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For the first time, half-lives and energy spectra of forbidden β decays are calculated within the realistic shell
model. Namely, we approach this issue starting from a realistic nucleon-nucleon potential and deriving effective
Hamiltonians and decay operators. Our goal is to explore the sensitivity of the shape of calculated energy
spectra to the renormalization of forbidden β-decay operators, an operation that allows to take into account those
configurations that are not explicitly included in the chosen model space. The region that has been considered for
this investigation are nuclei outside the 78Ni core, more precisely we have studied the second-forbidden β decays
of 94Nb and 99Tc, and fourth-forbidden β decays of 113Cd and 115In, that are currently of a renewed experimental
interest in terms of novel spectroscopic techniques. Our results evidence that the introduction of a renormalized
β-decay operator leads to a marked improvement of the reproduction of experimental half-lives. As regards the
spectra of both second-forbidden and fourth-forbidden decays, we have found that their calculated shapes are in
good agreement with the observed ones, even if scarcely responsive to the renormalization of the decay operator.
We carry out also a detailed inspection of the different components of the calculated spectra for a deeper insight
about their role in reproducing the experimental shapes.
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I. INTRODUCTION

The understanding of the renormalization mechanisms of
electroweak currents is nowadays a cornerstone of the nuclear
structure research. The attention to this issue is motivated by
the need of calculating reliable nuclear matrix elements M0ν

for the 0νββ decay, and relating the inverse half-life [T 0ν
1/2]−1

of such a rare process to the neutrino effective mass.
As a matter of fact, the accurate calculation of the wave

functions of parent and grand-daughter nuclei does not
ensure a trustable M0ν , since most nuclear models are based
on the reduction of the dimension of the Hilbert space where
the nuclear Hamiltonian is defined. Then, a sound knowledge
of the renormalization of the electroweak currents, to account
for the configurations that are not explicitly included in the
components of the nuclear wave function, is crucial to en-
hance the predictivity of the calculated M0νs .

The ability of nuclear models to reproduce β-decay ob-
servables is, consequently, the better way to validate both
wave functions and renormalization procedures, and such an
issue is connected to the so-called “quenching puzzle” of the
axial coupling constant, namely the need by most nuclear
structure models to resort to a reduction of gA to reproduce the
observables directly linked to Gamow-Teller (GT) transitions
[1–3]. However, this is an empirical procedure, and it cannot
be generalized to any β-decay operator that depends on the
value of the axial coupling constant.

The realistic shell model (RSM) provides a consistent
approach to derive effective Hamiltonians and decay
operators, the only parameter that is involved being
the nuclear force one starts from. In such a framework,
single-particle (SP) energies and two-body matrix elements
(TBMEs) of the effective shell-model Hamiltonian Heff , as
well as every matrix element of decay operators, are derived
from a realistic free nucleon-nucleon (NN) potential VNN

by way of the many-body theory [4,5]. The bare matrix
elements of the NN potential, and of any transition operator,
are renormalized with respect to the truncation of the full
Hilbert space into the reduced shell-model (SM) model space,
to take into account the neglected degrees of freedom without
resorting to any empirical parameter [6]. In other words,
this approach does not apply effective charges to calculate
electromagnetic transition strengths, and empirical quenching
of gA to reproduce the β-decay matrix elements.

We have successfully employed RSM to study the
2νββ-decay of 48Ca, 76Ge, 82Se, 100Mo, 130Te, and 136Xe
[7–10], and then extended it to predict the nuclear matrix
elements of their 0νββ-decay [9,11]. Now, to validate the
RSM in predicting β-decay observables, in the present work
we investigate the sensitivity to the renormalization of SM
forbidden β-decay operators describing the energy spectra of
the emitted electrons.

To this end, we have considered the second-forbidden
β-decays of 94Nb and 99Tc into 94Mo and 99Ru, as well
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as the fourth-forbidden β-decays of 113Cd and 115In into
113In and 115Sn, respectively, and compared their calculated
log f ts and β-decay energy spectra as obtained with the bare
and the renormalized decay operators, as well as with the
available data.

The motivations of such a choice are twofold: first, these
decays have been already the subject of a few works with
a similar goal, where the effective operators was obtained
tuning the quenching factor q of gA, and the focus was spotted
on the dependence of the shape of energy spectra on the
value of q [12–16]. Second, novel experimental techniques
have triggered new measurements of the energy spectra of β

decays in the region of the 0νββ decay of 100Mo. Among
them, we mention the COBRA demonstrator [17], that has
been developed for double-β decay experiments, and also
adopted to study the spectra of β decays of 113Cd [15,18,19];
the ACCESS project that aims to perform precision measure-
ments of forbidden β-decays using cryogenic calorimeters
[20]. Another new experimental project is ASPECT-BET (An
SDD-SPECTrometer for BETa decay studies), that has devel-
oped a new detection strategy based on silicon drift detectors
(SDD), and it should be able to perform high-precision, high-
accuracy measurements of the energy spectra of β decays at
room temperature [21].

This paper is organized as follows.
In Sec. II we sketch out briefly the derivation of the ef-

fective SM Hamiltonian and decay operators, as well as the
basic theory of the β-decay and the structure of the second-
and fourth-forbidden β-decay matrix elements.

The effective shell-model Hamiltonian and decay opera-
tors have been derived within a model space that is spanned
by four 0 f5/2, 1p3/2, 1p1/2, 0g9/2 proton orbitals and five
0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2 neutron orbitals outside 78Ni
core starting from the high-precision CD-Bonn NN poten-
tial [22], whose repulsive high-momentum components are
renormalized using the Vlow-k procedure [23]. This is the same
framework we have employed in our previous study of the
double-β decay of 100Mo [9].

