
PHYSICAL REVIEW C 110, 014314 (2024)

Symmetry energy from two-nucleon separation energies of Pb and Ca isotopes
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We investigate the symmetry energy in relation with the two-proton and two-neutron separation energies
using different nuclear mass data. For this aim, we exploit the deformed relativistic Hartree-Bogoliubov theory
in the continuum (DRHBc), FRDM2012, and AME2020 data. First, we study the two-proton and two-neutron
separation energies in Pb and Ca isotopes by subtracting the contribution of Coulomb energy. They show a
strong correlation with neutron number as well as with the neutron skin thickness. By taking the relative
difference of both separation energies, we derive the symmetry energy from Ca and Pb isotopes. Since the
nuclear surface contributes to the symmetry energy, we deduce the volume symmetry energy by subtracting the
surface contribution using several mass models. The obtained symmetry energy coefficient, asym, is 20.0–22.7
MeV for Pb isotopes and 18.7–19.3 MeV for Ca isotopes from the DRHBc mass table data, while the results
from other mass tables are 19.6–22.1 (20.7–22.3) MeV for Pb isotopes and 18.9–19.0 (19.6–19.7) MeV for Ca
isotopes from AME2020 (FRDM2012) data. The volume contribution to the asymmetry coefficient, av

sym, which
depends on the ratio of the surface to the volume energy coefficients, as/av , is also provided for each mass model.
Since the ratio as/av is determined neither by nuclear theory nor by experimental data, we have investigated av

sym

by using the ratio as/av as a free parameter, and have obtained av
sym = 27.0 MeV, almost irrespective of nuclear

model and isotopic chain, with the ratio as/av constrained as as/av = 1.10–1.13.

DOI: 10.1103/PhysRevC.110.014314

I. INTRODUCTION

The neutron skin thickness (NST) of neutron-rich nuclei
has been one of the most important topics in nuclear physics
because it can provide critical information on the symmetry
energy in finite nuclei, as well as on the structure of neutron
stars. There are several experimental datasets available for
the NST, including parity-violating electron scattering, i.e. the
results from PREX I, PREX II, and CREX experiments, as
well as data on the dipole polarizability obtained by proton
elastic scattering and antiproton scattering [1–5]. From the
viewpoint of the symmetry energy, the NST is a significant
observable because it is proportional to the slope parameter of
the equation of state (EoS) of nuclear matter [6].

In this work, we focus on the proton and neutron separa-
tion energy because the proton separation energy implies the
propagation of protons in the NST region, and consequently

*Contact author: cheoun@ssu.ac.kr

it is affected by the NST, while the neutron separation energy
becomes smaller with the increase of the neutron number due
to the more dilute neutron density in the NST. Specifically,
we utilize two-neutron and two-proton separation energies
in even-even Pb and Ca isotopes because one-proton and
one-neutron separation energies require one to consider the
additional pairing energy of even-odd nuclei and the Pauli
blocking. In addition, since the Coulomb energy is cru-
cial to determine the proton separation energy, we need to
subtract the contribution from those separation energies to
discuss the symmetry energy of finite nuclei. Furthermore,
for the symmetry energy in nuclear matter, we derive the
volume symmetry energy coefficient subtracted by the surface
contribution.

By using the mass table of the deformed relativistic
Hartree-Bogoliubov in continuum (DRHBc) model, which
attained more neutron-rich and proton-rich nuclei than other
nuclear mass models, we deduce the two-nucleon separa-
tion energies in a wide mass region, including nuclei near
the drip lines, and extend this process to other mass model
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TABLE I. Comparison of the NST to the experimental data in the unit of fm. The value of Ep for Ca is 295 MeV, and there are different
values, namely 295, 650, and 800 MeV, for 208Pb [2–4]. The antiproton scattering data are from Ref. [45].

