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Unified insights: Relativistic density functional theory for proton resonance,
emission, and proton-rich exotic nuclei
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We have presented an enhanced relativistic density functional theory that comprehensively addresses proton
resonance, emission processes, and proton-rich exotic nuclei. Our theory successfully resolves the long-range
Coulomb potential issue by eliminating its singularity within the Dirac equation using the complex momentum
representation. When applied to 120Sn, our theory significantly improves alignment with advanced scattering
data, surpassing the accuracy of traditional methods, even for exceptionally broad resonances. Additionally, our
analysis of proton emissions from 37Sc and 39Sc accurately reproduces experimental Q values and lifetimes. Our
model exhibits superior agreement with time-dependent Dirac calculations compared to other methodologies,
particularly in capturing nuances of narrow widths. Extending to proton-rich exotic nuclei, such as 26P, we unveil
detailed density distributions unconstrained by box size, revealing proton halo characteristics due to weakly
bound 2s1/2 protons. This advancement in our relativistic density functional theory gives hope for reaching a
more accurate and comprehensive understanding of nuclear phenomena across proton-rich systems.

DOI: 10.1103/PhysRevC.110.014323

I. INTRODUCTION

The exploration of weakly bound and unbound nuclei,
distant from the stability line, constitutes a crucial domain
in nuclear physics and astrophysics [1,2]. Neutron-rich and
proton-rich regions exhibit numerous exotic phenomena, in-
cluding halo structures, single (double) neutron (proton)
emissions, continuous state coupling, and magic number
shifts [3,4]. While traditional models like the shell model
and (non-) relativistic density functional theories succeed with
stable nuclei, their application to exotic nuclei demands con-
sideration of the continuum and resonances within it.

Addressing the continuum, the Gamow shell model ex-
cels in describing light exotic nuclei [5,6]. For heavier
exotic nuclei, the continuum Hartree-Fock Bogoliubov the-
ory [7–9] and the widely embraced relativistic mean field
(RMF) theory [10–16] have been employed. Understanding
exotic phenomena necessitates investigating physical reso-
nance states, leading to the integration of various resonance
methods, such as analytic continuation of coupling constants
(ACCC) [17], stabilization method (SM) [18], complex scal-
ing method (CSM) [19,20], Green’s function [21], scattering
phase shift [22,23], Jost function [24,25], and complex-scaled
Green function [26,27], and others, with RMF.

Recently, the complex momentum representation (CMR)
method has gained prominence for its effectiveness in de-
scribing resonant states and exotic nuclei. CMR’s versatility in
handling bound and resonant states in both narrow and broad
spectra makes it invaluable for investigating weakly bound
and unbound nuclei. In the nonrelativistic context, CMR has
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been extensively used for both bound [28,29] and resonant
states [30–32], forming the basis for the Gamow shell model
for weakly bound nuclei [33].

Capitalizing on CMR’s advantages, we extended its ap-
plication to the relativistic framework, resulting in the
RMF-CMR theory [34]. This theory enabled comprehensive
investigations into exotic properties of spherical and deformed
nuclei [35–39]. While previous studies primarily focused on
neutron-rich nuclei, attention was directed to proton-rich nu-
clei, highlighting phenomena like proton halos and emissions.
The pivotal role of the long-range Coulomb field in proton-
rich nuclei motivated us to address its singularity in the
momentum representation. To tackle this issue, we incorpo-
rate the Lande subtraction method, which has proven effective
in removing singularities in the long-range Coulomb potential
within a nonrelativistic framework [40–43]. In this work we
utilize the Lande subtraction to tackle the enduring issue of
the Coulomb field’s long-range behavior within the context of
relativistic density functional theory.

This enhanced RMF-CMR theory, applicable to both
neutron-rich and proton-rich nuclei, has been instrumental in
studying proton resonances, emissions, and exotic properties.
It provides insights into the mechanisms governing proton
decay and the formation of proton halos in atomic nuclei. No-
tably, the theory excels in exploring both extraordinarily broad
and narrow resonances, overcoming significant challenges.
Section II details the theoretical framework, Sec. III discusses
numerical aspects and presents results, while Sec. IV offers a
comprehensive summary.