The results of the shell-model calculations are discussed
and compared with the available experimental data in Sec. III.
There, we check first our nuclear wave functions by com-
paring the calculated low-energy spectra and E2 transition
strengths of parent and daughter nuclei, which are involved
in the decays under consideration, with their experimental
counterparts. Then, we report the results of our theoretical
log f ts and energy spectra of the emitted electron and size up
them to the available data. We complete our analysis with a
detailed analysis of the different components of the spectra,
and how the interplay among their contributions plays an
important role in reproducing data.

In Sec. IV we summarize the conclusions of this study, as
well as the outlook of our current research project.

II. OUTLINE OF THE THEORY

A. Effective SM Hamiltonian

The procedure of the derivation of the effective SM Hamil-
tonian is the same as the one followed in Ref. [9]. First, we

consider the high-precision CD-Bonn NN potential [22], then
the nonperturbative repulsive high-momentum components
are integrated out, by way of the Vlow-k unitary transformation
[23,24], that provides a smooth potential preserving all the
two-nucleon observables calculated with the CD-Bonn one.

The Vlow-k matrix elements are chosen as the interaction
vertices of a perturbative expansion of Heff , as well as those
of the Coulomb interaction between protons, and a detailed
description of the many-body perturbation theory approach
to the nuclear Heff can be found in Refs. [6,25,26], so here
we only sketch briefly the steps that have been followed to
obtain Heff .

The starting point is the full nuclear Hamiltonian H for
A interacting nucleons, which, according to the SM ansatz,
is divided into the one-body term H0, whose eigenvectors set
up the SM basis, and the residual interaction H1, using the
harmonic-oscillator (HO) auxiliary potential U :

H = T + Vlow-k = (T + U ) + (Vlow-k − U )

= H0 + H1. (1)

The eigenvalue problem of H for a many-body sys-
tem, in an infinite basis of eigenvectors of H0, can-
not be solved, then an effective Hamiltonian is derived,
which is defined in the truncated model space spanned
by four proton —0 f5/2, 1p3/2, 1p1/2, 0g9/2— and five neu-
tron orbitals —0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2— outside
78Ni core.

The effective Hamiltonian is derived by way of the time-
dependent perturbation theory, through the Kuo-Lee-Ratcliff
folded-diagram expansion in terms of the Q̂-box vertex func-
tion [4,25,26]:

H eff
1 (ω) = Q̂(ε0) − PH1Q

1

ε0 − QHQ
ωH eff

1 (ω), (2)

where ω is the wave operator decoupling the model space
P and its complement Q, and ε0 is the eigenvalue of the
unperturbed degenerate Hamiltonian H0.

The Q̂ box is defined as

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (3)

and ε is an energy parameter called “starting energy.”
Since the exact calculation of the Q̂ box is not possible,

then the term 1/(ε − QHQ) is expanded as a power series

1

ε − QHQ
=

∞∑
n=0

1

ε − QH0Q

(
QH1Q

ε − QH0Q

)n

, (4)

namely we perform an expansion of the Q̂ box up to the third
order in perturbation theory [6].

We would point out that, as in previous works [7–9,11],
we include a number of intermediate states in the perturba-
tive expansion of the shell-model effective Hamiltonian and
decay operators, whose maximum allowed excitation energy
—expressed in terms of the number of oscillator quanta Nmax

[26]— is Nmax=16. This set of intermediate states is sufficient
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to obtain convergent values of the single-particle energies,
TBMEs, and matrix elements of the decay operators, as it has
been shown in Refs. [11,27].

As a matter of fact, the calculation of the Q̂ box is the
start to solve the nonlinear matrix equation (2) and obtain Heff

by way of iterative techniques such as the Kuo-Krenciglowa
and Lee-Suzuki ones [28,29], or graphical noniterative
methods [30].

It should be pointed out that, since the nuclei that are
involved in the decay processes under investigation are char-
acterized by a large number of valence nucleons, we have
included contributions from induced three-body forces in the
calculation of the Q̂ box, that involve also three valence
nucleons.

Since the SM code we have employed for our calcula-
tions [31] cannot diagonalize a three-body Heff , we have
performed a normal-ordering decomposition of the three-body
induced-force contributions arising at second order in per-
turbation theory, and retained only the two-body term that
is density-dependent from the number of valence nucleons.
This procedure is presented in details in Refs. [6,32], together
with a discussion about the contribution of such terms to the
eigenvalues of the SM Hamiltonian.

The SM parameters, namely the SP energies and the
TBMEs of the residual interaction, are reported in the Sup-
plemental Material [33].

B. β-decay theory

The theory of β-decay is here briefly outlined. More details
can be found in Refs. [34,35].

In the following we focus on the β −-decay, moreover, we
use natural units (h̄ = c = me = 1).

The total half-life of the β decay is expressed in terms of
the kth partial decay half-life t k

1/2 as follows:

1

T1/2
=

∑
k

1

t k
1/2

. (5)

However, the partial half-life t k
1/2 is related to the dimen-

sionless integrated shape function C̃ by way of the relation:

t k
1/2 = κ

C̃
, (6)

where κ = 6144 ± 2 s [36].
For a given kth final state, the integrated shape function C̃

—whose integrand defines the β-decay energy spectrum— is
written as

C̃ =
∫ w0

1
C(we)pewe(w0 − we)2F (Z,we)dwe. (7)

The quantities on the right-hand side of the above defini-
tion are listed as follows:

(a) Z is the atomic number of the daughter nucleus, we

the adimensional energy of the emitted electron, w0

the endpoint energy —namely the maximum electron
energy for a given transition— and pe the electron
momentum.

(b) The function F (Z,we) is the Fermi function which is
factorized in terms of two functions F0 and L0:

F (Z,we) = F0(Z,we)L0(Z,we), (8)

where F0 defines the effects of the Coulomb interaction
between the electron and the daughter nucleus, and
L0 accounts for the electromagnetic finite-size effect,
whose explicit expressions can be found in Ref. [34].

