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Search for cluster states with negative parities above double shell closures
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The persistence of α-cluster states in light nuclei has aroused great interest in nuclear physics during the past
several decades, and the cluster-core configuration is expected to play a key role in interpreting the spectroscopic
properties of heavier nuclei. In this study, we have systematically investigated the energy spectra of α-cluster
structures above the double shell closures within the binary cluster-core model (BCM), especially for rotational
bands with negative parities. The reliability and integrity of BCM can be proved by the excellent reproduction
of energy spectra. Analogously, this kind of picture is generalized to the case of heavier clusters above doubly
magic core 208Pb by modifying the quantum condition for the number of nodes in the cluster-core wave function.
The uncertainties of relevant parameters in the nuclear potential are determined by the nonparametric resampling
strategy, leading to our statistical results on these states with negative parities. It is hoped that our present study
can stimulate further insight into clustering phenomena of heavy and superheavy nuclei.
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I. INTRODUCTION

Clustering is a fundamental dynamical feature [1] of mi-
croscopic many-body physics that exists in various composite
systems, such as the clusters of micro-organisms or the bind-
ing of atoms within the molecules. When it comes to the
atomic nucleus, the clustering structure as one cornerstone
of nuclear systems has shed new light on the basic unit of
nuclei. As early as 1937, Wheeler [2] introduced the concept
of clusters into the description of nuclear relative motion. In
this picture, the nucleon clustering occurs in a delicate balance
among Coulomb repulsion, Pauli blocking effect, and nuclear
force. α cluster with two valence neutrons and two valence
protons is the essential subunit within a nucleus to investigate
properties of nα nuclei or the systems of nα plus other parti-
cles [3] due to the quite large binding energy per nucleon and
high first excitation energy. From this perspective, the α clus-
ter was used in an intuitive way to interpret some interesting
phenomena about binding energy [4]. However, this interpre-
tation is quite rough, in particular when more microscopic
ingredients should be considered, such as the configuration
interaction. Less attention was paid to the clustering in light
nuclei until the improvement of experimental facilities and
the proposal of the Ikeda diagram [5]. There has been much
progress [1,6–9] the experimental observations, especially for
the α-conjugate nuclei, which strongly increased interest in
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further understanding of cluster configurations. For example,
some exotic cluster states in light nuclei have been observed
very recently, such as the condensatelike α + 2n + 2n struc-
ture in 8He [10] and 4α structure in 16O [8].

In addition to the experimental progress mentioned above,
various microscopic cluster models [11] have been proposed
to demonstrate the reliability of α-cluster configurations, such
as the generator coordinate method (GCM), the resonating
group method (RGM), and the orthogonality condition model
(OCM). Other sophisticated cluster models and approaches
have been developed for the calculations of cluster states,
such as the quantum Monte Carlo (QMC) method [12],
the fermionic molecular dynamics (FMD) [13,14], the
antisymmetrized molecular dynamics (AMD) [15–17], and
the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave func-
tion [18–22] plus the extension to the picture of nonlocalized
clustering. Despite the evidence of the existence of α clusters
throughout the light mass region, the generation of α clusters
in heavier nuclei appears to be more ambiguous due to the
complicated interaction among nucleons with the increase of
mass number. On the other hand, the α-like correlations in
heavy nuclei may be suppressed by larger spin-orbit force,
which leads to a dilemma of cluster structures in the increas-
ing competition with mean-field structure. Hence, a natural
but challenging question is whether there exists α-cluster or
other clustering phenomenon when it comes to heavier nu-
clei. For instance, One widely accepted consensus is that the
α cluster is believed to exist at the surface of the mother
nucleus in the α-decay process [23]. Subsequently, α clus-
ters and daughter nuclei combine to construct the so-called
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quasibound states, which contribute to a certain decay width
corresponding to experimentally observable decay events. The
superallowed α decay to doubly magic 100Sn was observed
experimentally via the α-decay chain 108Xe → 104Te →
100Sn [24]. The formation of α clusters was first “seen” in
the medium mass nuclei from the proton-induced quasifree
α-cluster knockout reactions [25]. Accordingly, α decay is
a possible scenario in which the α-cluster degree plays an
important role. If one assumes such an “α + core” system
inspired by α decay, the α-cluster states and the corresponding
energy spectra plus the electromagnetic transitions should be
also open to exploration. Indeed, a series of typical nuclei
above doubly closed shells, that is 20Ne, 44,52Ti, 94Mo, and
212Po [23,26–40], have been regarded as a natural laboratory
for investigating the rotational bands and B(E2) values. In our
previous work [41], the binary cluster-core model (BCM) was
combined with the Monte Carlo bootstrap method to system-
atically study this kind of cluster structure accompanied with
uncertainty evaluation.

