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The relationship of the root-mean-square (rms) charge radius difference �Rmir
ch of mirror pairs and the isospin

asymmetry (N − Z )/A is investigated using a newly developed deep Bayesian neural network (DBNN) approach.
The DBNN approach with optimized architecture and input features demonstrates superior predictive capability
for nuclear rms charge radii Rch compared to previous machine learning approaches employing single-layer
neural networks. Utilizing the DBNN-predicted Rch values, a significant mass dependence of the �Rmir

ch versus
(N − Z )/A linear relationship, previously unobserved in experimental �Rmir

ch analyses, is revealed. The physical
existence and origin of the mass-dependent linear relationship between �Rmir

ch and (N − Z )/A is explored
using the microscopic Sky3D model and the macroscopic droplet model. Both Sky3D model and droplet
model calculations indicate the physical existence of a mass-dependent linear relationship between �Rmir

ch and
(N − Z )/A in nature. Within the droplet model framework, the mass dependence is found to be closely associated
with the ratio of the volume and surface symmetry energy coefficients, suggesting that such a mass-dependent
�Rmir

ch versus (N − Z )/A linear relationship could potentially serve as a probe for studying the surface component
in nuclear symmetry energy in future.
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I. INTRODUCTION

The overarching goal of nuclear physics is to unravel
the fundamental properties of nuclei from their building
blocks, protons and neutrons, and ultimately to determine
the emergent complexity in the realm of the strong interac-
tion. As one of the most fundamental nuclear parameters,
nuclear root-mean-square (rms) charge radius Rch character-
izes the spatial charge arrangement in the atomic nucleus,
and provides crucial information on nuclear deformation,
shape coexistence, proton-neutron pairing correlations, etc.
[1–5]. In particular, under the assumption of charge symmetry,
the Rch difference between a given mirror pair with inter-
changed numbers of protons and neutrons Z and N (Z > N
and the same hereinafter), �Rmir

ch ≡ Rch(A
ZXN ) − Rch(A

NYZ ), is
a key observable that can be used as an isovector indicator
of the nuclear equation of state [6–10]. Despite abundant
information on the nuclear equation of state having been
deduced from the limited amount of �Rmir

ch data, revealing
the basic properties of �Rmir

ch across the nuclear chart and
further developing a universal framework for their consis-
tent description is a formidable challenge due to the lack
of data, especially of mirror pairs far from the β-stability
line [11,12].

To gain valuable insight into �Rmir
ch in the unstable region,

various approaches based on microscopic and macroscopic

*Contact author: liuxingquan@scu.edu.cn
†Contact author: zhengh@snnu.edu.cn

theories have been developed to predict the Rch values in
the literature, i.e., density functional theory, the ab initio
method, the droplet model for nuclear radii, etc. [13–16].
Great progress has been achieved in applying these ap-
proaches to systematically predict nuclear rms charge radii in
a wide mass region in the past several decades. However, am-
biguities still exist at present. For instance, the Rch predictive
performance strongly depends on the physical assumptions
and the selection of effective interactions or energy density
functional forms in models. Such ambiguities significantly
impact further deduction of physical information from the
predicted results. To address these issues, more efforts are
therefore required. Recently, a surge of interest in applying
machine learning approach for predicting the Rch values has
been observed [17–20]. In general, a neural network is able
to acquire the fundamental correlation between the input fea-
ture representations and the target observable from the raw
data via the training process, independently of any physi-
cal assumptions or effective interaction selections, so that
applying machine learning technique for the Rch prediction
allows one to avoid the difficulties in theory arising from
the quantum many-body problem, the complexity of nuclear
force, etc.

Deep learning, being a novel branch of machine learn-
ing and significantly improving the state-of-the-art in various
tasks such as image and speech recognition, natural language
processing, and others [21], has recently inspired many ap-
plications in the field of nuclear physics [22–27]. Taking
the advantage of deep learning in characterizing complex
data sets, the goals of attaining more accurate Rch prediction
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across the nuclear chart and acquiring deeper understanding
of �Rmir

ch may be achieved. In 2023, Novario et al. found
an interesting linear relationship between �Rmir

ch and nuclear
isospin asymmetry (N − Z )/A in the light and intermedi-
ate mass region using the coupled-cluster theory and the
auxiliary field diffusion Monte Carlo method [9]. To pro-
vide deeper insights into the linear relationship of �Rmir

ch
and (N − Z )/A and acquire more valuable information on
nuclear properties, more research is urgently required. In
this article, we propose deep learning within the Bayesian
framework [28] to predict the Rch values to study the linear
relationship of �Rmir

ch and (N − Z )/A beyond the existing
data. To ensure outstanding predictive performance for the
present task, specific considerations are made in terms of
selecting the input and the key hyperparameters related to the
architecture in the deep Bayesian neural network (DBNN).
We are going to show that the present DBNN has stronger
predictive capability both in reproducing the existing data
and in extrapolating the unmeasured data compared to any
previous machine learning approaches with single-layer neu-
ral networks [17–20]. The linear relationship of �Rmir

