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We present a microscopic modeling for a decay of a heavy compound nucleus, starting from a nucleonic
degree of freedom. To this end, we develop an approach based on a nonequilibrium Green’s function, which
is combined with a configuration-interaction approach based on a constrained density-functional theory. We
apply this approach to a barrier-top fission of 236U, restricting the model space to seniority zero configurations
of neutrons and protons. We particularly focus on the distribution of the fission probability. We find that it
approximately follows the χ 2 distribution with the number of degrees of freedom ν of the order of 1, which is
consistent with the experimental finding. We also show that ν corresponds to the number of those eigenstates of
the many-body Hamiltonian which have significant components on both sides of a fission barrier and at the same
time whose eigenenergy is close to the excitation energy of the system.
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I. INTRODUCTION

Heavy compound nuclei decay by emitting particles such
as neutrons, protons, and alpha particles, as well as via fission.
It has been a custom to describe such decays of a compound
nucleus using a statistical model [1,2]. While a level density is
an important microscopic input to a statistical model, dynam-
ical calculations based on a many-body Hamiltonian has been
rather scarce [3].

The purpose of this paper is to develop a microscopic de-
scription of decays of a heavy compound nucleus, particularly
a competition between radiative capture and fission. There are
many motivations for this. Firstly, in r-process nucleosynthe-
sis, heavy neutron-rich nuclei may decay via fission, leading
to a fission recycling [4–6]. Such heavy neutron-rich nuclei
are located outside the experimentally known region, and a
description of fission with a microscopic framework is desir-
able. Secondly, a neutron separation energy of neutron-rich
nuclei is so small that a compound nucleus formed in r-process
nucleosynthesis will be at relatively low excitation energies.
One may then question the validity of a statistical model, and
thus a microscopic approach would be more suitable in that
situation. This would be the case also for a barrier-top fission
of stable nuclei in which the excitation energy at a saddle of
fission barrier will be small due to the presence of a barrier.
An advantage of our model is that a competition between
(n, γ ) and (n, f ) processes can be described within the same
framework. Thirdly, because of a rapid increase of computer
powers, a large-scale calculation can now be performed much
more easily than before. A microscopic description of fission
has been an ultimate goal of nuclear physics, and we are now
at the stage to tackle it with large-scale calculations [3].

In this paper we propose a microscopic approach to low-
energy induced fission based on a configuration-interaction
(CI) method. This is based on entirely microscopic nucleon

interactions except for input of empirical compound-nucleus
properties and the height of the first fission barrier. For this
purpose we apply a nonequilibrium Green’s function (NEGF)
[7] to describe decay dynamics. This approach has been
widely utilized to calculate a current and a charge density
for problems of electron transport in nanodevices [8,9]. A
problem of fission has an analogous feature to this problem, as
one has to estimate a transmission coefficient for a transition
from a compound-nucleus configuration to a prefission con-
figuration. This can be viewed as a nonequilibrium current.

A preliminary calculation with this approach has been pub-
lished in Ref. [10]. In that paper, the model space was reduced
by considering only neutron seniority-zero configurations in
236U. Moreover, only the dynamics around the first fission
barrier was discussed, while 236U is known to have a double
humped fission barrier. In this paper, we shall substantially
enlarge the model space, including both neutrons and protons,
and also both the first and the second fission barriers. Such
extension of the model space allows a more consistent com-
parison with experimental data.

With the extended model space, we shall focus particu-
larly on the distribution of fission width. Decay widths of a
compound nucleus are known to follow the χ2 distribution.
This distribution is characterized by the degrees of freedom ν

[11,12], which reflects the number of open exit channels. For
example, neutron decay widths of very-low-energy neutrons
on a target with spin zero are well described by the χ2 distri-
bution with ν = 1, since there is only a single (s-wave) open
channel [13]. There are typically many open exit channels
for fission decays, reaching the order of 1010 for low-energy
induced fission [14]. However, the observed large fluctuations
in the fission decay widths require small values of the fitted
ν parameter. For example, ν for the 235U(n, f ) reaction was
found to be 2.3 ± 1.1 by fitting the experimental width distri-
bution to the χ2 function [11]. In the analysis of more recent
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and precise data of the same reaction, the distributions were
well fitted by the χ2 distribution with ν = 2 [15]. For different
target nuclei, 233U and 239Pu, the degrees of freedom have the
same order of magnitudes [16,17].

The small values of ν are explained by assuming that fis-
sion takes place through a few transition states above a fission
barrier. Thus the number of degrees of freedom corresponds
to the number of open transition states. Such transition state
hypothesis was introduced in the theory of nuclear fission by
Bohr and Wheeler [18]. While this has been widely applied
to estimate the average fission widths, its derivation usually
relies on the classical statistical mechanics. Even though there
have been recent attempts with the random matrix approach
[19–21], its consistency with quantum mechanics has not yet
been fully clarified. In this paper we discuss the underlying
mechanism of the small ν from a microscopic point of view.