(c) C(we) is the so-called nuclear shape function, which
depends on the nuclear matrix elements (NMEs). For
allowed β transitions, it corresponds to the GT reduced
transition probability, and in such a case does not de-
pend on the electron energy.

For n-forbidden transitions, C(we) depends on the electron
energy, and is expressed as

C(we) =
∑

K

∑
ke,kν

λke

[
M2

K (ke, kν ) + m2
K (ke, kν )

− 2γke

kewe
MK (ke, kν )mK (ke, kν )

]
, (9)

where K is the tensor rank of the forbidden β-decay operators
involved in the decay. K can range from 0 to 2 for n = 1, and
from n to n + 1 for n > 1. The quantities ke and kν are the
positive integers emerging from the partial wave expansion of
the leptonic wave functions. The latter, for a given value of K ,
must satisfy either ke + kν = K + 1 or ke + kν = K + 2.

The auxiliary quantities γke and λke are defined as

γke =
√

k2
e − (αZ )2, λke = Fke−1(Z,we)

F0(Z,we)
, (10)

where Fke−1(Z,we) is the so-called generalized Fermi func-
tion (see Ref. [34] for its explicit expression). The quantities
MK and mK are complicated combinations of some kinematic
factors and coefficients F (N )

KLS (ke, m, n, ρ), the latter being
functions of the orbital, spin, and total rank of the transition
operators L, S, and K , respectively, and the integers m, n and ρ

depending on the nuclear charge distribution which accounts
for the influence of the nuclear charge on the electron [34,35].
The index N labels the order of the expansion in powers of
qR (where R is the nuclear radius and q is the momentum
transfer q =| pe + pν |) of the nuclear form factor FKLS , which
is defined by the following expression:

FKLS (q2) =
∑

N

(−1)N (qR)2N (2L + 1)!!

(2N )!!(2L + 2N + 1)!!
F (N )

KLS. (11)

If we adopt the impulse approximation (qR � 1) to
derive the formalism of forbidden β-decay transitions,
and also assume that bound nucleons interact weakly as
free nucleons, then we may neglect the effect of any
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many-body current. Within such an approximation, it has
been shown in Refs. [34,35] that the form factor coef-
ficients V/AF (N )

KLS (ke, m, n, ρ) can be related to the NMEs
V/AMN

KLS (ke, m, n, ρ) by a phase factor:

V/AF (N )
KLS (ke, m, n, ρ) = (−1)K−L V/AMN

KLS (ke, m, n, ρ),

(12)

where the label V/A indicates the separation of the coefficients
F (N )

KLS (ke, m, n, ρ) according to the axial and vector compo-
nents of the decay operator.

In a shell-model calculation, the NMEs can be expressed in
terms of the single-particle matrix elements of the one-body
decay operator (SPMEs) and the one-body transition densities
(OBTDs), that can be obtained from the shell-model wave
functions, through the expression

V/AM (N )
KLS (ke, m, n, ρ) = 1

Ĵi

∑
π,ν

V/Am(N )
KLS (π, ν)(ke, m, n, ρ)OBTD(� f , �i, π, ν, K ), (13)

where Ĵi = √
(2Ji + 1), and Ji is the angular momentum of

the initial state of the parent nucleus. The OBTDs are defined
as

OBTD(� f , �i, π, ν, K ) = 〈� f || [a†
π ⊗ ãν]K || �i〉

K̂
, (14)

where �i and � f are the wave function of the initial and
final state, respectively, a†

π is the particle creation operator,

and ãν = (−1) jν+mν aν−mν
is the tensor spherical form of the

particle annihilation operator (aν). The indices π and ν label
the proton (π ) and neutron (ν) single-particle states, and the
symbol ⊗ denotes the angular-momentum coupling.

The SPMEs correspond to the following matrix elements:

V m(N )
KLS (ke, m, n, ρ) =

〈
φκπ μ

∣∣∣∣
∣∣∣∣( r

R

)L+2N
I (ke, m, n, ρ, r)TKLS

∣∣∣∣
∣∣∣∣φκνμ

〉
, (15)

Am(N )
KLS (ke, m, n, ρ) =

〈
φκπ μ

∣∣∣∣
∣∣∣∣( r

R

)L+2N
I (ke, m, n, ρ, r)γ5TKLS

∣∣∣∣
∣∣∣∣φκνμ

〉
. (16)

Now, it is worth to list and specify the quantities which
appear in the Eqs. (15) and (16) for the matrix elements of the
vector and axial components of the β-decay operator:

(1) The functions I (ke, m, n, ρ, r) are the so-called
Coulomb factors whose explicit expression can be
found in Ref. [34].

(2) The operator TKLS is the transition operator defined as

T M
KLS =

{
YLMδKL S = 0,

(−1)L−K+1γ5[YL ⊗ σ ]KM S = 1.
(17)

(3) The single-particle relativistic wave functions φκμ

are the eigenfunctions of the operators Jz and K =
β(σ · L + I), and are labeled by their eigenvalues μ

and κ:

Jzφκμ = μφκμ,

Kφκμ = β(σ · L + I)φκμ = κφκμ.

It can be shown that the eigenvalue κ is related to
the total and orbital angular momenta j and l through
the relation

κ =
{

j + 1
2 for l = j + 1

2 ,

−( j + 1
2 ) for l = j − 1

2 .
(18)

In the Condon-Shortley (CS) phase convention, the φκμ

functions are defined as

φκμ =
(−i fκ (r)χ−κμ

gκ (r)χκμ

)
, (19)

where χκμ = [Yl (r̂) ⊗ χ ] jμ, and the radial functions fκ (r)
and gκ (r) are the solutions of the radial Dirac equations, and
they are usually indicated as the small and large components,
respectively:

dgκ (r)

dr
+ κ + 1

r
gκ (r) − [E + M − V (r)] fκ (r) = 0, (20)

dfκ (r)

dr
− κ − 1

r
fκ (r) + [E − M − V (r)]gκ (r) = 0. (21)

The matrix elements of Eqs. (15) and (16) can be grouped
into two different types.