ch and
(N − Z )/A is then studied using the DBNN-predicted Rch

values for the unmeasured nuclei. A detailed mass-dependent
behavior of the �Rmir

ch versus (N − Z )/A linear relationship
is revealed in the mass A = 20–60 region in which only a
limited amount of experimental �Rmir

ch data are available, and
its physical existence and origin are explored by comparing
the results with those from the microscopic Sky3D model
which solves time-dependent Hartree-Fock (TDHF) equa-
tion in a general three-dimensional geometry [29], and the
macroscopic droplet model of Myers and Swiatecki [30]. Pre-
vious studies on nuclear symmetry energy have highlighted
the conceptual necessity to incorporate a surface contribution
to the symmetry energy [31,32]. However, the investigation
of the surface component in the symmetry energy remains
relatively lacking compared to the volume component, as is
evident in the literature. In this work, the close correlation
between the degree of the mass-dependent linear relation-
ship predicted by DBNN and the surface component of the
symmetry energy is further shown, and it will indicate a po-
tential of the mass-dependent behavior as a promising probe
for investigating the surface component in the symmetry
energy.

II. DESCRIPTION OF DBNN APPROACH

A. Architecture

This work starts with describing the details that are critical
to the DBNN approach and its implementation for the Rch pre-
diction. Figure 1 shows the general architecture of the DBNN
proposed for predicting the Rch values. As found in the figure,
the DBNN can be treated as a nonlinear function F that maps I
feature representations in the input layer X = {x1, x2, . . . , xI},
and a set of intrinsic parameters into a hierarchy of H layers
of combinations with hidden neurons, and provides predic-
tion for target observable t in the output layer. Following the
standard practice [25,33–38], a feed-forward neural network
model is used to transmit the input feature representations to
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FIG. 1. The architecture of the deep Bayesian neural network
(DBNN) utilized in this work. See the details in the text.

the hidden layers,

N (1)
j = f

(
c(0)

j +
I∑

i=1

d (0)
ji xi

)
, (1)

where N (1)
j is the value transmitted to the jth neuron, d (0)

ji is
the weight factor between the ith feature and the jth neuron,
and c(0)

j is the bias for the jth neuron. The summation runs
over all I features in the input layer. The hyperbolic tan-
gent (tanh), having been successfully applied to the previous
learning tasks within the Bayesian framework [25,33–38], is
adopted for the nonlinear activation function f . Between two
adjacent hidden layers, the values acquired by neurons are also
transmitted using the feed-forward neural network with the
tanh activation function,

N (M−1)
p = f

(
c(M−2)

p +
O∑

o=1

d (M−2)
po N (M−2)

o

)
, (2)

N (M )
q = f

⎛
⎝c(M−1)

q +
P∑

p=1

d (M−1)
qp N (M−1)

p

⎞
⎠. (3)

In the above equations, the superscripts (M − 2), (M − 1),
and (M ) denote the (M − 2)th, (M − 1)th, and (M )th hidden
layers, whereas the subscripts o, p, and q denote the oth, pth,
and qth neurons in the (M − 2)th, (M − 1)th, and (M )th lay-
ers. O, P, and Q are the numbers of neurons in the (M − 2)th,
(M − 1)th, and (M )th layers, respectively. Finally, the t value
is calculated from the last hidden layer with L neurons via

t = c(H ) +
L∑

l=1

d (H )
l N (H )

l . (4)

B. Input feature representations and target observable

To ensure the predictive accuracy for Rch, searching for
appropriate input feature representations and target observable
is crucial in constructing the DBNN. Based on the previ-
ous Rch studies using various conventional machine learning
approaches [17–20], we design four types of input as candi-
dates: (i) X = {A, Z, δ}. Z and A characterize the charge and
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mass features of a given nucleus. δ = 1,−1, 0 for even-even,
odd-odd, and odd-even nuclei, respectively, characterize the
feature related to the pairing effect. (ii) X = {A, Z, δ, P}. P =
νpνn/(νp + νn) is the Casten factor related to the shell effect,
where νp and νn are the effective numbers of valence protons
and neutrons or proton and neutron holes with respect to the
corresponding magic shells, Z = 2, 8, 20, 28, 50, 82, 126 and
N = 2, 8, 20, 28, 50, 82, 126, 184 [39], respectively. This in-
put is directly inherited from the approach of Dong et al. [18],
using which the best predictive accuracy has been achieved
to date. (iii) X = {A, Z, δ, νp, νn}. In contrast to that of Dong
et al. [18] where the Casten factor P was used as one fea-
ture representation, νp and νn are treated as two feature
representations to consider the shell effect in the proton and
neutron shells separately. (iv) X = {A, Z, δ, νp, νn, β2}. β2 is
the quadrupole deformation factor for considering the nuclear
deformation effect, and the β2 values calculated using the
Weizsäcker-Skyrme mass model [40] are adopted in this work
due to the lack of systematic data. Such application of a
physical-informed feature in the input is a conventional tech-
nique to improve the predictive accuracy in machine learning.
For example, in the previous study of β-decay half-lives using
machine learning [34], Niu et al. incorporated the β-decay
energies calculated with the Weizsäcker-Skyrme mass model
[40] in the input. Recent work of Li et al. also showed the
importance of physical-informed features in the prediction
of heavy-ion fusion cross sections using the Light Gradient
Boosting Machine [41].