The paper is organized as follows. In Sec. II we will explain
the formulation of our configuration-interaction model. In
Sec. III we will apply the model to the neutron-induced fission
of 235U and demonstrate that our model yields a small number
of ν. We will also discuss its microscopic origin in terms of the
behavior of eigenstates of a Hill-Wheeler equation. Finally,
in Sec. IV we will summarize the paper and discuss future
perspectives.

II. MODELING-INDUCED FISSION REACTIONS

A. Theoretical framework

We treat a fission process as a transition from a compound-
nucleus state to a prefission state through many-particle many-
hole configurations along a fission path. To this end, we first
discretize the fission path and obtain the local ground state for
each point based on the constrained density-functional theory
(DFT) method. We then construct many-particle many-hole
configurations on top of them. Based on the idea of the gen-
erator coordinate method (GCM), the total wave function is
described as

|�〉 =
∫

dQ
∑

μ

f (Q, Eμ)|Q, Eμ〉, (1)

where |i〉 ≡ |Q, Eμ〉 represents a Slater determinant charac-
terized by the deformation parameter Q and the excitation
energy Eμ from the local ground state. Notice that, unlike the
usual GCM [22], the wave function includes not only the local
ground states but also many-particle many-hole excited states.
The GCM kernels are then defined as

Hi,i′ = 〈i|Ĥ |i′〉 = 〈Q, Eμ|Ĥ |Q′, Eμ′ 〉, (2)

Ni,i′ = 〈i|i′〉 = 〈Q, Eμ|Q′, Eμ′ 〉. (3)

After we construct those kernels based on the con-
strained DFT method, we add imaginary parts − i

2�a to the
Hamiltonian kernel, Eq. (2), corresponding to the decay width
to a channel a. Our model includes a single neutron entrance
channel, multiple capture channels, and multiple fission chan-
nels denoted by �in, �cap, and �fis, respectively. Here, �in and
�cap have components in the compound-nucleus states, while
�fis has components in the prefission states.

The transmission coefficient from a channel a to a channel
b is computed with the Datta formula [8],

Ta,b(E ) = Tr[�aG(E )�bG†(E )], (4)

where E is the excitation energy of a compound nucleus, and
the nonequilibrium Green function G(E ) is given by

G(E ) =
[

EN −
(

H − i

2
(�in + �cap + �fis)

)]−1

. (5)

Note that we do not need to solve the Hill-Wheeler equation if
the Green function is constructed with a matrix inversion
technique [23]. In our model, the input channel a corresponds
to a neutron channel, while the output channel b is either a
fission channel or a capture channel.

B. Chi-squared distribution and its degrees of freedom

In this paper we will discuss a fluctuation of the transmis-
sion coefficients for the fission channel, Tin,fis, and its relation
to the χ2 distribution. Here, the χ2 distribution Pν (x) is de-
fined as

Pν (x) = ν

2�(ν/2)

(νx

2

)ν/2−1
e−νx/2. (6)

The parameter ν is referred to as degrees of freedom, and
� is the Gamma function. Empirically, the decay width of
compound-nucleus states is known to closely follow the χ2

distribution in many cases [11].
Note that the transmission coefficient obtained with

Eq. (4) includes the fluctuations of both the input channel
a and the output channel b. Therefore we use the fission
probability [24],

Pfis ≡ Tin,fis/Tin ∼ Tin,fis/(Tin,fis + Tin,cap), (7)

rather than Tin,fis itself. Here, the relation Tn � Tin,fis + Tin,cap

is derived from the unitarity of the S matrix, and its validity
has been confirmed in the Appendix in Ref. [10]. An advan-
tage to use Pfis is that the fluctuation of the input channel is
canceled out in between the denominator and the numerator.

III. APPLICATION TO 235U(n, f )

A. A setup of the model

Let us now apply the theoretical framework to a
neutron-induced fission reaction, 235U(n, f ). To this end, we
construct the GCM basis functions, |Q, Eμ〉, with the density-
constrained DFT calculation, assuming that the fission path
is given by the mass quadrupole moment, Q20 ≡ Q2, with
axial symmetry. As a DFT solver, we employ SkyAx [25],
in which the Kohn-Sham equation is solved in the cylindrical
coordinate space. As an energy functional, we use a Skyrme
functional with the UNEDF1 parameter set [26], which has
an effective mass close to 1 and thus is suitable to reproduce
a reasonable level density of excited nuclei. Note that the
reference states are Slater determinants; a pairing interaction
is included later as a residual interaction between the states.