DRHBc p-elastic scatt. data (Ep) (MeV) PREX II and CREX p̄ data

40Ca −0.043 −0.010+0.022
−0.024 (295)

48Ca 0.223 0.168+0.025
−0.028 (295) 0.121 ± 0.026(exp) ± 0.024(model) 0.090 ± 0.050

0.211+0.054
−0.063 (295)

208Pb 0.257 0.20±0.04 (650) 0.283 ± 0.071

0.14±0.04 (800)

data to come out with a realistic estimate of the systematic
uncertainties in our extraction. Then, the difference has an ex-
plicit relation with the asymmetry energy coefficient, asym, in
the semiempirical Bethe-Weizsäcker liquid drop mass model.
Based on the Bethe-Weizsäcker mass formula [7], the total
binding energy of a nucleus is written as

EB(A, Z ) = avA − asA
2/3 − ac

Z2

A1/3
− asymI2A, (1)

for a nucleus with mass number A and proton number Z . In
Eq. (1), av , as, ac, and asym are the volume, surface, Coulomb,
and symmetry energy terms, respectively. I = (N − Z )/A rep-
resents the isospin asymmetry and the pairing energy term is
discarded since it does not play any role in our further consid-
erations. Here, we use minus signs except for the volume term,
by which the binding energy and all coefficients are positive,
because the surface, Coulomb, and symmetry energies tend
to unbind the nucleus. By subtracting the Coulomb energy,
we define a modified binding energy formula without the
Coulomb contribution as

E∗
B (A, Z ) = EB(A, Z ) + ac

Z2

A1/3
= avA − asA

2/3 − asymI2A.

(2)

Then, the separation energies without the Coulomb energy
term are given by

S∗
2n = [E∗

B (A, Z ) − E∗
B (A − 2, Z )],

S∗
2p = [E∗

B (A, Z ) − E∗
B (A − 2, Z − 2)]. (3)

The difference between the corrected 2p and 2n separation
energies can be expressed in term of the isospin asymmetry
coefficient as

S∗
2p − S∗

2n = asym
8(N − Z )

(A − 2)
= 8asymI∗, with I∗ = N − Z

A − 2
.

(4)

For the application to nuclear matter, we divide the symme-
try energy into the volume and surface part (as

sym, av
sym), using

the following relation [8]: asymI2A = (av
symA + as

symA2/3)I2.
Then Eq. (4) is reexpressed as

S∗
2p − S∗

2n = 8I∗(av
sym + as

sym(A − 2)−1/3)

= 8I∗av
sym

(
1 − as

av

(A − 2)−1/3

)
, (5)

where we define the ratio of the surface to the volume term as
as

sym/av
sym = −as/av [8].

We take av and as, whose values depend on the nuclear
model, as summarized at Table II in Appendix D of Ref. [8].
We have performed calculations for Pb and Ca isotopes us-
ing the DRHBc model [9], the finite-range droplet model
(FRDM2012) model [10], and the Atomic Mass Evaluation
(AME2020) data [11]. The results show an interesting conse-
quence for the symmetry energy in finite nuclei.

Before the discussion on the symmetry energy, we add a
few comments on the mass models exploited in this work.
The AME2020 data [12] is the result, as the name hints, of
the evaluation of experimentally measured masses. FRDM is
a global nuclear mass model, combining a liquid-drop mass
model for the macroscopic energy with microscopic shell
corrections based on the Strutinsky procedure. In particular,
FRDM2012 data [13] predicts the masses of more than 2000
nuclei with a high accuracy: the root-mean-square (rms) de-
viation with respect to the experiment is σrms = 0.560 MeV.
The price to pay for this high accuracy is a large number of
parameters which are optimized to reproduce accurately the
experimental binding energies.

DRHBc is a covariant version of nuclear density functional
theory (DFT). It is based on a microscopic, point-coupling
realization of an energy density functional and it has been
improved and tuned to include superfluidity. Its practical
implementation includes deformation, and coupling to the
continuum which is relevant to describe properly nuclei close

TABLE II. Formulas for the Coulomb energy corrections to
Eq. (1) in Ref. [47], where the differences of experimental binding
energies between 88 pairs of mirror nuclei (with the same mass
number A, but with neutrons and protons interchanged) are adopted
to fix the parameters ac and b in the mass region 11 � A � 75, based
on the AME2012 data [48]. Sets I (III) and II (IV) are obtained by
fitting the data, respectively, without and with the Coulomb exchange
term [including the proton self-interaction correction Z (Z − 1)]. The
last column σ provides the rms deviations from the fitting procedure.