One may notice that the complexity of the designed in-
put increases, and this trend is consistent with the growing
understanding of Rch over time that the Rch values depend
significantly on nuclear mass, charge, pairing effect, shell
effect, and deformation effect [42]. Keeping the four inputs
in mind, we are going to discuss the input selection among
them later.

Regarding t for the Rch prediction, t for a given nucleus is
defined as the residual between the corresponding rms charge
radii from experiment and “theory,” Rexp

ch and Rth
ch, following a

conventional refinement strategy [17–19],

t ≡ Rexp
ch − Rth

ch, (5)

where Rth
ch can be evaluated using either theoretical models

or phenomenological formulas. Because it was demonstrated
in Refs. [17,18] that the final predictive accuracy of various
machine learning approaches depends weakly on the selection
of initial models or phenomenological formulas for Rth

ch, we
adopt a simple isospin-dependent parametrization [43] for Rth

ch
in this work,

Rth
ch = a × A1/3

[
1 − b × A − 2Z

A
+ c

A

]
, (6)

where a = 0.9584 fm, b = 0.1590, and c = 2.1124 are ob-
tained from the best fit to all 1030 available experimental Rch

data for A � 12 and Z � 6 nuclei until now [11,12,44,45]. See
the distribution of these nuclei in the nuclear chart of Fig. 2.

N

Z

exp
chWith R

 but with measured masses
exp
chWith no R

FIG. 2. Nuclear chart displaying the nuclei involved in this arti-
cle. The black squares represent the 1030 A � 12 and Z � 6 nuclei
with available experimental Rch values [11,12,44,45], whereas the
green squares represent those with no experimental Rch values but
with experimental mass values [49,50].

C. Training

The training of the DBNN is a process of optimizing the
“model parameters,” ω = {d (h), c(h)} (h = 0, 1, . . . , H), using
the Bayesian algorithm. In Bayesian formalism, the model
parameters ω in the DBNN are promoted to random vari-
ables, and the distribution of ω is referred to as the prior
distribution p(ω). After observing a set of training data D =
{(X 1, t1), (X 2, t2), . . . , (X i, ti ), . . . }, the prior distribution is
updated to the posterior distribution p(ω|D),

p(ω|D) = p(D|ω)

p(D)
p(ω), (7)

where p(D|ω) is a likelihood function and gives the probabil-
ity of the observed data as function of the undetermined ω,
and p(D) is a normalization constant. p(ω) is set to be the �

distribution here. Following the standard practice, the likeli-
hood function in Eq. (7) is set to be a Gaussian distribution
such that p(D|ω) = exp(−χ2/2) [33], where χ2 is given by

χ2 =
∑
i=1

[
ti − F (X i,ω)

δti

]2

. (8)

In the equation, δti denotes the noise variance of the ith target
observable. To introduce a source of randomness to reduce
model-dependent effects [17,25,33], 1/δt2

i is taken to be a �

prior distribution with unit parameter for easier calculations in
mathematics allowing for the � distribution having been set as
the conjugate prior distribution. During the DBNN training,
one can optimize ω by minimizing χ2 in Eq. (8). In practice,
however, rather than searching for the minimum value of χ2,
the training is often terminated at any certain epoch when suf-
ficient training is confirmed. Benefiting from the randomness
sources introduced by p(ω) and δt , the overfitting problem
can be automatically avoided in the DBNN training process,
permitting one to take the epoch number as large as possible
in principle. After balancing the training performance and the
computational time, the epoch number is set to be 100 000 in
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this work. Note that this epoch number is already orders of
magnitude larger than that used in the previous work [46].

After the DBNN is trained, one can make prediction for
the t central value 〈t〉 for any nucleus by averaging the trained
neural network over the posterior probability density of opti-
mized ω,

〈t〉 =
∫

F (X ,ω)p(ω|D)dω. (9)

For simplification, the high-dimensional integral in Eq. (9) is
approximated via a Monte Carlo integration in which p(ω|D)
is sampled using the hybrid Markov chain Monte Carlo
method [28]. The predicted value of nuclear rms charge radius
Rpred

ch can be then calculated by adding 〈t〉 from Eq. (9) and Rth
ch

from Eq. (6). The error of Rpred
ch for the given nucleus �Rpred

ch

is quantified as �Rpred
ch =

√
〈t2〉 − 〈t〉2, where the 〈t2〉 can be

deduced via replacing F (X ,ω) with F 2(X ,ω) in Eq. (9).