II. FORMALISM

In the conventional RMF-CMR theory, both the Coulomb
long-range potential and meson-exchange potential are treated
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equally, a successful approach for studying neutron-rich ex-
otic nuclei. However, for proton-rich exotic nuclei, addressing
the Coulomb field is crucial to eliminate the singularity arising
in the Dirac equation. In the following we delve into the
theoretical framework.

The Dirac equation from the RMF can be expressed as
follows:

[�α · �p + β(M + S) + V ]ψ = εψ, (1)

where M represents the nucleon mass, �α and β are the Dirac
matrices, and S and V are the scalar and vector potentials,
respectively. The vector potential V consists of Vo and Vc. Vo

(Vc) represents that contributed by exchange vector mesons
(photon). To describe uniformly the bound states and reso-
nant states, we transform the Dirac equation into momentum
representation: ∫

d�k′〈�k|H |�k′〉ψ (�k′) = εψ (�k), (2)

where �k is wave vector, H = �α · �p + β(M + S) + V is the
Dirac Hamiltonian, and ψ (�k) is the momentum wave function.
For a spherical system, ψ (�k) can be separated into the radial
and angular parts as

ψ (�k) =
(

f (k)φl jm j (�k )

g(k)φl̃ jm j
(�k )

)
, (3)

where the two-dimensional spinor φl jm j (�k ) = [χ1/2(s) ⊗
Yl (�k )] jm j . l (l̃) is the orbital angular momentum correspond-
ing to the large (small) component of Dirac spinor, related
to the total angular momentum j with l̃ = 2 j − l . The treat-
ment of meson fields is the same as that in the case of a
neutron. Here, we present the treatment of the Coulomb field.
Without losing generality, a screening Coulomb potential is
considered:

Vc(�r) = λ
exp (−ηr)

r
, (4)

where λ represents the strength of Coulomb potential, and η

is a screening parameter. With the Coulomb potential, Eq. (1)
becomes

M f (k) − kg(k) +
∫

k′2dk′V l
c (k, k′) f (k′) = ε f (k),

−k f (k) − Mg(k) +
∫

k′2dk′V l̃
c (k, k′)g(k′) = εg(k), (5)

with

V l
c (k, k′) = λ

π

Ql (y)

kk′ , V l̃
c (k, k′) = λ

π

Ql̃ (y)

kk′ , (6)

where Ql (y) are the Legendre polynomials of the second
kind with y = k2+k′2+η2

2kk′ . Ql (y) = 1
2 Pl (y) ln( y+1

y−1 ) − Wl−1(y)

with Wl−1(y) = ∑l
t=1

1
t Pt−1(y)Pl−t (y), and W−1(y) = 0. Pl (y)

is the Legendre polynomial. When η → 0 and k = k′, there
is y = 1. There is singularity in V l

c (k, k′) and V l̃
c (k, k′). To

eliminate the singularity, Lande subtraction is adopted. The
integral in Eq. (5) is separated into the two parts:∫ ∞

0
V l

c (k, k′) fl (k
′)k′2dk′ = A + B, (7)

where

A =
∫ ∞

0
V l

c (k, k′)
[

fl (k
′)k′2 − fl (k)k2

Pl (y)

]
dk′, (8)

B = fl (k)k2
∫ ∞

0

V l
c (k, k′)
Pl (y)

dk′. (9)

The integral in A can be set with k 	= k′ because A = 0 with
k = k′. The integral in B can be calculated as∫ ∞

0

V l
c (k, k′)
Pl (y)

dk′ = λ

πk

∫ ∞

0

Ql (y)

Pl (y)

dk′

k′ = λ

k

(π

2
− Il

)
.

Il can be evaluated exactly, I0 = 0, I1 = 1, I2 =
1.224 744 871 391 589 4, . . . . By using Gauss quadrature
for the integral and combining the potentials of exchange
mesons, the Dirac Hamiltonian matrix in Eq. (5) is
obtained as

H =
(

Mδab + √
wawbkakb

[
V l

c (ka, kb) + V l
+(ka, kb)

] −kaδab

−kaδab −Mδab + √
wawbkakb

[
V l̃

c (ka, kb) + V l̃
−(ka, kb)

]
)

, (10)

where the on-diagonal matrix elements of the Coulomb poten-
tial are given by

V l
c (ka, ka) = − 1

waka

λ

π

∑
b	=a

Ql (yab)wb

Pl (yab)kb
+ 1

waka
λ
(π

2
− Il

)
,

(11)
and the off-diagonal matrix elements are given by

V l
c (ka, kb) = λ

π
Ql (yab)/kakb, (12)

with yab = k2
a+k2

b
2kakb

. The same expressions hold for V l̃
c (ka, kb) by

replacing l with l̃ .