Coulomb energy Ec ac (MeV) b σ (keV)

Set I ac
Z2

A1/3 0.625 336

Set II ac
Z2

A1/3 (1 − bZ−2/3) 0.715 1.374 121

Set III ac
Z (Z−1)

A1/3 0.642 249

Set IV ac
Z (Z−1)

A1/3 (1 − bZ−2/3) 0.704 0.985 118
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to the drip lines. Although the model has parameters extracted
from a fit, these are associated with microscopic coupling
constants and there is no ad hoc parameter that betrays the
basic DFT philosophy: in this respect, it is a microscopic
model and not a mass model. While it is fair to discuss these
models in an objective way, and let the reader have an opinion
about their pros and cons, we note that it is not guaran-
teed that a model having more parameters and smaller errors
when compared to experimental masses necessarily allows a
more accurate extraction of the symmetry energy from the
data.

This paper is organized as follows. A brief description of
the DRHBc theory used in the present calculation is presented
in Sec. II. Detailed results of Pb and Ca isotopes including
the NST and the nucleon separation energies are provided in
Sec. III. Finally, the summary and conclusion are given in
Sec. IV.

II. FORMALISM

In order to see the consequences of the above discussion,
we need a well-refined nuclear model which has to incorporate
the deformation, the pairing correlations and the continuum,
through a microscopic approach, so that it can account well
for properties of the nuclear masses as a whole, by covering
nuclei near the drip lines. Another important ingredient is
the relativistic description which has been initiated by the
authors in Refs. [14,15] with various meson-exchange models
inside nuclei, and has enabled us to incorporate consistently
the nucleonic spin degree of freedom.

Along this line, the DRHBc theory was developed for
deformed halo nuclei in Refs. [16,17], and recently extended
[18] with point-coupling density functionals. This theory is
proved to be capable of providing a good description of
the nuclear masses with high predictive power [9,19,20],
and it has successfully been applied to some particular nu-
clei [21–28]. It follows the previous relativistic continuum
Hartree-Bogoliubov (RCHB) approach, calculated in coordi-
nate space [29,30] by explicitly including the deformation
in a Dirac Woods-Saxon basis [31]. Here we note that the
deformed cylindrical basis preserving axial symmetry could
be an alternative to effectively treat the convergence of the
total energy as argued in Ref. [32], where the Gogny-type
pairing force was exploited for neutron rich nuclei near drip
lines and odd nuclei.

In this work, we focus on the two-nucleon separation ener-
gies and NST of the Pb and Ca isotopes within the DRHBc
theory, which was succinctly summarized in Refs. [17,18],
as well as the nuclear mass data of AME2020 and FRDM.
The present calculations are carried out in the relativis-
tic Hartree-Bogoliubov theory with the density functional
PC-PK1 [33],

(
hD − λ �

−�∗ −h∗
D + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (6)

where hD, λ, Ek, (Uk,Vk ) are the Dirac Hamiltonian, the Fermi
energy and the quasiparticle energy and wave function, re-
spectively. The pairing potential � is given as a function of

the pairing tensor κ (r, r′) as follows:

�(r, r′) = V (r, r′)κ (r, r′), (7)

with a density-dependent zero range force

V (r, r′) = V0

2
(1 − Pσ )δ(r − r′)

(
1 − ρ(r)

ρsat

)
. (8)

For the pairing strength, we use V0 = −325.0 MeV fm3.
The saturation density is adopted as ρsat = 0.152 fm−3, to-
gether with a pairing window Eq.p

cut = 100 MeV. The energy
cutoff E+

cut = 300 MeV and the angular momentum cutoff
Jmax = (23/2)h̄ are taken for the Dirac Woods-Saxon basis.
The above numerical details are the same as those suggested
in Refs. [18,20] for the DRHBc mass table calculation. For
the present calculation of the Pb (Ca) isotopes, the Legendre
expansion truncation is chosen as λmax = 8 (6) [18,20].