III. RESULTS AND DISCUSSION

A. Accuracy assurance

Besides the epoch number for the training, already dis-
cussed, there are also several hyperparameters in the DBNN
that are important to the Rch prediction and require manual
tuning. To ensure the predictive accuracy of the DBNN, we
here discuss the selection of the key hyperparameters related
to the architecture, i.e., the number of hidden layers and the
number of neurons in each layer, as well as the input feature
representations mentioned above. Concerning the architecture
design, three types of DBNN with 8-8 (denoting two hidden
layers and eight neurons in each hidden layer, and similarly
hereinafter), 16-16, and 8-8-8 architectures are studied as can-
didates. It should be emphasized that the DBNNs with higher
complexity are not considered here, due to the fact that, given
the limited amount of the Rch data for training the DBNNs,
statistical parsimony is a major consideration to enhance ro-
bustness [47]. Hence, considering the three architectures with
the four inputs, there are twelve different DBNNs in total for
selection.

A multiple training and validation approach is used to
search for the DBNN with the most appropriate combination
of architecture and input. For a DBNN with the given numbers
of hidden layers and neurons in each layer and the given input,
90% of the 1030 Rexp

ch values for A � 12 and Z � 6 nuclei
[11,12,44,45] are sampled as training data, and the remaining
10% are used as validation data. This Monte Carlo sampling
procedure is repeated for 200 times. Using the 200 sampled
training data sets, the given DBNN is trained for 200 times
independently. The 200 trained DBNNs are then applied to the
nuclei in the corresponding validation data sets to calculate the
respective Rpred

ch values. For each training and validation trial,
since the validation data set is independent of the training data
set, the accuracy for reproducing the Rexp

ch in the validation data
set can provide an unbiased evaluation of the model “fit” with
the corresponding training data set. We assess the predictive
accuracy with the rms deviation σV between the Rpred

ch and Rexp
ch

Architecture
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 (
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FIG. 3. Average predictive accuracy σV versus DBNN architec-
ture. Different symbols represent the results from the DBNNs with
different types of input.

values following Refs. [17–20] as

σV =
√√√√ 1

NV

NV∑
i=1

(
Rpred

ch,i − Rexp
ch,i

)2
, (10)

where the subscript i represents the ith nucleus in the vali-
dation data set. The summation runs over all nuclei in the
validation data set with total number NV . Then, the average
predictive accuracy σV that reflects the average predictive
performance of the given DBNN is calculated by averaging
the σV values over all available 200 trials.

To visualize the dependence of σV on the architecture and
input selection, the obtained σV values for the four inputs
are plotted as a function of DBNN architecture in Fig. 3.
As clearly observed in the figure, for all four inputs, the σV

minima commonly appear at the 16-16 architecture, and the
σV values at the 8-8 architecture are slightly smaller compared
to those at the 8-8-8 architecture. In the recent work of Wang
et al. [25], a similar result was also obtained: the predictive
accuracy of the fission yields is the best for the double-layer
neural work while adjusting the architecture of DBNNs from
a single hidden layer to seven hidden layers. Both results
indicate that to improve the predictive performance of DBNNs
in tasks such as Rch and fission yield predictions, increasing
the neuron numbers in hidden layers is more effective than
increasing the number of hidden layers, as the number of
hidden layers reaches 2. This fact may be related to the limited
number of training samples for both cases. Although the exact
origin is unclear, the present observation of common σV min-
ima at the 16-16 architecture for all given inputs is enough to
support the superiority of the 16-16 neural network in the task
of Rch prediction from a practical point of view. Moreover,
one can observe that the σV values show overall decrease as
the complexity of input increases for all given architectures.
This trend suggests the advantage of applying the six-feature
input X = {A, Z, δ, νp, νn, β2} in the Rch prediction. It can be
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understood as more input information enabling the DBNN to
acquire the correlation between the input and the raw data
more precisely.

From the above analyses, the DBNN with the combination
of 16-16 architecture and X = {A, Z, δ, νp, νn, β2}, having the
minimum σV value, proves to be optimal for predicting the ex-
isting Rexp

ch data, and will be adopted for the following studies.
For completeness, we proceed to show the better predictive
performance of the present DBNN compared to that from
the previously used single-layer neural networks [17–20]. So
far, the best predictive accuracy for Rch has been achieved
using a conventional Bayesian learning with eight neurons in
a single layer (denoted as single-8) by Dong et al. [18]. Their
and our approaches are both within the Bayesian framework,
enabling us to make a direct comparison. For consistency,
similar training and validation procedures are performed for
the single-8 neural network of Dong et al. [18], and the
obtained σV values are shown at “single-8” in Fig. 3. One
can find that regardless of the input difference, the application
of the multilayer neural networks contributes to a significant
decrease of σV compared to the single-8 neural network,
definitely demonstrating the superiority of the present DBNN
approach.

B. Generalization test

Since our primary goal is not just to memorize Rexp
ch using

the present DBNN but to study the linear relationship of �Rmir
ch

and (N − Z )/A beyond the measured data with the aid of its
extrapolating prediction, the generalization capability of the
DBNN on the unmeasured data far from the β-stability line
has to be carefully examined.