The fission path is discretized with a criterion that the over-
lap of the local ground states between the nearest neighbors
is N ∼ e−1 [10,23]. We extend the maximum value of Q up
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FIG. 1. (Upper panel) The fission barrier of 236U along the fission
path defined by the mass quadrupole moment, Q2. The blue solid
line shows the energies of the local ground states obtained with the
constrained DFT calculation. It is scaled by a factor of 0.71. The red
dashed line shows the lowest eigenvalues obtained by diagonalizing
each Q-block after scaling the blue solid line. The origin of the
energy is set at the lowest eigenvalue at Q2 = 14 b. (Lower panel)
The octupole moment Q3 in 236U along the fission path.

to around 80 b so that both the first and the second fission
barriers are covered. The criterion for the discretization leads
to 13 blocks from Q = 14 b to Q = 79 b. The potential energy
curve for fission of 236U is shown in the upper panel of Fig. 1
by the blue solid line as a function of the quadrupole moment
Q2, together with the octupole moment Q3 shown in the lower
panel. In this calculation, the ground state is located at Q2 =
14 b. There are two fission barriers, the first fission barrier
around Q2 = 30 b and the second barrier around Q2 = 60 b.
The fission path is along the mass symmetric path up to the
first barrier, and it extends to the mass asymmetric path going
through the second barrier, as is indicated in the lower panel
of Fig. 1.

In the previous work [10], the many-body configurations
were constructed solely with neutron excitations up to 4 MeV.
In contrast, in this paper we extend the model space and take
both neutron and proton excitations up to 5 MeV. Following

Ref. [10], we shall take into account only seniority-zero
configurations, that is, those without broken pairs. As a result,
the dimension of the Hamiltonian kernel becomes the order
of 6 × 104. We call a sub-block in the Hamiltonian kernel
for each Q a Q-block, and the dimension of each Q-block is
summarized in Table I.

In the calculation of the Hamiltonian kernel, the residual
interactions between configurations includes a monopole pair-
ing component,

Hpair = −G
∑
i �= j

a†
i a†

ī
a j̄a j, (8)

and a diabatic component [27],

〈Q, Eμ|vdb|Q′, Eμ′ 〉
〈Q, Eμ|Q′, Eμ′ 〉 = E (Q, Eμ) + E (Q′, Eμ′ )

2

+ h2ln(〈Q, Eμ|Q′, Eμ′ 〉). (9)

The ī in Eq. (8) denotes the time-reversal state of i. The dia-
batic interaction acts only between the diabatically connected
configurations, |Q, Eμ〉 and |Q′, Eμ′ 〉 [27]. We take G = 0.16
MeV and h2 = 1.5 MeV. The value of G is determined to
reproduce the excitation energy of the first excited 0+ state of
236U within the model space so specified [10], and the value
of h2 is the same as the one used in Ref. [10].

The red dashed line in the upper panel of Fig. 1 shows the
potential energy curve connecting the lowest eigenvalue for
each Q-block. To reproduce the experimentally determined
barrier height of 5.7 MeV [28], we have introduced a multi-
plicative factor of 0.71 to the solid line and then diagonalized
the Hamiltonian for each Q-block. At least for the first bar-
rier, the overestimation of the barrier height may be partly
attributed to the absence of the triaxial deformation [29].
We have confirmed that the results shown below remained
qualitatively the same even if the rescaling was applied only
to the first barrier.

As the dimension is still large for the Q-block at Q2 = 14 b
as well as the Q-block right after Q2 = 79 b, we follow
the previous calculation [10] and replace those with random
matrices sampled from the Gaussian orthogonal ensemble
(GOE). We set the central energy of the matrices to be the
same as the excitation energy, E . In addition to the central
energy, the GOE is characterized by the rms of the matrix
elements 〈v2〉1/2 and the matrix dimension NGOE. These pa-
rameters are related with the level density at the center of the
distribution, ρ0 = N1/2

GOE/π〈v2〉1/2 [30]. In our calculations,
we set ρ0 = 31.8 MeV−1 [10] and NGOE = 1000. Notice that
the configurations are strongly mixed after the diagonalization
the GOE matrix. Therefore, a neutron can be emitted from any
configuration within the GOE space, even if a single neutron

TABLE I. The dimension of each Q-block for fission of 236U.

Q2(barn) 14 18 23 29 34 39 46 51 57 62 67 74 79 83

Dimension NGOE 2520 9794 15088 11577 2774 2940 3021 3150 2196 3752 2871 4420 NGOE
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channel is considered in �in. See Appendix A for general
properties of a GOE Hamiltonian, including decay widths.

The leftmost GOE matrix represents the compound-
nucleus states having decay probabilities corresponding to
neutron emission and γ decay. Therefore we add imaginary
matrices − i

2�in and − i
2�cap to the Hamiltonian kernel. The

matrix �in has the value γin in the first diagonal component
and all the other elements are zero, while �cap has the follow-
ing structure,

�cap =

⎛
⎜⎜⎜⎜⎝

�̃cap 0

0 0
. . .

0

⎞
⎟⎟⎟⎟⎠, (10)

where �̃cap = γcapI , with I being the unit matrix with the
dimension NGOE.

Following the Appendix in Ref. [10], we set γin = 0.01
MeV and γcap = 0.001 25 MeV, respectively. Those width
parameters are chosen with the help of compound-nucleus
phenomenology through the formula relating the transmission
coefficient into the compound nucleus and the average widths
of compound-nucleus states,

Tk = 2π〈γ 〉ρ. (11)

The rightmost GOE matrix represents prefission configura-
tions. We therefore add to it an imaginary decay matrix − i

2�fis

for a fission decay. The structure of �fis is given by

�fis =

⎛
⎜⎜⎜⎜⎝

0
. . .