Empirical pairing gaps of Pb isotopes were shown to be
properly reproduced with the energy cutoff, the maximum
angular momentum, and the Legendre expansion truncation
obtained from the convergence check of total energies, as
shown in Fig. 5(b) in Ref. [18].

The present zero-range scheme for the pairing force is
better than the simple constant gap approximation, but it has
still the pairing window problem in the pairing tensor, as dis-
cussed in Refs. [34,35], because it needs an arbitrary energy
cut-off parameter for neutron-rich nuclei. In spherical nuclei,
the neutron pairing gaps are well reproduced by the pairing
window defined by Eq.p

cut = 100 MeV. But for deformed nuclei
A = 186–198 (see Fig. 2 in Ref. [36]) the results of Eq.p

cut =
200 MeV are better than those by using other windows. This
implies that the convergence of total energies with the pairing
windows has to be more carefully assessed in the case of de-
formed nuclei. We leave it as a future work. A more elaborate
approach for the pairing interaction, beyond the zero-range
scheme, is that based on the Gogny-type finite-range pairing
force [37], using a separable approximation [38,39]. This
kind of treatment of pairing interaction is also applied to
the covariant density functional theory adopted for studying
neutron-rich nuclei in Refs. [40–43].

III. RESULTS AND DISCUSSION

A. Two-neutron and two-proton separation energies

Both the DRHBc and RCHB results show a clear correla-
tion between the NST and the neutron number, as shown in
Fig. 1. The small deviation of the RCHB results [44] in Pb
isotopes, with respect to the DRHBc results, can be attributed
to the fact that the RCHB model does not consider explicitly
the deformation [9].

We obtain the NST values of 40,48Ca equal to −0.043
and 0.223 fm, respectively, in the DRHBc model. For 208Pb,
the DRHBc value is 0.257 fm. We compare these results
with various experimental findings both in Fig. 1 and in
Table I. An interesting point is that 208Pb data from proton
elastic scattering experiments show systematically smaller
NST than the data from PREX II and than the results of the
present calculations. On the other hand, such data are con-
sistent with the dipole polarization experiments and also with
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FIG. 1. Evolution of NST for Ca (a) and Pb (b) isotopes. We
obtain the NST for 208Pb as Rn − Rp = 0.257 fm and the NST for
40Ca as Rn − Rp = −0.043 fm in the DRHBc results. Data from
different experiments (CREX and PREX II, antiproton scattering,
and proton elastic scattering at different incident proton energies Ep)
are also displayed, and detailed in Table I. In theoretical studies,
DRHBc takes into account both the continuum and the deformation,
while RCHB includes only the continuum effect.

nonrelativistic Skyrme calculations. Curiously, the NST from
proton scattering data of 48Ca is larger than that of CREX
data, but smaller than the DRHBc results. While there might
be model dependence related to the optical model adopted in
the analysis of the proton elastic scattering data, the difficulty
of reconciling PREX and CREX data is still an interesting and
open problem.

Figure 2(a) demonstrates the evolution of the NST, the two-
neutron separation energy (S2n), and two-proton separation
energy (S2p) with the neutron number for Pb isotopes with
the available separation energy data. Figure 2(b) shows the
separation energy evolution with the NST. All observables
show clear correlations with the neutron number as well as
the NST. S2n decreases with the neutron number and shows an

FIG. 2. (a) Evolution of the NST, S2p and S2n obtained by
DRHBc [9] and RCHB [44] with the neutron number (denoted by
squares, circles, and triangles, respectively) for Pb isotopes. S2p and
S2n are compared to the AME2020 data (denoted as stars) [12].
(b) Evolution of S2n and S2p with the NST.

abrupt decrease at the neutron magic number N = 126. This
is an indication of the magic shell structure.

We also note an almost monotonic increase of S2p with
the neutron number. With the increase of the NST by the
increase of neutron number, because of the strong proton-
neutron interaction, the proton potential is more deepened,
and consequently S2p increases. This can also be explained by
the increase of Fermi energy difference between proton and
neutron, εp − εn, as discussed in Ref. [46]. Furthermore, the
monotonic increase of S2p with the neutron number implies
that the NST, as well as the slope parameter of the symmetry
energy, are closely related to the behavior of S2p, which will
be discussed in detail later on.