Due to the lack of experimental data far from the β-stability
line, we here use a novel code for TDHF calculations based
on Skyrme energy functionals (Sky3D)—which is able to
solve the static or dynamic equations on a three-dimensional
Cartesian mesh with isolated or periodic boundary condi-
tions and no further symmetry assumptions, and has already
had a wide variety of applications in nuclear structure, col-
lective excitations, and nuclear reactions [29]—to generate
the Rch database. To avoid the model-dependent effect due
to the accidental selection of a single Skyrme interaction
parametrization, four effective interactions, SV-mas07, SV-
mas08, SV-sym32, and SV-sym34 [48], are adopted in the
present analyses. Using the four effective interactions, the Rch

values along all Z � 6 isotope chains in the measured region
[11,12,44,45] are calculated within the Sky3D framework. For
a given isotope chain, the calculations run over all isotopes
with available experimental masses [49,50]. See the distribu-
tion of the 2410 predicted Rch in Fig. 2. For each nucleus, the
Rch value is then taken to be the average over the four effective
interactions, and its error is taken to be the standard deviation.
To distinguish from those of neural networks, the Rch values
from the Sky3D are referred to as RSky3D

ch here.
Of the 2410 obtained RSky3D

ch values, 1030 corresponding to
the nuclei with the Rexp

ch data are taken to train the DBNN. To
examine the generalization capability of the trained DBNN,
extrapolating predictions are performed for the remaining
1380 nuclei with no experimental values, and the deduced

0.1− 0.05− 0 0.05 0.1

 (fm)ch
Sky3D

-Rch
pred

R
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100
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C
o

u
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FIG. 4. Histograms of difference between Rpred
ch and RSky3D

ch ,
Rpred

ch − RSky3D
ch , for the 1380 nuclei with no Rexp

ch values. The solid
line is from the DBNN in this work, whereas the dashed line is from
the the single-8 neural network of Dong et al. [18]. The line at the
origin is for guiding the eyes.

Rpred
ch values are compared to those from the Sky3D calcula-

tions. The resulting histogram of the difference between the
obtained central values of Rpred

ch and RSky3D
ch is shown by solid

lines in Fig. 4. The line at the origin is for guiding the eyes.
In the figure, the data points of Rpred

ch and RSky3D
ch difference

form a sharp peak at the origin, reflecting a good one-to-one
consistency between Rpred

ch and RSky3D
ch . Indeed, a further quan-

titative analysis gives a rather tiny rms deviation between the
Rpred

ch and RSky3D
ch central values, 0.009 fm. These results are

clear indication of the excellent generalization performance
of the trained DBNN, and provide substantial support for the
feasibility of utilizing the DBNN-predicted charge radii to
investigate the linear �Rmir

ch and (N − Z )/A relationship in the
unmeasured region.

Similar to the analysis in Sec. III A, the generalization
capability of the single-8 neural network is also examined to
highlight the superiority of the present DBNN. Using the same
training data set from Sky3D, the single-8 neural network of
Dong et al. [18] is trained, and extrapolating predictions are
made for the nuclei with no experimental Rch using the trained
neural network. The obtained histogram of the difference be-
tween Rpred

ch and RSky3D
ch is plotted by dashed line together with

that of the DBNN in Fig. 4. As observed in the figure, the
values of Rpred

ch and RSky3D
ch difference also assemble round the

x = 0 line, but with noticeably wider distributions compared
to that of the DBNN. The rms deviation between the central
values of Rpred

ch and RSky3D
ch is deduced to be 0.018 fm, twice

the value obtained using the DBNN, demonstrating the better
generalization capability of the present DBNN compared to
that of previous single-layer neural networks.

C. Mass-dependent linear relationship of �Rmir
ch and (N − Z)/A

In the above two subsections, we have shown that the
DBNN with 16-16 architecture and X = {A, Z, δ, νp, νn, β2}
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FIG. 5. �Rmir
ch as a function of absolute isospin asymmetry |N −

Z|/A. The results marked by filled symbols are the DBNN prediction,
whereas those marked by open symbols are the experimental data
[11,12,44,45].

cannot only well reproduce the existing data, but also has
strong generalization capability to predict the unmeasured
data far from the β-stability line. For practical study of the
linear �Rmir

ch and (N − Z )/A relationship in this work, the
DBNN is retrained using the 1030 experimental data for
A � 12 and Z � 6 nuclei [11,12,44,45]. Prior to the appli-
cation, the practicability of the trained DBNN is carefully
examined by comparing the �Rmir

ch values deduced from the
DBNN-predicted rms charge radii to all thirteen �Rmir

ch values
found among the 1030 data [11,12,44,45] as a function of
absolute isospin asymmetry |N − Z|/A in Fig. 5. The results
marked by filled and open symbols represent the predicted and
measured data points, respectively. As found in the figure, the
experimental �Rmir

ch data appear only in the mass region of
A ≈ 20–60. An overall close agreement is achieved between
the predicted and experimental �Rmir