0 0
0 �̃fis

⎞
⎟⎟⎟⎟⎠, (12)

where �̃fis = γfisI . It has been found that transmission coeffi-
cients are insensitive to the value of γfis [10,31], and we set
γfis arbitrarily to be 0.015 MeV.

Neglecting the couplings between the next-to-nearest
neighboring Q-blocks,1. the resultant Hamiltonian matrix has
the following structure:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H̃ (L)
GOE (V (L) )T

V (L) H1 V1,2 O

V2,1 H2 V2,3

. . .

O V11,12 H12 (V (R) )T

V (R) H̃ (R)
GOE

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

where O is the zero matrix, and H̃ (L)
GOE and H̃ (R)

GOE denote the
GOE random matrices including decay widths. Hk represents
the matrix elements for the configurations at specific Qk .

1This approximation has been analyzed in Ref. [23].

FIG. 2. A schematic illustration of the Hamiltonian matrix.

Vk,k′ denotes off-diagonal block components between neigh-
boring configurations. We assume that the matrix elements
of V (L) and V (R) also follow a Gaussian distribution, with

rms strengths set to be
√〈v2

a〉 = 0.02 MeV and
√

〈v2
b〉 =

0.03 MeV, respectively. Those orders of magnitude may be
justified as follows. The present calculation with the UN-
EDF1 parameter set yields the level density of ρtot = 3.87 ×
105 MeV−1 for Kπ = 0+ configurations, where K is the spin
projection onto the symmetry axis, at the excitation energy
E = 6.5 MeV. On the other hand, if the configurations are
restricted only to the seniority zero, the level density is ρν=0 =
220 MeV−1 at the same excitation energy. If one scales the
strength of the diabatic interaction according to the level den-
sities, the strength of a residual interaction is estimated to be
v = h2

√
ρν=0/ρtot ∼ 0.036 MeV for h2 = 1.5 MeV. This is

close to the values of va and vb which we employ.
The overlap kernel has a similar structure,

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I (L) O O

O I1 S1,2

S2,1 I2 S2,3

. . .

O S11,12 I12 O

O I (R)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where I represents the identity matrix. Sk,k′ represents the
overlap between neighboring Q-block configurations. As in
the Hamiltonian matrix, we ignore the overlap between the
next-to-nearest neighboring configurations. With this simpli-
fication, the matrix (EN − H ) becomes block tridiagonal, and
the inversion matrix G(E ) can be efficiently calculated with
the method presented in Ref. [32]. See Fig. 2 for a schematic
illustration of the Hamiltonian matrix.
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FIG. 3. The averaged transmission coefficients for capture
〈Tin,cap(E )〉 (the blue solid line) and for fission 〈Tin,fis(E )〉 (the orange
dashed line) as a function of the excitation energy E . The sum of
these transmission coefficients is also plotted with the green dot-
dashed line. The vertical dotted line shows the height of the fission
barrier located at 5.7 MeV.

B. The transmission coefficients

Let us now numerically evaluate the transmission coef-
ficients, Tin,cap and Tin,fis. Experimentally, decay widths are
measured within an energy resolution. We thus introduce an
energy average,

〈Tin,a(E )〉 = 1

	E

∫ E+	E/2

E−	E/2
dE ′Tin,a(E ′), (15)

where 	E is an energy interval. We take 	E = 0.25 MeV,
which satisfies the condition 	E 
 1/ρ0. Furthermore, we
take an ensemble average with 100 samples of the transmis-
sion coefficients. Figure 3 shows the energy dependence of the
transmission coefficients so obtained for the capture (the solid
line) and the fission (the dashed line). 〈Tin,fis(E )〉 increases as
the excitation energy increases, while 〈Tin,cap(E )〉 decreases
because the total reaction probability is approximately con-
served (see the dot-dashed line). At E = 6.5 MeV, which is
close to the neutron separation energy of 236U (Sn = 6.536
MeV) [15], the fission-to-capture branching ratio, α−1 ≡
〈Tin,fis〉/〈Tin,cap〉, is 0.071 in this calculation. Even though this
value is still reasonable, it underestimates the empirical value,
α−1 � 3 [33], by a factor of about 40. One could increase
the values of va and vb to obtain a more reasonable branch-
ing ratio. However, we have found that the fluctuation of
Tin,fis(E ) then largely deviates from the χ2 distribution, which
is inconsistent with experimental findings. Since we employ
the justifiable values of va and vb, this clearly indicates that
one needs to further increase the model space to reproduce
the empirical branching ratio. In fact, it would be expected
that the agreement with the experimental branching ratio is
improved by including seniority nonzero configurations and
a proton-neutron random interaction which acts on that space
[31,34].