Figure 2(a) also demonstrates the evolution of the NST
with the neutron number. In particular, Fig. 2(a) shows dif-
ferent increase rates of the NST and S2p. Further, since the
neutron number and the NST also have a correlation, we show
the evolution of the S2p and S2n with the NST in Fig. 2(b).

Other NST calculations by the RCHB model [29,30] show
more straight correlations to the neutron number, and the
separation energies also display a pattern similar to that of
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FIG. 3. Coulomb energies of Pb isotopes (a). Sets I–IV in Table II are taken from Ref. [47] and the DRHBc Coulomb energies are taken
from Ref. [9]. The Coulomb energy data in the panel (b) are calculated for all isotopes, for a given mass number A, using Set I. The Coulomb
energies of all isobars for a given mass number A are indicated explicitly.

the NST. The smooth correlations displayed by the RCHB
results stem from the lack of deformation in these calcula-
tions. Hereafter, we focus on the evolution of S2n and S2p with
the neutron number. A detailed discussion of the relation to
the NST will be presented in a forthcoming paper, with the
additional analysis of the symmetry energy in nuclear matter.

B. Coulomb energy correction

Since the Coulomb energy affects the proton separation
energy, we subtract the Coulomb energy. Following the pre-
scriptions used in Ref. [47], which are summarized in Table II,
we show the evolution of the Coulomb energy of Pb iso-
topes as well as that of the DRHBc calculation in Fig. 3.
The Coulomb energy decreases with the mass number, as
expected. We also note that Sets I and III are characterized by
a Coulomb energy which is about 40–50 MeV smaller than
for Sets II and IV. This comes from the fact that the exchange
Coulomb energy cancels with the direct Coulomb energy, but
the ac values themselves in Sets II and IV are larger than
those in Sets I and III. Here we note that the isospin symmetry
breaking interactions are not included in the results of Fig. 3.

The Coulomb energy by using the DRHBc is presented
with the black curve, and the values are much larger than
all those obtained with Sets I–IV in Table II. In fact, these
include the Coulomb exchange energy, either explicitly (Sets
II and IV) or implicitly (Sets I and III). Therefore, more
refined calculations of the Coulomb exchange term might
be desirable for more exact access of the Coulomb energy,
because the Coulomb exchange interaction is not included in
the DRHBc model. The small discontinuous Coulomb energy
by the DRHBc comes from the deformation of Pb isotopes.
The Coulomb energy per proton in Pb isotopes, from the
DRHBc model, decreases from about 11 to 8 MeV along
the 162−266Pb isotopes. Figure 3(b) shows an example of the
Coulomb energy from the Set I in the whole mass table: it
increases with the mass number as expected. The spread in
each isobaric chain amounts to a few tens of MeV. It means
that the Coulomb energy correction is important in the present
calculation.

Figure 4(a) shows the two-nucleon separation energy (S2p

and S2n) and the Coulomb-corrected one (S∗
2p and S∗

2n). S∗
2p is

larger, by about 36 MeV on average, than S2p. We can find a
clear correlation of S2p and S∗

2p with the neutron number, that
is, even when the Coulomb energy is subtracted. The uncer-
tainty from the Coulomb energy estimated from the difference
between Sets I and II in Table II turns out to be about 5 MeV.
Here we do not take into account the irregular pattern due
to the deformation in the upper curves in Fig. 4(a). We also
present the experimental separation energy from AME2020
data [11] and their Coulomb-corrected values.