ch values, verifying the
practicability of the present DBNN for studying the linear
�Rmir

ch and (N − Z )/A relationship.
Encouraged by the good performance in reproducing the

existing �Rmir
ch data, and the strong generalization capability

having been proved in the above subsection, we extrapolate
the Rch for the unmeasured nuclei in the same A ≈ 20–60
region where the experimental data are available using the
DBNN trained by experimental Rch data. For given elements,
the extrapolating predictions are performed over all isotopes
whose masses have been measured. The mirror pairs are
searched among the predicted nuclei, and the �Rmir

ch values
are deduced using their Rpred

ch values. In Fig. 6(a), the deduced
�Rmir

ch values for all obtained mirror pairs are plotted as a func-
tion of |N − Z|/A, where the results with 20 � A < 40 and
40 � A � 60 are marked by filled circles and filled squares
separately. Together with the DBNN-predicted results, the
linear regression deduced from the coupled-cluster theory and
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 (
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)
chm

ir
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(b)

FIG. 6. �Rmir
ch as a function of |N − Z|/A. (a) The re-

sults from the trained DBNN with 16-16 architecture and X =
{A, Z, δ, νp, νn, β2}, and those of 20 � A < 40 and 40 � A � 60 are
shown by filled circles and filled squares, respectively. The shaded
band is the linear regression with 2σ confidence level which was
deduced from the coupled-cluster theory and the auxiliary field dif-
fusion Monte Carlo method by Novario et al. [9]. (b) Same as (a),
but shown in different form. The lines are the fits to the data points
with proportional functions. See the text for details.

the auxiliary field diffusion Monte Carlo method by Novario
et al. [9], �Rmir

ch = 1.574|N − Z|/A fm, is also plotted with
2σ confidence level as a shaded band for comparison. One can
observe from the figure that the �Rmir

ch values of 20 � A < 40
and 40 � A � 60 both linearly increase with |N − Z|/A, and
appear very consistent with the linear regression of Novario
et al. [9] both in trend and in magnitude.

Most strikingly, two branches are observed in which the
�Rmir

ch values for 40 � A � 60 are systematically larger than
those of 20 � A < 40. This observation strongly indicates
a significant mass dependence of the linear �Rmir

ch versus
|N − Z|/A relationship which has not been discovered in any
previous experimental analysis related to �Rmir

ch . For visual
simplicity, an elegant replacement of the two-dimensional
Fig. 6(a) is made by in turn averaging the obtained �Rmir

ch
values in ten bins from |N − Z|/A = 0 to 0.2. The results
are given in Fig. 6(b), where the errors along the x axis
indicate the |N − Z|/A bin widths. The mass-dependent linear
relationship of �Rmir

ch and |N − Z|/A becomes more clear as
shown in the figure. Fitting the �Rmir

ch versus |N − Z|/A plots
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(b) Droplet model

FIG. 7. �Rmir
ch as a function of |N − Z|/A. (a) The average results

from the Sky3D calculations [29] with the fixed masses A = 30 and
50 but with different isospin asymmetries over four Skyrme effective
interaction parametrizations, SV-mas07, SV-mas08, SV-sym32, and
SV-sym34 [48]. The lines are the fits with proportional functions.
(b) Same as (a), but from the droplet model with parameters adjusted
by fitting the nuclear ground state masses and fission barriers [51].

for 20 � A < 40 and 40 � A � 60 of Fig. 6(b) using two
proportional functions with the least-squares method, a slope
for 40 � A � 60 is deduced to be 1.84, larger than that of
20 � A < 40, 1.29, showing a significant mass dependence
of the linear �Rmir

ch versus |N − Z|/A relationship.
To investigate whether the mass-dependent linear behavior

of �Rmir
ch versus (N − Z )/A exists in nature, the microscopic

Sky3D approach [29] and the macroscopic droplet model of
Myers and Swiatecki [30] are used. For the Sky3D calcu-
lations, four Skyrme effective interaction parametrizations,
SV-mas07, SV-mas08, SV-sym32, and SV-sym34 [48] are
adopted to minimize the model-dependent effect, similarly
to the analysis in Sec. III B. For the droplet model, the pa-
rameters adjusted by fitting the nuclear ground state masses
and fission barriers [51] are adopted. Using both models,
the �Rmir

ch values are deduced for the mirror pairs with
the fixed masses A = 30 and 50 but with different isospin
asymmetries. The resulting �Rmir

ch versus |N − Z|/A relations
are shown in Figs. 7(a) and 7(b), respectively, where those
in Fig. 7(a) are the average results over the four Skyrme
effective interactions. In the figure, �Rmir

ch and |N − Z|/A pre-
dicted by the microscopic and macroscopic models both show
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FIG. 8. Same as Fig. 6, but deduced from the trained DBNN with
the RSky3D

ch data set obtained in Sec. III B.

significant mass-dependent linear relationships similar to the
case of DBNN prediction. Such consistency strongly supports
the physical existence of the mass dependence of the �Rmir

ch
versus (N − Z )/A linear relationship in nature. Additionally,
comparing to the results from the trained DBNN with exper-
imental data, Fig. 8, similar to Fig. 6 but deduced from the
trained DBNN with the RSky3D

ch data set obtained in Sec. III B,
is also plotted. Despite a minor difference in slope, the Sky3D
results show a consistent mass-dependent behavior of the lin-
ear �Rmir

ch and (N − Z )/A relationship with that of the DBNN
shown in Fig. 6, confirming the physical existence of mass-
dependent behavior.