The first one contains the product of both small compo-
nents of the initial and final wave functions, as well as the
product of both large components of the same wave functions,
which are the solutions of the coupled equations (20) and (21),
and usually they are dubbed in literature as the nonrelativistic
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matrix elements [34,35,37,38]. Their explicit expression is

V m(N )
KK0(π, ν)(ke, m, n, ρ) =

√
2gV

[
GKK0(κπ , κν )

∫ ∞

0
gπ (r, κp)

( r

R

)K+2N
I (ke, m, n, ρ, r)gν (r, κν )r2dr

+ GKK0(−κπ ,−κν )
∫ ∞

0
fπ (r, κπ )

( r

R

)K+2N
I (ke, m, n, ρ, r) fν (r, κν )r2dr

]
, (22)

Am(N )
KL1(π, ν)(ke, m, n, ρ) = sign

(
K − L + 1

2

)√
2gA

[
GKK0(κπ , κν )

∫ ∞

0
gπ (r, κπ )

( r

R

)L+2N
I (ke, m, n, ρ, r)gν (r, κν )r2dr

+ GKK0(−κπ ,−κν )
∫ ∞

0
fiπ (r, κp)

( r

R

)L+2N
I (ke, m, n, ρ, r) fν (r, κν )r2dr

]
. (23)

The second group contains the product of the small and large components of the initial and final wave functions that are the
solutions of Eqs. (20) and (21), and in such a case they are dubbed as the relativistic matrix elements. Now, their expression is

V m(N )
KL1(π, ν)(ke, m, n, ρ) = sign

(
K − L + 1

2

)√
2gV

[
GKL1(κπ ,−κν )

∫ ∞

0
gπ (r, κπ )

( r

R

)L+2N
I (ke, m, n, ρ, r) fν (r, κν )r2dr

−GKK0(−κπ , κν )
∫ ∞

0
fπ (r, κπ )

( r

R

)L+2N
I (ke, m, n, ρ, r)gν (r, κν )r2dr

]
, (24)

Am(N )
KK0(π, ν)(ke, m, n, ρ) =

√
2gA

[
GKK0(κπ ,−κν )

∫ ∞

0
gπ (r, κπ )

( r

R

)K+2N
I (ke, m, n, ρ, r) fν (r, κν )r2dr

−GKK0(−κπ , κν )
∫ ∞

0
fπ (r, κπ )

( r

R

)K+2N
I (ke, m, n, ρ, r)gν (r, κν )r2dr

]
. (25)

It is worth noting that in the above equations we have
introduced the quantity

GKLS (κπ , κν ) = (−1) jπ − jν+lπ ŜK̂ ĵπ ĵν l̂π l̂ν〈lπ lν00|L0〉

×

⎧⎪⎨
⎪⎩

K S L

jπ
1
2 lπ

jν
1
2 lν

⎫⎪⎬
⎪⎭, (26)

and we remind that L, S, and K are the orbital, spin, and total
rank of the transition operators, respectively, and lτ = kτ if
kτ > 0 and lτ =| kτ | −1 if kτ < 0.

Until now, the nucleon wave functions are expressed in
a fully relativistic framework, being the solutions of the
Dirac equation. However, within the nuclear shell model,
the nucleon wave functions are expressed as solutions of the
single-particle Schrödinger equation, introducing the auxil-
iary harmonic-oscillator potential.

Such an inconsistency impacts especially on the calcula-
tion of the relativistic matrix elements, and this problem may
be tackled in two ways. The first approach is to resort to a non-
relativistic reduction of the Dirac equation by considering the
nonrelativistic limit of the coupled Eqs. (20) and (21), namely
the kinetic energy T and the auxiliary potential V (r) satisfy
the conditions T = E − MN � 2MN and V (r) � 2MN [39].
Within this limit, the function gκ becomes the solution of
the Schrödinger equation, and fκ is related to gκ through the
relation

fκ (r) = 1

2MN

(
d

dr
+ κ + 1

r

)
gκ (r). (27)

However, as it was observed in Ref. [34], whether or not
such a limit of the Dirac equation is a good approximation to
calculate the relativistic NMEs is a difficult question to an-
swer, since to test this approach a fully relativistic calculation
should be performed and compared with the approximated
results.

Moreover, it should be noted that, if we consider the re-
lation (27), the radial function fκ (r) is suppressed by a factor
1/(2MN ) with respect to the function gκ (r), but the relativistic
form factor, even if it is small with respect to the nonrelativis-
tic ones, it has been found to be relevant to determine both the
shape of the energy spectrum and the half-life of the β decay
[35,37,40–42].

Its relevance, within such a reduction of the Dirac equation,
is also stressed in Ref. [15], where a study of the dependence
of the energy spectrum and half-life of the fourth-forbidden β

decay of 113Cd with respect to the quenching factor q of the
axial coupling constant gA has been carried out. As a matter
of fact, the authors show that a fitting procedure of both q
and of the relativistic form factor is needed to reproduce the
experimental shape of the energy spectrum as well as the
observed half-life.

An alternative approach to calculate the relativistic NMEs,
is to resort to the conserved vector current theory (CVC) [34],
which leads to derive a connection between the relativistic
NMEs and the nonrelativistic ones, that is developed as a
relation between the corresponding form factors. An early
application of this approach can be found in Ref. [37].