For the interaction potentials contributed by exchange
mesons, the expressions in momentum representation are the
same as those in Ref. [34], i.e.,

V l
+(ka, kb) = 2

π

∫
r2dr[Vo(r) + S(r)] jl (kar) jl (kbr),

V l̃
−(ka, kb) = 2

π

∫
r2dr[Vo(r) − S(r)] jl̃ (kar) jl̃ (kbr),

where jl (kr) is the spherical Bessel function. In Eq. (10)
there are no calculations Ql (yab)ka=kb , and the singularity is
eliminated. When r is large enough, the Coulomb potential in
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FIG. 1. Single-particle spectra for protons in 120Sn are depicted
in the RMF-CMR calculations employing the NL3 parameter set.
Bound states, resonant states, and continuum are respectively de-
noted by blue squares, red diamonds, and black circles.

Eq. (4) is exactly the same as that in the RMF calculations.
The short-range part is calculated using RMF.

Unlike nonrelativistic programs, the current relativistic for-
malism, which employs the Lande scheme to address the
singularities in the Dirac equation in the momentum repre-
sentation, necessitates the integration of Coulomb long-range
potentials with nuclear short-range potentials. Moreover, it in-
volves multiple self-consistent iterations to solve the coupled
Dirac equations for both upper and lower spinors.

III. THE NUMERICAL DETAILS AND RESULTS

In the context of the formalism presented, our investi-
gation focused on single proton resonances within atomic
nuclei, using 120Sn as an illustrative example for comparison
with other methods. We have performed self-consistent RMF-
CMR calculations to analyze single-particle spectroscopy. For
neutrons, the Coulomb field is negligible. However, when
considering protons, we must incorporate the potential stem-
ming from the exchange mesons with the Coulomb potential.
Specifically, for the Coulomb potential, the short-range
component is calculated using RMF, while the long-range
component is integrated through Eq. (4), setting the strength
of the Coulomb field as λ = Ze2, where Z represents the elec-
tric charge number, and the screening parameter as η = 0.0.
The results, depicted in Fig. 1, reveal distinct separation of
bound states, resonant states, and the continuous spectrum,
highlighting eight proton resonant states. Notably, resonances
2 f7/2, 1h9/2, 2 f5/2, and 1i13/2 are situated near the real k axis,
indicating narrow resonance, while resonances 3p1/2, 3p3/2,
1i11/2, and 2g9/2 are positioned farther from the real k axis,
representing broad resonance. It is noteworthy that resonances
i11/2 and 2g9/2, not obtained in RMF-CSM calculations due
to divergence caused by a large complex rotation potential,
are successfully captured by the RMF-CMR method. This

FIG. 2. The resonant state in 37Sc is illustrated in the upper panel,
depicting the complex momentum plane. The lower panel presents
the evolution of the energy (in red) and width (in blue) of the 1 f7/2

resonant state towards the imaginary part of the triangular contour
vertex. The values for kr (ki) are expressed in fm−1, and E (
) is
denoted in MeV. Note that the values of width should be multiplied
by 10−3 for proper scaling.

underscores the power and efficiency of the RMF-CMR
approach in exploring broad resonances, provided the mo-
mentum contour encompasses the resonance range. Other
existing methods also face challenges in addressing these res-
onances, highlighting the unique efficacy of the RMF-CMR
method in such investigations.

To showcase the merits of our calculations, a compre-
hensive comparison is conducted with alternative methods,
including RMF-S [22], RMF-ACCC [17], RMF-CSM [19],
and RMF-GF [21]. The results, summarized in Table I, show
comparability in calculated energies and widths across all
the eight resonant states with alternative methods. Notably,
the RMF-CMR calculation demonstrates closer agreement
with the RMF-S approach, recognized for its accuracy as a
scattering method. This suggests that RMF-CMR serves as
a more precise method, akin to bound-state approaches, for
characterizing resonant states.