FIG. 4. Distributions of Pfis(E ) for 1000 samples at E = 6.5
MeV. The orange solid line shows a χ 2 distribution, with ν deter-
mined by the maximum likelihood fit. The value of ν is shown in
the inset.

C. Distribution of Pfis

An important quantity for induced fission is the number of
degree of freedom, which is related to the effective number
of decay channels. In order to study this, we examine the
fluctuation of the fission channel Pfis in Eq. (7). To this end
we fit the distribution of Pfis generated with 1000 samples for
a specific excitation energy E with the χ2 function defined
by Eq. (6). The distribution of Pfis at E = 6.5 MeV is shown
in Fig. 4, while extracted values of ν are shown in Fig. 5.
It is remarkable that the extracted ν is much smaller than
the number of fission channels, that is, NGOE = 1000 in this
calculation. This is consistent with the picture of transition

FIG. 5. The number of degrees of the freedom ν obtained by
fitting the distribution of transmission coefficients for fission to the
χ 2 distribution. The blue diamond is the empirical estimate of ν in
Ref. [11], while the star represents the data from ENDF/B-VIII.0
[35,36]. The vertical dotted line denotes the height of the fission
barrier.
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state theory [18,37–43], and our model yields it naturally even
though we do not introduce a priori any assumption used in it
[44]. The value near E = 6.5 MeV, ν = 1.25, is close to the
original estimate of Porter and Thomas [11], (ν = 2.3 ± 1.1
at E=6.536 MeV), as well as a recent estimate based on
evaluated cross-section data [35], even though the calculation
somewhat underestimates the empirical values.2

Incidentally, the result shown in Fig. 5 is consistent with
Fig. 3 in Ref. [45], in which the degrees of freedom ν were
extracted based on the rank of �eff defined by Eq. (17) below.
The consistency of the results obtained with the different
approaches strongly supports the validity of our finding of
small ν.

One can see in Fig. 4 that the distribution of Pfis approxi-
mately follows the χ2 distribution; however, the agreement is
not perfect. We will discuss a possible origin for the deviation
in the next subsection based on the effective Hamiltonian
approach.

D. Effective Hamiltonian for a compound-nucleus configuration

The fact that the fission probability behaves closely to the
χ2 distribution originates from the properties of the GOE
matrix (see Appendix A). To discuss how it arises, we here
construct an effective Hamiltonian for the compound-nucleus
configurations by eliminating the other space. As we would
like to discuss the fluctuation of the fission width, in this sub-
section we set �in = �cap = 0 and consider the width matrix
only for the fission channel. Let us write the Hamiltonian,
Eq. (13), as

H =
(

H (L)
GOE (V (L) )T

V (L) HQ

)
, (16)

where V (L) is defined as V (L) = (V (L), O, O, . . . , O)T . We
define NQ in a similar way for the overlap kernel, N . The
effective Hamiltonian for the space of H (L)

GOE can then be con-
structed as

Heff (E ) = H (L)
GOE − V (L)(HQ − ENQ)−1(V (L) )T

≡ H (L)
GOE + 	(E ) − i�eff (E )/2, (17)

where H (L)
GOE + 	(E ) and −�eff (E )/2 are the real and the

imaginary parts of the effective Hamiltonian, respectively.
	(E ) serves as an energy shift, and �eff (E ) corresponds to the
fission width for the compound states. Notice that the width
matrices, �cap, �fis, and �in, have the same diagonal structure
to Eq. (A1), but this may not be the case in �eff (E ).

If 	(E ) was zero, the real part of Heff became a GOE
matrix itself, and the degrees of freedom of the exit channel
were estimated by [46]

ν = Tr[�eff ]2

Tr[(�eff )2]
. (18)

If we apply this formula to our calculation, we obtain ν =
1.00 at E = 6.5 MeV, which is consistent with the result

2We expect that the agreement is improved if seniority nonzero
configurations are taken into account in the model space.

FIG. 6. Eigenvalues of the matrix �eff at E = 6.5 MeV defined
by Eq. (17) for a typical sample. The dimension of �eff is 1000, and
the first 200 eigenvalues are plotted in descending order.

shown in Fig. 5. The eigenvalues of �eff at E = 6.5 MeV are
plotted in Fig. 6 for a specific random seed. In our model, the
dimension of �eff is NGOE = 1000, and there are 1000 eigen-
values for each ensemble. One can notice that there exists only
one large eigenvalue, and the remainders are negligibly small
as compared to it. Naturally, the value of ν becomes close to
1 if Eq. (18) is applied. We have confirmed that this is the
case for all the samples which we study in this paper (see
Appendix C).

In reality, a finite 	(E ) makes the real part of Heff deviate
from a pure GOE matrix, and the distribution is also perturbed
from a pure χ2 distribution. In our setup, the effect of 	(E )
is small and the distribution still follows approximately a χ2

distribution (see Fig. 4).