In particular, for the four decays under investigation, since
we stop at the leading order in the expansion of FKLS (q2)
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[N = 0 in Eq. (11)], the relativistic form factors entering in
Eq. (9) are only the V F211, for the second-forbidden decay
of 94Nb, 99Tc, and the V F431 for the fourth-forbidden decay
of 113Cd, 115In . These form factors, using the CVC relation
[34,37], depend on V F220 and V F440, respectively, through the
relations

V F211 = − 1√
10

REγ
V F220,

V F 431 = − 1√
36

REγ
V F 440,

(28)
where

Eγ = [W0 + �EC − (Mν − Mπ )] (29)

is the energy of the analog electromagnetic transition [43],
Mν(π ) is the neutron (proton) mass, and �EC is the Coulomb
displacement energy that can be evaluated in different ways.
�EC can be evaluated in different ways; here we have used the
results of the fit procedure as outlined in Ref. [44], obtaining
�EC = 11.99, 12.38, 13.27, and 13.48 MeV for 94Nb, 99Tc,
113Cd, and 115In decays, respectively.

It is important to stress that these CVC relations have been
employed in different studies, leading to a general improve-
ment of the calculated spectra [35,37,40–42] and half-lives.

However, we point out that these relations are valid in the
full nuclear Hilbert space of the single-particle configurations,
and it is difficult to evaluate the impact of resorting to a
truncated model space, but, however, it should be noted that
our approach relies on the derivation of effective Hamiltonians
and operators by way of the many-body theory to account for
the configurations outside the model space.

Nevertheless, the CVC relations for the relativistic form
factors represent a viable route to get an estimation of the
relativistic matrix elements entering the calculation, and/or,
to understand the reliability of the nonrelativistic reduction of
the relativistic matrix elements.

C. Effective shell-model decay operators

In this section, we sketch briefly the procedure to derive
effective SM decay operators �eff by way of many-body per-
turbation theory.

As is well known, the diagonalization of the Heff does not
produce the true nuclear wave-functions, but their projections
onto the chosen model space P. Then, any decay operator
� should be renormalized by taking into account for the ne-
glected degrees of freedom corresponding to the Q subspace.

The derivation of effective SM operators within a per-
turbative approach traces back to the pioneering period of
employing NN potentials in SM calculations [45–50]. We
have followed the method that has been introduced by Suzuki
and Okamoto [5], which allows a derivation of decay opera-
tors �eff which is consistent with the one of Heff , as presented
in Sec. II A. This is based on the perturbative expansion of a
vertex function �̂ box —analogously with the derivation of
Heff in terms of the Q̂ box— whose details may be found in
Refs. [5,6].

According to such a procedure, the starting point is
the perturbative calculation of two energy-dependent vertex

functions:

�̂(ε) = P�P + P�Q
1

ε − QHQ
QH1P,

�̂(ε1; ε2) = PH1Q
1

ε1 − QHQ
Q�Q

1

ε2 − QHQ
QH1P,

and of their derivatives calculated in ε = ε0, ε0 being the
eigenvalue of the degenerate unperturbed Hamiltonian H0:

�̂m = 1

m!

dm�̂(ε)

dεm

∣∣∣∣
ε=ε0

,

�̂mn = 1

m!n!

dm

dεm
1

dn

dεn
2

�̂(ε1; ε2)

∣∣∣∣
ε1=ε0,ε2=ε0

.

Then, a series of operators χn is calculated:

χ0 = (�̂0 + H.c.) + �̂00, (30)

χ1 =(�̂1Q̂ + H.c.) + (�̂01Q̂ + H.c.),

χ2 =(�̂1Q̂1Q̂ + H.c.) + (�̂2Q̂Q̂ + H.c.) (31)

+ (�̂02Q̂Q̂ + H.c.) + Q̂�̂11Q̂ · · ·
At the end, �eff is written in the following form:

�eff = Heff Q̂
−1(χ0 + χ1 + χ2 + · · · ), (32)

with the χn series being arrested in our calculations at n = 2,
and the �̂ function expanded up to third order in perturbation
theory.

In Refs. [8,11,27] we have tackled the issue of the conver-
gence of the χn series and of the perturbative expansion of the
�̂ box, showing the robustness of such a procedure.

It is worth to point out that, even if the decay operator
has a one-body structure, the shell-model effective operator
has many-body components which account for a number of
valence of nucleons larger than one [11,48]. As a matter of
fact, the fourth-forbidden β decay of 115In into 115Sn involves
37 valence nucleons outside the doubly magic 78Ni, then for
such a process �eff should contain contributions up to a 37-
body term.

The shell-model code KSHELL can employ transition op-
erators with a one- and two-body components [31], then for
the calculation of β-decay effective operators we include just
the leading terms of these many-body contributions in the
perturbative expansion of the �̂ box, namely the second-order
two-body diagrams (a) and (b), that are reported in Fig. 1.

The two topologies of second-order connected two-
valence-nucleon diagrams (a) and (b) accounts for the
so-called “blocking effect”, which is necessary to consider
the Pauli exclusion principle in systems with more than one
valence nucleon [50], if the transition operator has a one-
body structure. It is worth to point out that these two-body
contributions to the effective decay operators mirror the role
of induced three-body forces in the calculation of the Q̂ box,
which we have introduced in Sec. II A.

In the present work, the decay operators � are the
one-body electric-quadrupole E2 transition qp,nr2Y 2

m (r̂) —the
charge qp,n being e for protons and 0 for neutrons— as well
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FIG. 1. Second-order two-body diagrams which are included in
the perturbative expansion of �eff . The dashed line indicates the
bare second- and fourth-forbidden β-decay operators �, the wavy
line the two-body potential Vlow-k . For the sake of simplicity, for
each topology only one of the diagrams which correspond to the
permutation of the external lines has been drawn.

as the one-body second- and fourth-forbidden β-decay opera-
tors, as introduced in Sec. II B.

III. RESULTS

In this section we present the results of our SM cal-
culations. First, we compare theoretical and experimental
low-energy spectroscopic properties of the parent and daugh-
ter nuclei under investigation, namely 94Nb, 94Mo, 99Tc, 99Ru,
113Cd, 113In, 115In, and 115Sn . Successively, we focus to study
β-decay properties between the ground states (g.s.) of these
nuclei.