Given the efficacy of the recently developed RMF-CMR
method in exploring single proton resonances, we employ this
approach to investigate single proton emission. To ensure a
meaningful comparison, we select 37Sc and 39Sc as illustrative
examples, utilizing identical scalar and vector potentials as
those employed in Ref. [44]. In Fig. 2(a) the results for
37Sc are presented, clearly revealing the 1 f7/2 single proton
resonance in the complex momentum plane. To accurately
determine resonance parameters, it is imperative to examine
the dependence of the calculated results on the integration
contour. Figure 2(b) displays the energy and width variations
with respect to the imaginary part of the triangular contour
vertex. As −ki decreases from 0.1 to 0.01 or lower, both the
calculated resonance energy and width exhibit minimal
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TABLE I. The energies and widths of single proton resonant states in 120Sn, as calculated using the RMF-CMR method, are presented
alongside comparisons with other computational approaches. In this analysis the NL3 parameter set is employed, and all energy values are
expressed in MeV.

2 f7/2 1h9/2 3p3/2 2 f5/2

E , 
 E , 
 E , 
 E , 


RMF-CMR 6.210, 0.042 7.133, 0.003 7.567, 1.291 7.917, 0.294
RMF-S 6.210, 0.043 7.132, 0.003 7.513, 0.924 7.934, 0.307
RMF-GF 6.205, 0.037 7.134, 0.002 7.265, 0.965 7.909, 0.365
RMF-ACCC 6.220, 0.073 7.130, 0.017 7.320, 0.820 7.970, 0.300
RMF-CSM 6.207, 0.048 7.135, 0.003 7.305, 0.911 7.919, 0.282

3p1/2 1i13/2 2g9/2 1i11/2

E , 
 E , 
 E , 
 E , 


RMF-CMR 8.166, 2.052 10.110, 0.012 13.510, 3.208 16.889, 0.946
RMF-S 8.085, 1.344 10.110, 0.012 16.960, 0.999
RMF-GF 7.667, 1.233 10.110, 0.014 16.934, 1.092
RMF-ACCC 7.690, 1.130
RMF-CSM 7.663, 1.222

changes. The resonance energy remains nearly constant
for the first five significant digits, while the width remains
essentially unchanged for the first three significant digits,
ensuring the necessary numerical accuracy. A similar
contour-independent determination of resonance parameters
is obtained for 39Sc. The obtained energy and width values
for 39Sc are listed in Table II. Additionally, results from
time-dependent Dirac (TD-Dirac), CSM, and SM methods
are included for comparison, and the experimental data source
is from Refs. [45,46].

In the case of single proton emission in 37Sc, the Q
values calculated by the four methods exhibit remarkable
consistency and align closely with experimental data. Our
calculations closely match the results obtained from TD-
Dirac calculations. Similarly, the width values calculated
by all four methods show substantial agreement, with our
calculations demonstrating better alignment with TD-Dirac

TABLE II. The Q value and width (lifetime) of 1p emission
assessed in the f7/2 channel using the present method are compared
with results obtained from other methods. Q and 
 are given in MeV,
while τ is expressed in seconds.

37Sc = 36Ca +p

Method Q 
(τ )

CMR 2.864 3.75 × 10−3 (1.75 × 10−19)
TD-Dirac 2.864 3.74 × 10−3 (1.76 × 10−19)
CSM 2.863 3.82 × 10−3 (1.72 × 10−19)
SM 2.863 3.62 × 10−3 (1.82 × 10−19)
Experiment 2.9(3) –

39Sc = 38Ca +p

Method Q 
(τ )

CMR 0.664 3.88 × 10−9 (1.69 × 10−13)
TD-Dirac 0.662 3.87 × 10−9 (1.70 × 10−13)
Experiment 0.597(24) (τ < 400 ns)

results. Turning to single proton emission in 39Sc, our calcu-
lations successfully reproduce the experimental Q value, dis-
playing consistency with TD-Dirac calculations. In contrast,
the other two bound-state-like methods achieve consistent Q
values but encounter challenges in achieving similarly small
width values. It is crucial to acknowledge that describing
extraordinarily narrow resonances poses a significant chal-
lenge, and determining their widths across various methods,
especially those relying on bound states, presents additional
complexities. The present method exhibits a notable capabil-
ity to explore extremely narrow resonances, surpassing other
bound-state-like methods in this particular aspect.