In this study, the main aim is to give the satisfactory
calculations of negative-parity rotational bands to verify the
reliability of BCM. In the meantime, the description of spe-
cific process of the bootstrap method in the previous work [41]
was a little vague. More details of the nonparametric re-
sampling strategy will be presented therefore in this article.
Another new point is that, such cluster states with negative
parities will be extended to possible heavier cluster cases as
well to further check or confirm the role of cluster degree
played in the structural knowledge of heavy nuclei. This ar-
ticle is organized in the following way. In Sec. II, the Monte
Carlo bootstrap method and calculations of energy spectra
within the cluster-core model are given. We will simultane-
ously present the numerical results of the rotational bands of
α-cluster configurations above doubly magic core and pos-
sible clusters in heavy or superheavy nuclei in Sec. III. A
summary is given in the last section.

II. THEORETICAL FRAMEWORK

Besides the various aforementioned microscopic models,
a simple but very effective model is the BCM. In the frame-
work of BCM, the cluster-core relative motion, generating the
cluster states, is treated as the dominant factor to describe the
rotational bands of target nuclei. To achieve this, one should
directly solve the two-body Schrödinger wave equation,[

−h̄2

2μ
∇2 + V (r)

]
|n, l〉 = Enl |n, l〉, (1)

where n, l are the principal and orbital quantum numbers
respectively. Here μ is the two-body reduced mass, and V (r)
is the total interaction potential, which is the sum of the at-
tractive nuclear part, repulsive Coulomb part, and centrifugal
term respectively, as follows:

V (r) = VN (r) + VC (r) + h̄2�(� + 1)

2μr2
. (2)

The Coulomb potential VC (r) is considered as the interaction
potential of the uniformly charged core with radius RC and the

daughter nucleus. In treatment of the nuclear potential VN (r),
the semimicroscopic double folding potential [42–44] based
on the effective nucleon-nucleon interaction has been widely
applied in the calculations of rotational bands and elastic
scattering cross sections. However, the ground-state rotational
bands from the double folding potential have a more com-
pressed feature compared with available data. Another good
choice is the nuclear potential of phenomenological form with
free parameters, which has been successful in reproducing
the energy levels with positive parities of the set {20Ne, 44Ti,
94Mo, and 212Po} in our previous studies [41]. To make the
study consistent, we therefore adopt the same nuclear po-
tential of (1 + Gaussian)(W.S. + W.S.3), shape [41,45,46],
namely

VN (r) = − V0

[
1 + λ exp

(
− r2

σ 2

)]

×
{

b

1+exp[(r − R)/a]
+ 1 − b

{1+exp[(r − R)/3a]}3

}
,

(3)

where the parameters λ and σ , the depth V0, the diffuseness
a, and the mixing parameter b are to be determined via the
following procedure. The nuclear radii R of nuclei above
the doubly magic core are then determined by reproducing
the experimental 5− member [47] of the possible α-cluster
states for each nucleus during the whole calculation of the
present study. In order to minimize the number of free model
parameters and facilitate calculation, the radius R is assumed
to be equal to the Coulomb radius RC .

On the basis of existing models and theories, it is believed
that α clusters only exist at the surface of nuclei with a low nu-
clear density. In other word, the valence nucleons of clusters
have to occupy a higher energy level to ensure the formation of
clusters, which are limited by the Wildermuth condition [48]

G = 2n + l =
∑

i

(
gAd +Ac

i − gAc
i

)
. (4)

Here gAd +Ac
i are the oscillator quantum numbers, whose values

are supposed to ensure every nucleon constituting clusters
occupies higher orbits outside the frozen core. The interior
quantum numbers gAc

i can adjust the orbits of the nucleons
inside clusters in order to better fit the Pauli exclusion prin-
ciple. The global quantum number G identifying the states
of bands can be obtained when gAd +Ac

i and gAc
i are fixed.