We point out that, rather than compare the experimental
and calculated half-lives, we consider the quantity log f t to
describe the strength of a β-transition. This is defined as the
logarithm of

f t = κ

C̃

∫ w0

1
pewe(w0 − we)2F (Z,we)dwe. (33)

It is worth to stress again that all the calculations have been
performed without any empirical renormalization of Heff , as
well as without resorting to quenching factors of the axial
constant gA.

A. Spectroscopy

In Table I we compare the low-energy spectra of the nuclei
under investigation.

The calculated energy levels are in reasonable agreement
with the corresponding experimental states with a few excep-
tions, while the comparison between theory and experiment
for the observed B(E2) (Table II) is less satisfactory for some
transitions. In fact, except for the 99Tc, almost all the other
calculated B(E2)s underestimate the experimental ones.

Here, it is worth to notice that a sound shell-model de-
scription of these nuclei is not an easy task for different
reasons, especially in a parameter free calculation. In fact,
we start from a 78Ni core, and, therefore, the number of
valence particle is sizable, ranging from 16 to 37. Then, the
inclusion of the contributions from three-body diagrams is
only the leading order of many-body contributions, whose
role grows when increasing the number of valence nucleons.
Besides this, Cd, In, and Sn isotopes are at the limit of the
proton configuration space and, therefore, Z = 50 cross-shell

TABLE I. Theoretical versus experimental low-energy levels of
the nuclei under investigation.

Jπ E th (MeV) EExp (MeV)

94Nb 6+ 0.000 0.000
3+ 0.014 0.041
4+ 0.014 0.058
7+ 0.017 0.079

94Mo 0+ 0.000 0.000
2+ 0.836 0.871
4+ 1.450 1.574

99Tc 9/2+ 0.000 0.000
7/2+ 0.140 0.140
1/2− 0.794 0.143
5/2+ 0.812 0.181

99Ru 5/2+ 0.000 0.000
3/2+ 0.343 0.096
3/2+ 0.433 0.321
7/2+ 0.588 0.341

113Cd 1/2+ 0.000 0.000
11/2− 0.069 0.263
3/2+ 0.019 0.299
5/2+ 0.401 0.316

113In 9/2+ 0.000 0.000
1/2− 1.375 0.392
3/2− 1.613 0.646
5/2+ 1.270 1.024

115In 9/2+ 0.000 0.000
1/2− 1.196 0.336
3/2− 1.445 0.597
3/2+ 2.444 0.828

115Sn 1/2+ 0.068 0.000
3/2+ 0.000 0.497
7/2+ 0.233 0.612
11/2− 0.396 0.713

TABLE II. Theoretical versus experimental [51] low-energy
B(E2) transition strengths, in W.u., of the nuclei under investigation.

Nucleus Ji → Jf Theory Experiment

94Mo 2+ → 0+ 7.9 26 (4)
4+ → 2+ 7.7 16.0 (4)

99Tc 7/2+ → 9/2+ 21 30 (19)
5/2+ → 9/2+ 10.3 15.1 (5)

99Ru 3/2+ → 5/2+ 7.4 50.1 (10)
113Cd 3/2+ → 1/2+ 2 20 (8)

5/2+ → 1/2+ 7.0 0.372 (25)
113In 5/2+ → 9/2+ 7.2 3.9 (4)
115In 1/2+ → 3/2+ 17 121 (23)
115Sn 3/2+ → 1/2+ 0.1 2.1 (6)

7/2+ → 3/2+ 0.010 0.130 (4)
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TABLE III. 94Nb, 99Tc, 113Cd, and 115In β decay relativistic form
factors determined with and without resorting to the CVC relations,
and the nonrelativistic form factors connected with the relativistic
ones by CVC. The values are in adimensional units.

94Nb Bare Effective

V F211 0.000 0.009
V F CVC

211 −0.031 −0.016
V F220 0.304 0.164
99Tc Bare Effective

V F211 0.000 0.008
V F CVC

211 −0.030 −0.017
V F220 0.286 0.161
113Cd Bare Effective

V F431 0.0003 −0.008
V F CVC

431 0.032 0.015
V F440 −0.521 −0.237
115In Bare Effective

V F431 −0.0004 −0.009
V F CVC

431 0.031 0.017
V F440 −0.473 −0.267

excitations may play a relevant role in the renormalization of
the electric-quadrupole transition operator [52,53]. Actually,
the enlargement of the proton model space, to account explic-
itly for such excitations, is out of the present computational
resources since the dimensions of the Hamiltonians to be
diagonalized could reach ≈1013.

B. Forbidden β decays of 94Nb, 99Tc, 113Cd, and 115In

We focus now on the properties of the β decay between
ground states, and it is important to start by discussing the
relevance of the CVC relations [see Eq. (28)] in determining
the relativistic form factors.

As shown in Table III, in the case of 94Nb, 99Tc
second-forbidden β decays, the relativistic form factors V F211

obtained using the bare operator is zero since the SPMEs of
the corresponding operator [Eq. (24)] are identically zero in
the model space. Even though the renormalization procedure
gives SPMEs different from zero, the value of the V F211 form
factors calculated using the effective operator has an opposite
sign, and it is a factor two smaller than the form factor ob-
tained by using the CVC relation (V F CVC

211 ).
As regards the fourth-forbidden form factors of 113Cd, it

is interesting to note that, in this case, the bare value of the
relativistic form factor V F431 has the same sign of V F CVC

431 , but
it is two order of magnitude smaller. The effect of the renor-
malization is remarkable, but, as it happens for the relativistic
form factor of the 94Nb, 99Tc decays, the final result again has
an opposite sign and is a factor two smaller with respect to the
one calculated with the form factor V F CVC

431 .
The same considerations may be drawn for 115In, except

that, using the bare operator, the sign of V F431 form factor is
not consistent with the one obtained with the V F CVC

431 one.