E. Discussion

In the previous subsection, we have investigated the eigen-
values of the decay matrix, �eff , and demonstrated that a
fission width has small degrees of freedom. In order to under-
stand it microscopically, let us go back to the Datta formula,
Eq. (4). With the setup of our model for �in and �fis, this
formula reads

Tin,fis = γinγfis

∑
j∈fis

|G1, j |2. (19)

Here the neutron channel n = 1 represents a specific config-
uration in the left-end GOE, and the fission channel includes
all configurations in the right-end GOE. We then perform a
spectrum decomposition of G(E ) as3

Gi j (E ) =
∑

λ

f (λ)
i

1

E − Ẽλ

(
f (λ)

j

)∗
, (20)

3This is in contrast to the Appendix of Ref. [11], in which a
decaying wave function was decomposed into transition states.
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TABLE II. The breakdown of Eq. (24) at E = 5.5 MeV for specific eigenstates, including the dominant eigenmode (at Eλ = 5.4999 MeV)
shown in the bottom panel in Fig. 7. The table also lists the value of �λ defined by Eq. (22).

Eλ (MeV) | fλ(QL, En)|2 1
(E−Eλ )2+(�λ/2)2

∑
μ | fλ(QR, Eμ)|2 The product �λ (MeV)

5.4946 2.56 × 10−9 3.51 × 104 2.82 × 10−2 2.58 × 10−6 4.23 × 10−4

5.4969 1.30 × 10−5 9.04 × 104 2.26 × 10−6 2.68 × 10−6 5.68 × 10−4

5.4999 1.17 × 10−7 6.22 × 106 5.34 × 10−2 3.89 × 10−2 8.02 × 10−4

5.5008 9.54 × 10−9 1.66 × 106 3.59 × 10−3 5.68 × 10−5 5.39 × 10−5

5.5032 1.41 × 10−7 6.57 × 104 2.96 × 10−1 2.74 × 10−3 4.45 × 10−3

where f (λ)
μ is a solution of the generalized eigenvalue problem

with the GCM kernels in Eqs. (2) and (3), satisfying∑
j

(H − EλN )i j f (λ)
j = 0. (21)

Notice that f (λ)
j with j = (Q, Eμ) is equivalent to the GCM

weight function fλ(Q, Eμ) defined by Eq. (1). Ẽλ in Eq. (20)
is defined as Ẽλ = Eλ − i

2�λ, where �λ is given by

�λ =
∑
i, j

(
f (λ)
i

)∗
(�in + �cap + �fis)i j f (λ)

j . (22)

Notice that for simplicity the decay matrices in the Green
function are treated perturbatively. Substituting Eq. (20) into
Eq. (19), we obtain

Tin,fis = γinγfis

∑
λ

∣∣ f (λ)
1

∣∣2

(E − Eλ)2 + (�λ/2)2

∑
j∈fis

∣∣ f (λ)
j

∣∣2

+ γinγfis

∑
λ �=λ′

∑
j∈fis

f (λ)
1 f (λ′ )∗

1 f (λ)
j f (λ′ )∗

j

(E − Ẽλ)(E − Ẽ ′
λ)∗

. (23)

We then take an ensemble average of Tin,fis. To this end, we
notice that f (λ)

k approximately follows a Gaussian distribution,
and they are uncorrelated with the eigenvalues Ẽλ [44] when
k is for the neutron and the fission channels. As explained in
Appendix A, amplitudes of GOE eigenstates follow in general
a Gaussian distribution, and this property is expected to be
conserved in our model as long as the couplings between the
GOE matrices and the bridge Hamiltonian are not too strong.
As we have discussed in Sec. III D, we have confirmed that
this is the case for the coupling strengths which we employ,

that is,
√〈v2

a〉 = 0.02 MeV and
√

〈v2
b〉 = 0.03 MeV.

As a consequence, the second term in Eq. (23) vanishes
and one can take an ensemble average separately for the three
factors in the first term in Eq. (23). The ensemble-averaged
transmission coefficients for fission then read

〈Tin,fis(E )〉

= γinγfis

∑
λ

〈| fλ(QL, En)|2〉
〈

1

(E − Eλ)2 + (�λ/2)2

〉

×
〈∑

μ

| fλ(QR, Eμ)|2
〉
, (24)

where QL and QR denote the leftmost and the rightmost con-
figurations, respectively. In this way, Tin,fis is decomposed into
a contribution of each GCM eigenmode, λ.

In order to investigate how many eigenmodes contribute
to the transmission coefficient, Fig. 7 plots the contribution
of each eigenmodes for E = 5.5 MeV as a function of Eλ.
The Breit-Wigner term acts as an energy window, and the
eigenmodes λ contribute significantly to Tin,fis only when the
eigenenergy Eλ is within the range (E − �λ/2, E + �λ/2).
Table II shows the breakdown of each term in Eq. (24) for five
eigenstates around the dominant eigenmode. One can see that
the components both at the leftmost and the rightmost Q are
relatively large for the dominant eigenmode as compared to
those for the other eigenmodes. This is a necessary condition
to have a large transmission coefficient, as is evident from
Eq. (24).