The internal nodes n, just the principal quantum numbers,
are subsequently given by the orbital angular momentum l .
Hence, the restriction G � Gg.s. is taken into consideration in
the negative-parity rotational bands, where Gg.s. is associated
with the ground state band. The numbers G = 9, G = 13, and
G = 15 are respectively employed for the rotational bands
of the nuclei 20Ne, 44Ti, and 92Zr in accordance with the
Wildermuth condition. The value of G for the nuclei 94Mo,
96Ru, and 98Pd can be confidently chosen as G = 17. In this
way, the picture has been employed also in other good approx-
imations and surface properties of the core 208Pb plus larger
cluster sizes, such as the isotopes of carbon and beryllium.
More details will be discussed in the following section.
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FIG. 1. A flowchart of the three-step bootstrap method.

As mentioned before, the interaction potential between the
frozen core and cluster is the crucial part of such a binary
cluster-core model, and is restricted by radius parameter R and
other model parameters. Owing to the deficiency of available
measured data for negative-parity levels of the above nuclei,
the extrapolation beyond regions reached by measuring can
be useful for forthcoming experimental designs or theoretical
analyses. It is of great importance in this article to implement a
further investigation into the determination of the propagated
uncertainties from corresponding model parameters to calcu-
lated results. With the progress of modern computers, the data
can be graphically presented in ways previously unimagin-
able. Accordingly, the test analysis of uncertainties from the
perspective of statistics has recently drawn great attention in
almost all research fields. When focusing on nuclear physics,
some pioneering works have been carried out with statistical
methods to estimate the theoretical uncertainties, like the esti-
mation of existing α-decay formulas [49], the propagation of
uncertainties in the framework of the Skyrme energy-density-
functional (EDF) approach [50], and the liquid drop (LD)
model [51]. In addition to traditional statistical methods such
as Bayesian inference and sensitivity analysis [50,52,53], the
Monte Carlo bootstrap [54] method can give more satisfac-
tory responses by nonparametrically resampling target data
without any prior assumptions and sample size limitations.
One can effectively records the uncertainty information by
the performance of significance tests and the calculation of
confidence intervals and standard errors with the bootstrap
method.

Admittedly, the key technology of the bootstrap method is
resampling, which can reconstruct the distributions of param-
eters via the fitting procedure to quantify the uncertainty. The
specific fitting procedure is presented in Fig. 1:

Step 1. Resample with replacement. Considering both the
narrow error bars of energy spectra and smooth progression
of the calculation procedure, these available data [55] are
identified as the exact values in the process of bootstrapping
without the uncertainties. So far, the α-cluster structures have
been well established for ground-state Kπ = 0+ bands in the

aforementioned nuclei with doubly magic core plus α par-
ticle. In contrast, the experimental information for α-cluster
properties of negative-parity bands is not so clear except for
20Ne with 1− bandhead placed at 5.79 MeV [56,57] and 44Ti
with 6.22 MeV [31,57–59] for 1− bandhead. Analogously to
the previous investigations [34,35], the relatively complete
rotational bands with negative parities for 94Mo and 96Ru
are selected as the possible candidates for α-cluster states.
The available rotational bands with negative parities, from
1− to 9− for 20Ne, from 1− to 7− for 44Ti, from 5− to 13−
for 94Mo, and from 5− to 17− for 96Ru, are therefore se-
lected as A pieces of samples, namely the original learning
dataset {Ek}, where Ek is the kth sample of energy level.
Resampling with replacement means that one can randomly
extract a sample from the {Ek} and then put it back before
the next sampling. The new energy array called bootstrap
sample {Ei

k′,exp} can be then created by the ith resampling. It
is to be noted that each bootstrap sample should be same size
as the learning dataset {Ek}. In practice, the distributions of
corresponding parameters can be very well approximated with
sufficient replications. Thus, the replications of the process of
resampling will reach M (≈103) times by using the compu-
tational facility. There is little additional variation occurring
in the resampling process. Instead, almost all the variations of
the parameter distributions originate from the selection of the
random samples in the original population.

Step 2. Fit the parameter set. The key part of BCM, as
mentioned before, is the cluster-core potential. The uncer-
tainty information of BCM is derived from the uncertainty of
model parameters in Eq. (3). The resample statistics of each
bootstrap sample {Ei

k′,exp} should be separately fitted to get the
distributions of parameters. To be more precise, the optimal
parameter set of {Ei

k′,exp} is determined by minimizing the
square deviation between the experimental rotational bands
and the calculated energy levels [60], namely

χ2
i =

∑A
i=1

(
Ei

k′,cal − Ei
k′,exp

)2

A
. (5)
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With the fitting procedure, one can get dependable distribu-
tions of parameter space from the fixed M groups of optimal
parameter sets, which are stored for the next bootstrap step.