TABLE IV. Theoretical and experimental log f t values. Data are
taken from Ref. [51].

Bare Effective Exp.

94Nb 11.30 11.58 11.95 (7)
99Tc 11.580 11.876 12.325 (12)
113Cd 21.902 22.493 23.127 (14)
115In 21.22 21.64 22.53 (3)

These results point out to a problem in determining the
relativistic form factors within the nonrelativistic reduction of
the Dirac equation for the nuclei under investigations. On the
above grounds, in the following calculation of the β-decay
properties we use the CVC relations for the relativistic form
factors.

We start the discussion of our results from the comparison
between our calculated values of the log f ts and the experi-
mental ones, as they are reported in Table IV. There, we have
reported the log f ts obtained using both the bare second- and
fourth-forbidden β-decay operators and the effective ones. It
is worth stressing again that, as we have reported in Sec. II C,
our SM effective operators consists of one- and two-body
components.

As can be seen, the results that are obtained by employing
the bare β-decay operators underestimate the experimental
log f ts, a result that is consistent with the general consider-
ation that nuclear models, which operate truncation of the
Hilbert space of the single-nucleon configurations, require
the introduction of a quenching factor q to reproduce the
experimental half-lives for allowed β-decay transitions (see
for example Refs. [1,2]).

However, the calculations employing the SM effective op-
erators provide results that substantially recover the gap with
respect to the experimental log f ts, a result that is consistent
with our previous studies of the allowed β-decay within the
realistic shell model [7–10].

To discuss the role of the renormalization of the β-decay
operator on the calculation of the shape of forbidden β-decay
energy spectra, we evaluate the quenching factors that are
needed to tune the axial coupling constant gA to obtain the
same results we have obtained for the log f ts by employing
the SM effective operators. Using Eq. (7), we obtain that
the quenching factors that reproduce the values in column
“Effective” in Table IV are q = 0.27, 0,50, 0.22, and 0.41 for
94Nb, 99Tc, 113Cd, and 115In decays, respectively.

In Fig. 2, the calculated and experimental normalized spec-
tra of the second-forbidden and fourth-forbidden decays, that
are under our present investigation, are reported. The available
data are drawn, with the corresponding errors, using red dots.
It should be noted that the energy spectra are normalized in
the energy region of the available data, and that those for 99Tc
decay have been extracted from Fig. 5 in Ref. [42]. Moreover,
the experimental spectra of 99Tc and 113Cd are obtained after
an unfolding procedure which takes into account the detector
response function, as discussed in Ref. [54] and Refs. [42,55],
respectively. Conversely, in the energy spectrum of 115In the
detector response is not decoupled, leading to a more dif-
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FIG. 2. Theoretical and experimental normalized β-spectra of
94Nb (a), 99Tc (b),113Cd (c), and 115In (d) as a function of the electron
kinetic energy Te. The theoretical spectra are calculated with the
bare operator (blue dashed line), the SM effective operator (contin-
uous black line), and using the quenching factors for gA extracted
from Eq. (34) (green dashed line) (see text for details). The red
dots corresponds to experimental values, where they are available
[20,42,54,57].

ficult direct comparison. However, according to the results
presented in Refs. [20,56], the detector response effects are
expected to be small and, in any case, not significant for our
purposes.

As regards 94Nb decay, there are no experimental results,
at present, and they are normalized in the full range of the
kinetic-energy interval.

The calculated values are labeled and drawn as follows:

(1) the calculated values, obtained using the bare opera-
tors, follow the dashed blue line;

(2) the spectra calculated using the SM effective operators
are drawn with a continuous black line;

(3) finally, we report also the results coming out by using
the bare operator, but quenching the axial coupling
constant gA with the q factors that reproduce the theo-
retical log f ts using the effective decay operators.

From the inspection of Fig. 2, we can clearly assert that the
theoretical energy spectra, calculated employing the bare and
the effective β-decay operators, are in a very good agreement
with the corresponding experimental shapes [20,42,54,57], for
the forbidden β-decays of 99Tc, 113Cd, and 115In . Moreover,
all of them exhibit a small sensitivity to the renormalization of
the β-decay operators, with small differences appearing only
at low energy for all the decays (�100 keV).

As regards the energy spectra obtained with the bare
operator and quenching gA, we see that they show a pro-
nounced disagreement with the experimental shapes, for 99Tc,
113Cd, and 115In, mostly in the low- and intermediate-energy
intervals.

These results lead us to two main conclusions.
First, the calculated shapes of the normalized energy spec-

tra are substantially insensitive to the renormalization of the
forbidden β-decay operator by way of many-body perturba-
tion theory, that is our approach to realistic shell model, and
are in a good agreement with current data.

Second, it seems that the mere renormalization of the axial
coupling constant gA by a quenching factor q makes it difficult
to provide simultaneously better log f ts and shapes of the
energy spectra which reproduce the observed behavior.

It is worth mentioning that in Refs. [13,42,58] the authors
carried out a study of the sensitivity of their calculated spectra
upon the renormalization of the axial coupling constant, and
they found a noticeable dependence of their results on the
choice of the quenching factor q.

Now, to reach a better insight of the results, we analyze the
different components of the shape factor defined in Eq. (7).
This factor can be divided in three components, the vector,
axial and vector-axial terms, namely

C(we) = CV (we) + CA(we) + CVA(we), (34)

where CV contains the coupling constant g2
V , CA contains g2

A
and CVA contains gV gA.

The integrated shape functions C̃k are reported in Table V,
as well as the total value C̃ [see Eq. (7)] for all the decays
under investigation. As can be seen, at variance with what
was observed in Ref. [14], for all the decays C̃VA is positive
and therefore it is summed in phase with the vector and axial
components.