D. Investigation of the origin of mass-dependent �Rmir
ch

versus (N − Z)/A linear relationship

With the indication of the existence of the mass-dependent
�Rmir

ch versus (N − Z )/A linear relationship in nature from
both microscopic and macroscopic calculations, we proceed
to pursue its origin in this subsection. For this purpose, we
focus on the droplet model of Myers and Swiatecki [30],
taking advantage of its simplicity in theory that permits one
to provide a clear understanding of the physical picture. To
facilitate understanding, it is worth showing the formalism of
the droplet model. In the droplet model, the rms charge radius
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for a spherical nucleus A
Z XN is written as

Rch
(

A
ZXN

) =
√

3

5

[
r0(1 + ε̄)A1/3 − N

A
τ

+ 1.44

35

(
9

2K0
+ 1

4aV
sym

)
Z2

]
. (11)

In the equation, ε̄ is a measure of the average deviation of the
bulk density from the nuclear matter value. It mainly depends
on nuclear mass, charge, and isospin asymmetry such that [30]

ε̄ = (−2aA−1/3 + Lδ̄2 + cZ2A−4/3)/K0, (12)

where

δ̄ =
[

N − Z

A
+ 3c

16Q
ZA−2/3

]/[
1 + 9aV

sym

4Q
A−1/3

]
. (13)

τ (A
ZXN ) in Eq. (11) is the neutron skin thickness, and has been

deduced by Myers and Swiatecki as [30]

τ
(

A
Z XN

) = 3r0

2

aV
sym

Q
N−Z

A − c
12Q ZA−1/3

1 + 9
4

aV
sym

Q A−1/3
. (14)

Concerning other parameters in Eqs. (11)–(14), K0 is the
compressibility coefficient. L is the density-symmetry coef-
ficient. aV

sym is the volume symmetry energy coefficient. Q is
the effective surface stiffness coefficient, and is often treated
as an auxiliary constant of the surface symmetry coefficient
aS

sym, Q = 9aS
sym/4 [31,32]. r0, a, c, and e are the nuclear

radius constant, the surface energy coefficient, the Coulomb
energy coefficient, and the electronic charge, respectively. Us-
ing Eqs. (11)–(14), the difference between a given mirror pair
A
Z XN and A

NYZ (Z > N), �Rmir
ch , can be mathematically deduced

as

�Rmir
ch = Rch

(
A
ZXN

) − Rch
(A

N XZ
)

=
√

3

5

2r0

3

aV
sym

aS
sym

1 + aV
sym

aS
sym

A−1/3

(
Z − N

A

)

+
√

3

5

r0cA

K0

(Z − N )

A
+

√
3

5

e2A

35

(
9

2K0
+ 1

4aV
sym

)

× (Z − N )

A

+
√

3

5

r0L

K0

c
6aS

sym
(Z − N )A−1/3 + (

c
12aS

sym

)2
A(

1 + aV
sym

aS
sym

A−1/3
)2

× (Z − N )

A
. (15)

It can be found from Eq. (15) that there are four terms
contributing to �Rmir

ch , and each term has a factor (Z − N )/A.
Taking the default parameters [51], K0 = 240 MeV, L = 100
MeV, aV

sym = 36.8 MeV, Q = 17.0 MeV (aS
sym = 4Q/9 = 7.6

MeV), r0 = 1.18 fm, a = 20.7 MeV, c = 0.73 MeV, and e2 =
1.44 MeV, the same as those used to produce Fig. 7(b), we can
assess the contributions from the four terms to �Rmir

ch . One
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FIG. 9. Difference of the contributions to the mass-dependent
�Rmir

ch versus (N − Z )/A linear relationship for the A = 50 and 30
mirror pairs. Difference lines are from different terms of Eq. (15).
The absolute contribution magnitudes of the four terms to the
mass-dependent behavior are deduced by integrating over the given
interval in the figure. The inset pie chart shows the absolute fraction
of the contributions from the four terms.

can easily understand that in the framework of the droplet
model the overall linear trend of �Rmir

ch versus (N − Z )/A
is attributed to its (N − Z )/A proportionality as indicated by
Eq. (15).