Step 3. Calculate the residuals. Following this, the energy
array {Ei

k′,cal} and theoretical uncertainties of model param-
eters related to the cluster-core potential can be obtained
simultaneously with the help of the optimal parameter sets.
Furthermore, one can well reproduce the rotational bands and
predict the unknown negative-parity states.

In view of uncertainty analysis with the bootstrap method,
the total model uncertainties under some certain circum-
stances are random variables, which can be divided into three
parts, including the systematic, statistical, and experimental
uncertainty. The systematic uncertainty, coming from the de-
ficiency of BCM, is expressed in the following form:

σ̂ 2
stat,k = (

Ēk,cal − Ei
k,exp

)2
. (6)

Here the Ēk,cal is the average value of all calculated results
of the kth energy bands, namely Ēk,cal = 1

M

∑M
i=1 Ei

k,cal. Fur-
thermore, the statistical uncertainty, originating from some
parameters to be determined, is given by

σ̂ 2
stat,k = 1

M − 1

M∑
i=1

(
Ei

k,cal − Ēk,cal
)2

. (7)

The model uncertainty of the kth energy level is determined
by

σ̂ 2
total,k = σ̂ 2

stat,k + σ̂ 2
stat,k . (8)

Noticeably, the experimental uncertainty based on the exact
dataset {Ek} is negligible in bootstrapping procedure for con-
venience. As a result, the total uncertainty is evaluated in the
following form:

σ̂ 2
total = 1

A

A∑
k=1

σ̂ 2
total,k = 1

A

A∑
k=1

(
σ̂ 2

stat,k + σ̂ 2
stat,k

)
. (9)

According to our previous study [41] and the appropriate
attempts, the two parameters a and σ are fixed as 0.500
fm and 0.342 fm, which are comparable with other stud-
ies [35,40,45,47,61]. The other three parameters V0, b, and λ

are then adjusted with the bootstrap strategy. The distributions
of parameters are smoothly obtained from the M groups of
optimal parameter sets in step 2. In order to better compre-
hend the relationship of the uncertainties and parameters, the
relative frequency charts of V0, b, and λ are presented in Fig. 2.
It is clearly seen in Fig. 2 that all the distributions in the
parameter space have a distinct peak, which leads to the good
convergence of the parameters and high stability of the BCM.
The error ranges of all parameters in the cluster-core potential
are considered by calculating their mean values and standard
deviations. The residual model parameters for nuclei 20Ne,
44Ti, 94Mo, and 96Ru are obtained as V0 = 240.677 ± 6.244
MeV, b = 0.205 ± 0.014, and λ = 0.133 ± 0.053, which can
produce a shape of nuclear potential similar to that in other
investigations [35,40,45,47,61]. With the obtained model pa-
rameter set, a comparison of the present nuclear term with (1
+ Gaussian)(W.S. + W.S.3) shape with the conventional W.S.
potential in Ref [62] for 20Ne and 94Mo is shown in Fig. 3.

FIG. 2. Distributions of model parameters V0, b, and λ in the
nuclear potential.

The internal potential well with W.S.3 term [30,34,47,63] is
deeper and steeper, compensating for the typical shortcoming
of the inverse energy levels derived from the W.S. potential.
Moreover, using the nuclear potential plus the Gaussian fac-
tor [41,45,46] can avoid the compressed bands coming from
the double-folding potentials, especially for the lowest level
spacing.

III. NUMEROUS RESULTS AND DISCUSSION

Through the Monte Carlo bootstrap method, we have sys-
tematically discussed the propagation of the uncertainty and
the predictive ability of a cluster-core model. The complete ro-
tational bands along with error analysis for a series of typical
nuclei can be obtained thereby. In fact, identifying α-cluster
structures with negative parities above double closed shells

FIG. 3. Comparison between the phenomenological core-cluster
interaction of (1 + Gaussian)(W.S. + W.S.3) shape (blue line) in this
work with the W.S. potential (red line) in Ref. [62] for 20Ne and
94Mo.
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FIG. 4. The rotational bands with negative parities of 20Ne
(G = 9) and 44Ti (G = 13), in which the shaded range indicates the
uncertainty bar of theoretical energy level. The dotted lines denote
the α + core breakup thresholds.