The collective wave function for the dominant eigenstate is
shown in Fig. 8. Here, the collective wave function is defined
as

g(λ)
j =

∑
j′

(N1/2) j j′ f (λ)
j′ , (25)

where N1/2 is the square root of the overlap kernel, N . In the
figure the square of the collective wave function is plotted as
a function of Q by summing all the configurations for each Q.
One can see that this wave function has a peak in the middle
of a chain of the Q-blocks, rather than at the position of the
higher barrier, as would have been assumed in the transition

FIG. 7. The spectrum decomposition of the transmission coeffi-
cient for fission at E = 5.5 MeV defined by Eq. (24).
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FIG. 8. The square of the collective wave function∑
μ |g(Q, Eμ)|2 of the dominant eigenmode for the transmission

coefficient for fission. This is plotted as a function of Q by adding
all the excited configurations at each Q.

state theory. This can be easily understood if one uses a simple
3 × 3 matrix with a tridiagonal coupling,

H =
⎛
⎝e1 v 0

v e2 v′
0 v′ e3

⎞
⎠. (26)

When the off-diagonal couplings are zero, that is, v =
v′ = 0, the three eigenvectors of this matrix read ψ1 =
(1, 0, 0)T , ψ2 = (0, 1, 0)T , and ψ3 = (0, 0, 1)T . If the off-
diagonal couplings are small, one can then use the first-order
perturbation theory. In this weak coupling limit, only the wave
function ψ2 acquires components both in the first and the third
configurations. Therefore, the eigenstate which has significant
components both in the first and the third configurations has
the largest component in the second configuration. A similar
argument can be applied when the dimension of the matrix is
larger than 3.

In this subsection we have discussed the smallness of de-
grees of freedom, ν, in terms of the transmission coefficient.
See Appendix B and Ref. [45] for an alternative explanation
of the smallness of ν based on the rank of �eff .

IV. SUMMARY AND FUTURE PERSPECTIVES

We presented an approach to low-energy induced fission
based on the method of nonequilibrium Green’s function
(NEGF), which has been widely used in problems of elec-
tron transport in condensed matter physics. To this end, we
considered a model which consists of many-body configu-
rations constructed with the constrained density-functional
theory. Compound nucleus configurations as well as prefis-
sion configurations were represented by random matrices.
Transmission coefficients were then evaluated with the Datta
formula in the NEGF formalism. We applied this method to
neutron-induced fission of 235U by restricting to seniority-zero
configurations. We found that the fission-to-capture branching
ratio was somewhat underestimated, even though the

calculated value was still reasonable. As we chose the param-
eters as realistic as possible, this clearly indicated a necessity
of seniority nonzero configurations. We also evaluated the
number of degrees of freedom ν for fission. Our calculation
yielded much smaller values for ν as compared to the number
of the fission decay channels, which is consistent with the
experimental data as well as the picture of transition state
theory.

We have argued that the smallness of ν can be explained in
terms of the number of GCM eigenstates which significantly
contribute to the transmission coefficient. While the smallness
of ν has been explained based on the picture of the transition
state theory, in this way the smallness of ν could be explained
in a natural manner without assuming a priori the existence of
transition states.

We have found that there are three conditions for a GCM
eigenstate to contribute significantly to transmission coeffi-
cients. Firstly, an eigenstate needs to have a large enough
amplitude at the left-end configurations at Q = QL, at which
the neutron width is defined. Secondly, it also needs to have
a large enough amplitude at the right-end configurations at
Q = QR, at which the fission width is defined. Lastly, the
eigenenergy Eλ has to be close to the excitation energy E
due to the Breit-Wigner factor in the transmission coefficient.
While in the transition state theory, transition states are as-
sumed to locate at the barrier position, GCM eigenstates that
satisfy all of these three conditions do not necessarily have
the dominant component at the barrier position. In fact, in
our calculation with a double humped barrier, we have found
that the dominant eigenmode has the largest component in
between the two barriers.

The method presented in this paper provides a promising
way to microscopically understand nuclear fission. A big chal-
lenge is how to manage the dimension of Hamiltonian matrix,
which increases rapidly as the model space increases. In this
regard, as we argued in this paper, one only needs a limited
number of GCM eigenstates in order to compute transmis-
sion coefficients. One could then employ an iterative method,
such as the Lanczos algorithm, to find a few eigenstates.
With such a numerical technique, one could expand relatively
easily the model space such that finite seniority configura-
tions are also included. We will report on this in a separate
publication [47].

As another future work, one can use the same model as
the one presented in this paper to calculate a decay width for
spontaneous fission and cluster decays [48–50]. It would be
interesting to analyze how these decay modes are decomposed
into eigenstates of the Hill-Wheeler equation.
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APPENDIX A: GAUSSIAN ORTHOGONAL ENSEMBLE
AND A CHI-SQUARED DISTRIBUTION

Here we show that perturbative decay widths in the GOE
follow the χ2 distribution for ν degrees of freedom if the width
matrix � has equal nonzero eigenvalues and rank ν, that is,

� =

⎛
⎜⎜⎜⎜⎜⎝

γ
. . .