To further figure out the origin of the mass-dependent
�Rmir

ch versus (N − Z )/A linear relationship, we analyze the
contributions of the four terms to the mass-dependent be-
havior within the droplet model. Taking the parameters as
default, the values of the �Rmir

ch contributions for the A =
30 and 50 mirror pairs with different isospin asymmetries
are calculated using Eq. (15). The relations of the obtained
values from all four terms as a function of |N − Z|/A are
further smoothed with proportional functions. Then, for the
four terms, the differences between the obtained proportional
relations of the A = 50 and 30 mirror pairs are deduced and
plotted in Fig. 9. The resultant lines in Fig. 9 convey abun-
dant information about the mass-dependent behavior of �Rmir

ch
versus (N − Z )/A. That is, for a given term of Eq. (15), the
absolute magnitude of the slope indicates the magnitude of the
contribution to the �Rmir

ch versus (N − Z )/A mass dependence,
and the positive or negative sign of the slope indicates the
enhancement or reduction effect on the mass dependence.

Combining Fig. 9 and the mathematical expression of
Eq. (15), one can draw conclusions about the mechanism of
the mass-dependent �Rmir

ch versus (N − Z )/A linear relation-
ship within the droplet model framework as follows.

(1) The dominant effect on the mass-dependent relation-
ship is an enhancement effect which originates from
the A−1/3-dependent denominator in the first term of
Eq. (15). That is, the larger mass number the mirror
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FIG. 10. Same as Fig. 9, but from the first term of Eq. (15) only.
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aV

sym/aS
sym.

pair has, the smaller the denominator will be, leading
to the result that the mirror pairs with larger mass
numbers have larger values of the first term. For the
default parameter set of the droplet model, the absolute
fraction of the first term contribution to the mass-
dependent behavior is deduced to be 61.5% as given
in the inset pie chart of Fig. 9.

(2) The contributions to the mass dependence from the
second and the third terms, 36.3% in total, are also
positive. They are mainly related to the A-dependent
bulk property difference of given mirror pairs.

(3) The fourth term, with a minor contribution of around
2%, has a reduction effect on the mass dependence.

From these evaluations, one may notice that the significant
contribution from the first term to the mass-dependent behav-
ior of �Rmir

ch versus (N − Z )/A is closely associated with the
coefficient aV

sym/aS
sym in front of A−1/3. Compared to the key

parameters K0, L, and aV
sym for describing the properties of

nuclear matter, aS
sym still has a rather large uncertainty, with

values from 7.1 to 50.1 MeV [52–54] being found in the
literature. The close correlation between aV

sym/aS
sym and the

mass-dependent �Rmir
ch versus (N − Z )/A linear relationship

may open up a possibility to constrain the aS
sym value in a

narrower range. Fixing aV
sym, we manually adjust the default

coefficient aV
sym/aS

sym by dividing or multiplying it by a factor
of 2, and recalculate the differences in contributions from the
first term. The results are plotted together with that obtained
using the default aV

sym/aS
sym in Fig. 10. As expected, the con-

tribution difference from the first term shows a significant
degree of sensitivity to changes in aV

sym/aS
sym. At this moment,

the effective constraint to aS
sym remains rather challenging,

since the present analysis is limited to the framework of the
classical macroscopic droplet model only. As a result, we
leave the task of constraining the aS

sym value to future studies
using more advanced microscopic approaches such as den-
sity functional theory, ab initio methods, etc. [13–15], which
incorporate the spin-orbit effect, pairing effect, and other rel-
evant microscopic factors. However, we stress here that the
mass-dependent �Rmir

ch versus (N − Z )/A linear relationship
could be a suitable probe for extracting valuable information
about the surface component of nuclear symmetry energy.
Expanding the analyses in such a manner may provide deeper
insights into the surface component of nuclear symmetry en-
ergy in future.

IV. SUMMARY

In summary, utilizing a newly developed deep Bayesian
neural network (DBNN) approach, we investigate the linear
relationship between the difference in mirror pair rms charge
radii �Rmir

ch and isospin asymmetry (N − Z )/A in unmeasured
nuclei. The DBNN approach with optimized architecture and
input features turns out to have excellent predictive capability
for both existing rms charge radii Rch data and the unmeasured
data far from the β-stability line. This investigation reveals a
significant mass-dependent linear relationship of �Rmir

ch versus
|N − Z|/A which has not been experimentally observed previ-
ously, for the nuclei with 20 � A < 40 and 40 � A � 60. The
physical existence and origin of the obtained mass-dependent
�Rmir

ch versus (N − Z )/A linear relationship is investigated by
comparing it with the theoretical predictions of the micro-
scopic Sky3D model and the macroscopic droplet model. The
results indicate that the mass-dependent linear relationship is
physical, with the degree of mass dependence closely asso-
ciated with the ratio of volume and surface symmetry energy
coefficients. The Rch exploration in unstable nuclei beyond the
β-stability line may soon be possible using the SCRIT facility
at the RIKEN radioactive isotope (RI) factory [55] or ELISE
at the future NUSTAR facility at FAIR [56]. The perspective
of attaining valuable information on the surface contribution
to nuclear symmetry energy may become accessible using the
mass-dependent linear relationship of �Rmir

ch and (N − Z )/A
as a probe in the near future.
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