is more difficult due to the scarce experimental information.
Fortunately, α-cluster configurations of Kπ = 0− rotational
bands for 20Ne with 1− bandhead lying at 5.79 MeV [56,57]
and 44Ti with 6.22 MeV [31,57–59] of the Jπ = 1− state
have been well established via α-transfer experiments like the
(6Li, d) reaction. The existence of α-cluster structures with
negative parities in 94Mo have been discussed in previous
studies [34,35,38,39,57], and indicated that 1− state should lie
at about 7 MeV. However, the energy levels of α-cluster states
fare not specific for medium mass nuclei due to the lack of
complementary measured data. In the present study, the lowest
Kπ = 0− bands are regarded as the candidates of α + core
rotational energy levels for 94Mo and 96Ru, as in Refs. [34,35].
The available experimental levels for the above four nuclei are
therefore selected as the original learning dataset {Ek} in step
1. The comparisons of calculated energy levels with the avail-
able data for 20Ne, 44Ti, and 94Mo, 96Ru are initially plotted in
Figs. 4 and 5, where the α + core breakup thresholds are indi-
cated by the dotted lines. The uncertainty bars, corresponding
to the shaded ranges, are determined by one standard deviation
around the mean values of theoretical energies. It is found
that the range of the uncertainty bar is gradually increasing
further away from the 5− state, and all errors are relatively

FIG. 5. Same as Fig. 4 but for 94Mo (G = 17) and 96Ru (G = 17).

FIG. 6. Same as Fig. 4 but for 92Zr (G = 15) and 98Pd (G = 17).

small. The calculated results for Kπ = 0− negative-parity
bands are in good agreement with the experimental spectra
expect for the 9− state of 20Ne. As shown in Figs. 4 and 5, the
available data for 44Ti, 94Mo, and 96Ru are insufficient con-
cerning Kπ = 0− bands. It would be worthwhile to provide
the predictions on complete theoretical negative-parity bands
within the BCM not only for experimental design, but also
for theoretical analysis. The good agreement of our results
with energy spectra plus the narrow uncertainty bars prove
that the binary cluster-core model is useful for describing the
possible α-cluster structures in light and medium mass nuclei
with the help of suitable statistic analysis. In order to further
verify the reliability of the BCM, the present process with
the same parameter set in Eq. (3) was subsequently applied
into other α + core nuclei near the nucleus 94Mo, namely
92Zr and 98Pd. The obtained results are compared with the
corresponding energy levels in Fig. 6, where one can also get
satisfactorily theoretical spectra plus narrow uncertainty bars.
All the results denote that such a binary cluster-core model
introduces small errors in calculations and exhibits reasonable
global predictive capability, which is beneficial to investigate
the negative-parity bands in heavy nuclei.

As previously stated, the rotational bands with negative
parities of α cluster above doubly magic core have been well
reproduced with the “cluster + core” configuration. The as-
sumption of the clustering phenomenon aids comprehension
of heavy particle emission and multi-nucleon-transfer reac-
tions [64]. However, the existence of α clusters or heavier
clusters in heavy or superheavy nuclei with neutron number
N > 126 is still an open question owing to the complicated
interactions among nucleons and the influence of the mean-
field effect. Analogously, analyzing the energy spectra can
somewhat confirm the hypothesis of the cluster states in heavy
nuclei and further reveal the microscopic mechanisms of nu-
cleon organization and interaction. Consequently, the results
of α-cluster structure model shown here serve as a starting
point for the next study on exploring the clustering phenom-
ena of heavy nuclei. In the same vein as the strategy in the
regular heavy particle emission of superheavy nuclei [65], the
doubly magic nucleus 208Pb is still regarded as the frozen
core in the framework of BCM. In this sense, the residual
component is generalized from an α cluster to the isotopes
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TABLE I. Distributions of optimized parameters V0 in the nu-
clear potential for heavier cluster states.

Nucleus Cluster-core V0 (MeV) V0/Ac (MeV)

218Rn 10Be + 208Pb 360.645 ± 15.904 36.065 ± 1.590
220Rn 12Be + 208Pb 451.804 ± 21.974 37.650 ± 1.831
220Ra 12C + 208Pb 414.750 ± 22.498 34.563 ± 1.875

of Be, C or other heavier clusters. In general, the motion
of the wave function, closely related to its energy, provides
the rational explanation and description for rotational energy
levels. What calls for special attention is the choice of the
number n of internal nodes in the radial wave function. Espe-
cially for heavy nuclei, the internal nodes n with the previous
approach are quite large, even up to 200 which is unreasonable
in our framework. In the previous studies [47,61,63], some
strategies have been adopted to adjust the n values to describe
the parity doublet bands. Considering that the internal nodes n
are intimately connected to the depth of the nuclear potential
according to our theoretical analysis in Ref. [41], the depth V0