γ

0
. . .

⎞
⎟⎟⎟⎟⎟⎠. (A1)

The proof is very simple. In the GOE, the amplitudes ci =
〈n|i〉 of the basis states |i〉 in the eigenstates |n〉 follow
the Gaussian distribution in the limit of a large matrix size
[12]. Notice that in the first-order perturbation theory, the
eigenenergy of the eigenstate |n〉 has an imaginary part of
−i〈n|�|n〉/2, where the decay width is given by

〈n|�|n〉 = γ

ν∑
i=1

|ci|2. (A2)

This quantity is given as a summation of the squares of
Gaussian-distributed variables. By definition, its distribution
is the χ2 distribution Eq. (6) with ν degrees of freedom ν.

APPENDIX B: RANK OF THE MATRIX �eff

In Sec. III C, we explained the small number of ν in terms
of the spectrum decomposition of the Green function. On the
other hand, as we showed in Fig. 6, the matrix �eff has a low-
rank structure. In this Appendix we analytically evaluate the
rank of �eff to explain the smallness of ν.

From Eq. (17), �eff is given by

(�eff )i, j = 2
∑

kl

VikIm[(GQ)kl ](V
T )l j, (B1)

where GQ denotes the Green function corresponding to HQ,

GQ = (ENQ − HQ)−1. (B2)

For simplicity of notation, we have used V for V (L).
Here we take the same procedure as in Sec. III C and

express GQ as

(GQ)kl =
∑

λ

Okλ(G̃Q)λOT
λl . (B3)

Here, (G̃Q)λ denotes the λth eigenvalue of GQ and O is defined
as O = ( f 1, f 2, ..., f N ), with the column vectors f λ repre-
senting the GCM weight functions in Eq. (1). Then �eff is
transformed to

(�eff )i j =
∑

λ,Eμ,Eμ′

Vi,(Q1,Eμ ) fλ(Q1, Eμ)

× �λ

(E − Eλ)2 + (
�λ

2

)2 fλ(Q1, Eμ′ )Vj,(Q1,Eμ′ ),

(B4)

FIG. 9. Eigenvalues of An defined in Eq. (B5) as a function of
eigenenergy En.

where Q1 is the first Q-block at Q = 18 b, and Eμ denotes the
label for the configurations at Q1. Since the rank of a matrix
VAV T is equal to the rank of the symmetric matrix A [46], the
rank of the matrix �eff is equal to the rank of

∑
λ Aλ, defined

as

(Aλ)μ,μ′ = fλ(Q1, Eμ)
�λ

(E − Eλ)2 + (
�λ

2

)2 fλ(Q1, Eμ′ ).

(B5)
Using the relation

rank

(∑
λ

Aλ

)
�

∑
λ

rank(Aλ), (B6)

one can analyze the rank of each Aλ separately. Since the
matrix Aλ in Eq. (B5) has a separable form, it is a rank-1
matrix. This means that Aλ has only one nonzero eigenvalue

FIG. 10. Eigenvalues of �eff at E = 6.5 MeV for 100 different
ensembles in descending order. The 100th and 400th points are
plotted by stars.
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aλ, which is equal to Tr(Aλ). aλ is evaluated as

aλ =
∑

k

| fλ(Q1, Ek )|2 �λ

(E − Eλ)2 + (
�λ

2

)2

�
(∑

k

| fλ(Q1, Ek )|2
)

γfis
[ ∑

El
| fn(QR, El )|2

]
(E − Eλ)2 + (

�λ

2

)2 . (B7)

At the last line we have evaluated �λ with perturbation, see
Eq. (22). This expression implies that only those eigenstates
which have large enough weight at both Q = Q1 and Q = QR

and whose eigenvalue Eλ is close to the excitation energy E
contribute significantly to the rank of �eff .

The eigenvalues of Aλ, that is, aλ for our model at E = 5.5
MeV, are shown as a function of Eλ in Fig. 9. One can see
that most of aλ are almost zero, and only two of them have

significant values. That is, only two matrices of Aλ have rank
1, while the rest may be regarded to have rank 0. Therefore
effectively

∑
λ rank(Aλ) is 2, which provides the upper limit

of rank(�eff ) as rank(�eff ) � 2. This is a direct proof why the
rank(�eff ) is small, as shown in Fig. 5.

APPENDIX C: DISTRIBUTION OF EIGENVALUES OF �eff

In Fig. 6 we plotted the distribution of the eigenvalues of
�eff for a typical sample. We have generated 100 samples
and confirmed that the feature of the distribution remains
the same for the different random seeds. Figure 10 shows
the distribution of all those 103 × 102 = 105 eigenvalues in
descending order. Reflecting the fact that there is one large and
three intermediate eigenvalues in Fig. 6, the first 100 points
and the subsequent 300 points form clusters. The 100th and
400th points are marked with stars in the figure.
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