuss the direct inelastic scattering component
calculated with the Kalbach model, since the giant resonance
components make up a smaller fraction of the total in the
above ω region.

As shown in the figure, the calculation not introducing the
surface correction does not reproduce the shape of the experi-
mental spectrum. Note that the components above 50 MeV are
mainly due to the preequilibrium process and the compound
nucleus process. The large component below a few MeV is
attributed to inelastic scattering to low-lying discrete levels
and elastic scattering. These components are not considered
in the Kalbach model and are thus outside the scope of the
present discussion.

In terms of the calculations incorporating the surface cor-
rection, the use of the optimized values for proton-induced
reactions improves the agreement with experimental data,
but underestimation in the high-energy region is still seen.
On the other hand, when the value of V is more decreased,
the calculation results reproduce the experimental energy
spectrum better over almost the entire energy range to be
considered in the Kalbach model. As discussed in Sec. II B,
the smaller value of V makes the reaction more likely occur
in the peripheral region of the nucleus. Therefore, this result
is consistent with the results of the present SCDW analysis. In
other words, parameter optimization of the phenomenological
Kalbach model has been justified also by theoretical analysis
with the SCDW model.

In Ref. [7], it is argued that the magnitude of the surface
correction can also vary depending on what excitation energy
dependence is assumed for the single-particle level density.
Meanwhile, an equispacing model that does not assume an
excitation energy dependence of the single-particle level den-
sity is adopted in Refs. [8,9], and the present study also uses
the same equispacing model as presented in Eq. (5). It is
worth mentioning that these comparisons thus are valid as a
discussion on the surface correction.

IV. SUMMARY

We have clarified the difference in the peripherality of the
inclusive (p, p′x) and (d, d ′x) reactions and the cause of the
difference. The energy spectra calculated by SCDW with LFG
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and FG were compared to the experimental data of the (p, p′x)
and (d, d ′x) reactions on several combinations of targets and
incident energies. By comparing the energy spectra with LFG
and FG, we have found that the consideration of the nuclear
surface is necessary to reproduce the experimental data for
both (p, p′x) and (d, d ′x) reactions.

We have investigated the difference in the peripherality of
the (p, p′x) and (d, d ′x) reactions by comparing the radial
distributions of the energy spectra. The radial peak positions
for each energy transfer ω shifts to the outer region of the
nucleus as ω decrease, and the tendencies were almost the
same for the two reactions. However, the opposite trend was
observed between the two reactions in terms of the peak
height. As a result, it has been found that the peripherality get
stronger for the (d, d ′x) reaction than the (p, p′x) reaction.
Moreover, we compared the radial distributions ignoring the
absorption by the nucleus. The results show almost identical
radial distributions and it has been found that the cause of the
stronger peripherality of the (d, d ′x) reaction is the stronger
absorption of deuteron than proton.

We have applied the above findings on the peripherality of
(d, d ′x) reaction to the improvement of the phenomenological
model by Kalbach to calculate continuum deuteron inelastic
scattering. For the finite well depth V , which is the adjustable
parameter associated with the surface correction, the opti-
mized value for the proton-induced reactions was insufficient
to reproduce the experimental data of the (d, d ′x) reaction.
When the value of V was set much smaller, as suggested by
the analysis with SCDW model, the calculated values repro-
duced the experimental data well over a wide emission energy

range. This result indicates that parameter optimization of the
phenomenological reaction model is justified by the SCDW
model.

As one of the future works, it will be necessary to extend
the present one-step SCDW model to describe the multistep
processes. With this extension, the SCDW model could guide
the improvement of phenomenological models not only with
respect to surface corrections, which are prominent in the
small ω region, but also with respect to wider energy spectra
and angular distributions of outgoing deuterons. On another
front, it is of interest to perform a similar analysis for other
particles. Reference [14] was the first example to analyze the
peripherality of the (p, p′x) reaction in detail using the SCDW
model. In this study, we presented that a similar analysis is
also valid for reactions induced by deuteron. Future similar
analyses for various composite particles will improve our
understanding of the peripherality of nuclear reactions. The α

particle is a good candidate since it is well known to undergo
strong absorption and is of large importance in the application
fields.
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