can be expressed by

V0

Ac
= V1

n2

A2
c

+ V2
n

Ac
+ V3, (10)

where the Ac is the cluster mass number. V1, V2, and V3,
the coefficients of the polynomial, are respectively fixed as
6.543 ± 0.996 MeV, −14.443 ± 1.860 MeV, and 31.957 ±
5.888 MeV, which are simultaneously obtained in the fol-
lowing bootstrapping procedure for heavier cluster structures.
The depth V0 for different heavy nuclei can be subsequently
determined by Eq. (10). Table I for possible heavier clus-
ter states lists these optimized depths V0, in which V0/Ac is
not actually identical for different cases. It is to be noted
that the experimental information of Kπ = 0− negative-parity
bands for heavy nuclei is limited. In our studies, the lowest
energy bands [55] are selected to try to check the possible
cluster-core configuration. With regard to the other param-
eters in nuclear potential, σ is fixed at 0.342 fm the same
as before. After reasonable attempts, a better global descrip-
tion can be achieved through the adjustment of 0.850 fm
instead of 0.500 fm for the diffuseness a in heavier-cluster +
core configurations of heavy nuclei, which is close to other
investigations [35,40,45,47,61]. Thus, the results of resid-
ual parameters can be determined as b = 0.138 ± 0.059 and
λ = 0.021 ± 0.009 fm. It is to be noted that the Gaussian
term [45,46] with λ and σ in Eq. (3) compensates the typical
shorting of compressed spectra, which comes from the double
folding potentials. As expected, the parameter λ = 0.021 is
suitable for reproducing such quite narrow energy bands of
negative-parity states as depicted in Refs. [47,61].

Taking these results into consideration, the calculated
heavier cluster structures above 208Pb, i.e., 12Be and 12C,
are plotted in Fig. 7, in which the lowest rotational bands
with negative parities are restricted in a very narrow energy
range. The comparison among these results denotes that the
theoretical energies of negative-parity states with the cluster +
core system describe energy levels well, except for 1− states

FIG. 7. Comparison of calculated energies with experimen-
tal values for the lowest band of negative-parity states in 220Rn
(12Be + 208Pb, G = 63) and 220Ra (12C + 208Pb, G = 59).

as depicted in Fig. 7. The differences of available values [55]
between 3− and 1− levels are quite small, namely 0.018
MeV for 220Rn and 0.061 MeV for 220Ra. This may mean
that the lowest 1− levels and other lowest levels are not the
same energy bands with negative parities. Meanwhile, it is
clearly visible that the uncertainty bars have a narrow range.
Encouraged by this, the study is directly extended to 218Rn
(10Be + 208Pb) to check the integrity of BCM. The energy
levels for 218Rn are presented in Fig. 8, which gives excellent
reproductions of the complete experimental bands with neg-
ative parities. This also clearly indicates that these available
levels are possible cluster states for heavy nuclei. A consistent
investigation of the negative-parity bands above double shell
closures depends on additional experimental data. We hope
the present work can provide some theoretical evidence for
possible cluster structures in heavy and superheavy nuclei.

IV. CONCLUSION

In summary, the calculations of energy spectra, by combin-
ing the binary cluster-core model with the bootstrap method,
have been extended to the rotational bands with negative

FIG. 8. Same as Fig. 7 but for 218Rn (10Be + 208Pb, G = 51).
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parities. For 20Ne and 44Ti, the excellent agreement between
calculated energy bands and the available data of well-defined
α-cluster states demonstrates the applicability of BCM. Fur-
thermore, the energy spectra of selected candidates of cluster
states for 94Mo, 96Ru, 92Zr, and 98Pd have been well re-
produced in the present framework. The distributions of the
model parameter spaces are obtained from multiple resam-
pling, resulting in the calculated levels together with the
uncertainty analysis, which can be helpful for ongoing or
forthcoming experiments. Encouraged by this, the idea has
been extended to the candidates of heavier cluster states with
quite narrow energy levels. The corresponding energy spectra
are found to be consistent with the observations, plus narrow
uncertainty ranges. In general, through the careful statistical
analysis of the nonparametric resampling strategy, the BCM

is believed to be reliable and stable for interpreting the parity
doublet bands from light to heavy nuclei, and is expected to
be useful for understanding the cluster degree and clustering
phenomenon in the future.
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