Furthermore, we applied the RMF-CMR method to study
proton-rich exotic nuclei, using 26P as an illustrative example
and comparing it with the RMF method. We considered box
radii of Rc = 10, 15, and 20 fm. The proton density distribu-
tions obtained are depicted in Fig. 3. In the RMF calculations,
the proton density distributions were noticeably influenced
by the box size, exhibiting a sharp drop near the box’s
edge. However, in the RMF-CMR calculations, proton den-
sity distributions decayed uniformly with increasing radius,
irrespective of the box size. This uniform decay is attributed
to the fact that the RMF-CMR calculation was performed in
momentum space, eliminating any dependency on the box
size in coordinate space. Our results highlight the capability
of the RMF-CMR method to provide a reliable description of
proton density distribution in exotic nuclei, a crucial aspect for
understanding their structure and properties. Additionally, our
observations revealed that the proton density distribution was
more extended compared to the neutron density distribution,
indicative of the presence of a proton halo. This finding is
consistent with experimental observations [47,48].

To understand the physical mechanism responsible for
the proton halo in 26P, it is essential to analyze the density
distributions of individual particle levels, as illustrated in
Fig. 4. The 1s1/2 level, being deeply bound, displays the most
orderly and least diffuse density distribution. Conversely, the
1p3/2, 1p1/2, and 1d5/2 levels, with lesser binding energies,
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FIG. 3. Proton density distributions in 26P for various Rc values
are depicted in the figure, with solid lines representing results from
the RMF calculations, and dashed lines from the RMF-CMR calcula-
tions. Additionally, for comparison, the neutron density distributions
obtained from the RMF-CMR calculations are illustrated by the gray
line. The box radius Rc is given in femtometers (fm).

exhibit somewhat more diffuse density distributions. The 2s1/2

level, residing near the Fermi surface and being the least
bound, demonstrates a significantly diffuse density distribu-
tion. Notably, the last valence proton in 26P occupies this
level. Beyond r > 8 fm, the total proton density distribution
precisely aligns with that of the 2s1/2 level. This observation
implies that the proton halo in 26P is predominantly defined
by the protons occupying the 2s1/2 level, and the important
role of the 2s1/2 orbital in the predicted halo structure of
the neutron-deficient phosphorus isotopes has been confirmed
experimentally [47].

IV. SUMMARY

We have introduced an enhanced relativistic density
functional theory that comprehensively addresses proton res-
onances, emission processes, and proton-rich exotic nuclei.
The theory effectively resolves the long-range Coulomb
potential issue by eliminating its singularity in the Dirac equa-
tion through the complex momentum representation. When
applying this theoretical framework to study proton reso-
nances in 120Sn, it shows remarkable improvements over
traditional methods, particularly in capturing the nuances of
narrow and broad resonances. Comparisons with alternative

FIG. 4. The density distributions represent the occupied single-
particle levels for protons, encompassing 1s1/2, 1p3/2, 1p1/2, 1d5/2,
and 2s1/2. Additionally, for comparative analysis, the overall density
distribution of protons is also depicted.

techniques, including RMF-S, RMF-ACCC, RMF-CSM, and
RMF-GF, underscore the precision of our newly introduced
RMF-CMR method in characterizing resonant states. Our in-
vestigation further extends to single proton emission from
37Sc and 39Sc, where the method reproduces experimental
Q values and lifetimes with exceptional accuracy, particu-
larly for extremely narrow resonances. The application of
the RMF-CMR method to proton-rich exotic nuclei, such
as 26P, reveals uniform proton density distributions that are
unaffected by box size constraints, unlike traditional RMF
calculations. Our method aptly describes the proton halo in
26P, attributing its presence to protons occupying the weakly
bound 2s1/2 level. This study offers insights into nuclear
phenomena in proton-rich systems, providing a more reliable
understanding of their structure and properties that were pre-
viously difficult to unravel.
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