Actually, such a result is a consequence of the CVC theory,
since if we do not use the CVC relations to determine the
relativistic form factor, the mixed terms C̃VA for the cases
under investigation become negative, and very close in ab-
solute value to the sum of the correspondent vector and axial
components. This is similar to the results reported in Ref. [14],
and such a feature highlights the relevance of this form factor,
as it was also discussed in other papers [35,37,40–42].

Even though it is small compared to the other form fac-
tors, the relativistic one is relevant do determine C(we), and,
therefore, shapes and half-lives, since, at variance with non-
relativistic form factors, it enters the quantity MK (ke, kν ) of
Eq. (9) without any suppression coefficient (for the explicit
expression of MK (ke, kν ) see Table 4 in Ref. [34]).

The positive values of C̃VA explain the stability of the shape
with respect to the renormalization of the decay operators.
In fact, without using the CVC relations, as a consequence
of the delicate balance of the vector, axial and vector-axial
terms, it is obtained a shape of the energy spectrum that is
very sensitive to the renormalization procedure.

IV. CONCLUSIONS AND OUTLOOK

This work is the first attempt to describe the features of
forbidden β-decays within the framework of the realistic shell
model, without resorting to any phenomenological quenching
factor for the axial and vector coupling constants.

Such a study represents not only a validation of our the-
oretical framework to assess the reliability to predict 0νββ

nuclear matrix elements [11], but it can also give useful in-
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TABLE V. Integrated shape functions C̃ of the studied transitions and their vector C̃V , axial-vector C̃A, and mixed components C̃VA.

Parent Op C̃V C̃A C̃VA C̃

94Nb Bare 5.44 × 10−9 1.23 × 10−8 1.34 × 10−8 3.11 × 10−8

Effective 1.40 × 10−9 9.07 × 10−9 5.72 × 10−9 1.62 × 10−8

99Tc Bare 3.10 × 10−9 5.90 × 10−9 7.15 × 10−9 1.61 × 10−8

Effective 8.82 × 10−10 4.14 × 10−9 3.14 × 10−9 8.17 × 10−9

113Cd Bare 1.19 × 10−19 3.72 × 10−19 2.80 × 10−19 7.70 × 10−19

Effective 2.14 × 10−20 1.14 × 10−19 6.20 × 10−20 1.98 × 10−19

115In Bare 6.14 × 10−19 1.93 × 10−18 1.15 × 10−18 3.69 × 10−18

Effective 1.75 × 10−19 8.68 × 10−19 3.72 × 10−19 1.42 × 10−18

formation for the recent experimental studies of the electron
energy spectra of forbidden β-decays.

First, we have verified the ability of our effective Hamil-
tonian and transition operators by comparing the calculated
low-energy spectra and E2 transition strengths of parent and
daughter nuclei, involved in the forbidden β-decays under
consideration, with their experimental counterparts. The com-
parison of the spectroscopic data with the corresponding
experimental ones is quite satisfactory, especially if we con-
sider the large number of valence particles —ranging from
16 to 37— which characterizes the nuclear system we have
investigated.

Then, we have calculated both the half-lives and the energy
spectra of the emitted electrons of the second-forbidden β-
decay of 94Nb and 99Tc, and the fourth-forbidden β-decay of
113Cd and 115In .

As regards the outcome of our calculation of the properties
of the forbidden β-decay processes under investigation, the
results may be outlined as follows:

(1) The exam of the theoretical log f ts and the experimen-
tal ones shows that the results that are obtained with
bare operators always underestimate the data, a feature
that is resembling the problem of the quenching of gA

in the allowed β-decay transitions. The theory moves
towards experiment by employing the theoretical ef-
fective operators, as expected.

(2) Starting from the wave functions that are obtained
through the diagonalization of our Heff , the shape of
the calculated energy spectra is rather insensitive to
the choice of the β-decay operator, bare or effective,
and in both cases the reproduction of the observed
normalized energy spectra is more than satisfactory.

(3) The latter result seems to be unrelated to the consider-
ations about the calculated log f ts, and the comparison
with data. In fact, using the bare operator, but introduc-
ing a quenching factor of the axial constant to improve
the reproduction of the experimental log f ts, it results
in a distortion of the shape of the energy spectra, that
affects the agreement with the observed ones.

Wrapping up the results we have obtained, we may say that
the goal to obtain, on the same footing, a better reproduc-

tion of half-lives and the shape of the energy spectrum of
the emitted electrons in forbidden β decays, by employing
effective decay operators, is a delicate matter. As it has been
mentioned in Sec. III B, such an issue was met also in other
studies [13,42,58], where the authors showed that, without a
renormalization of the β-decay operator that is framed in the
many-body theory, the reproduction of the observed properties
of forbidden β decays cannot rely only on the quenching of
gA, and other empirical parameters should be considered.

It is worth pointing out that such an issue does not emerge
in the study of allowed β decays, since the calculated energy
spectrum does not depend on the nuclear matrix element of
the electroweak currents, and the most relevant observable to
be tested is the half-life.

Our considerations lead to suggest that the study of for-
bidden β-decay processes could be a valuable tool to refine
the theoretical knowledge of the renormalization of transition
operators, and to rule out models that could be not reliable to
predict the value of nuclear matrix elements for decays, such
as in the case of the 0νββ decay.

On the above grounds, we plan to extend the present work
by studying forbidden β decays in other mass regions, close
to nuclei that are candidates for detecting the 0νββ decay.
Another interesting subject could be to tackle the forbidden
β-decay problem starting from the derivation of electroweak
currents by way of the chiral perturbation theory, which repre-
sent the new frontier to frame the nuclear many-body problem
within its underlying fundamental theory —the QCD— and
it is currently employed to investigate GT transitions with
different nuclear approaches [10,59–64].
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