S2p and S2n show an X -type crossing behavior at the point
near the magic shell N = 126, while S∗

2p and S∗
2n cross at

the magic number N = 82 in panel (a). We note that S∗
2n is

also affected by about 2–3 MeV by the Coulomb energy sub-
traction, because of the change of the total binding energies.
Figure 4(b) show the evolution of the difference of S∗

2p and S∗
2n

for Pb isotopes, as a function of the neutron number N .
The differences between S∗

2p and S∗
2n in Figs. 4(b) and 4(c)

are found to be linearly proportional to the neutron number N ,
and also to I∗ = (N − Z )/(A − 2), except at the shell closure
and in the deformed region. This difference should be constant
with respect to 8I∗ according to the formula in Eq. (4), and the
constant is directly related to the asymmetry coefficient asym

in the mass formula. Although we can see large fluctuations,
we extracted the value asym from Fig. 4(d) by taking a fit
to the data. In the fitting process, we discarded the region
I∗ < 0.100, because it is the proton-rich region, and also
the 0.217 < I∗ < 0.271 region, because it is the region near
the magic number. In order to extract the symmetry energy
coefficient, we have to subtract the shell corrections in the
vicinity of magic shells, which usually has been done by the
Strutinsky method [49]. Here we adopt a prescription simply
to discard the results near magic shells, which is equivalent
to a smooth continuation approach, i.e., subtracting the Fermi
energy difference of nuclei before and after the shell closure.
The values of asym from Pb isotopes are shown in Fig. 4(d):
these span the interval between 20.0 and 22.7 MeV, depending
on how the Coulomb correction is implemented. Detailed
values are in Table III.
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FIG. 4. (a) Evolutions of S2p, S∗
2p, S2n, and S∗

2n as a function of the neutron number N and (b) the difference S∗
2p − S∗

2n for the Pb isotopes.
The S∗

2p and S∗
2n are those including the Coulomb energy correction. The shaded regions indicate the uncertainty due to the difference between

Sets I and II for the Coulomb correction. DRHBc_I and DRHBc_II label the results obtained by subtracting the Coulomb energy from Sets I
and II. DRHBc_cor is the result obtained by subtracting the Coulomb energy calculated by the DRHBc model itself. EXP are the experimental
data from AME2020. EXP_I and EXP_II are the data corrected by subtracting the Coulomb energy from Sets I and II. Panels (c) and (d) show
the difference S∗

2p − S∗
2n as a function of I∗ = (N − Z )/(A − 2), and asym with respect to 8I∗, respectively. The numbers in the parentheses in

panel (d) are the central values of asym and their rms deviations. Here we show only the results from Sets I and II for simplicity.

In the following, we present the S∗
2p and S∗

2n results for Ca
isotopes in Fig. 5. The general behavior is very similar to
that in Pb isotopes. We found also the X -type band of S2p

and S2n as well as S∗
2p and S∗

2n in Fig. 5(a). An interesting
point is the change of the crossing point without and with
the Coulomb energy. With the Coulomb energy subtraction,
the crossing point moves to the magic number N = 20 for S∗

2p
from N = 22 for S2p. This is very similar to the results for
Pb isotopes in the vicinity of the magic number N = 82 and
126. This tendency implies that both separation energies, S∗

2p

TABLE III. Results of extracted asym for Ca and Pb with DRHBc,
AME2020, and FRDM2012 data. The numbers in parentheses are the
rms deviations.

DRHBc AME2020 FRDM2012

Ca_asym_I 18.70 (1.23) 18.96 (0.73) 19.66 (0.48)
Ca_asym_II 18.69 (1.22) 18.93 (0.72) 19.65 (0.47)
Ca_asym_cor 19.34 (1.31)
Pb_asym_I 20.04 (0.51) 19.60 (0.41) 20.67 (0.76)
Pb_asym_II 21.70 (1.06) 22.15 (0.68) 22.33 (0.41)
Pb_asym_cor 22.70 (2.76)

and S∗
2n, are the same for N = Z nuclei, and that the present

approach is very reasonable.
However, the crossing points of S2p and S2n (or S∗

2n) are at
N = 126 and N = 22, respectively, for Pb and Ca isotopes.
Other results from Sets III and IV show similar features. Even
the results of AME and FRDM model do not provide different
outcome. Since N = 126 for 208Pb is the magic number, the
value N = 22 is a bit difficult to understand.

The relative difference S∗
2p − S∗

2n in Ca isotopes, in
Figs. 5(b) and 5(c), shows also a clear correlation with the
neutron number and I∗. The asym from Fig. 5(d) is estimated as
about 18.7–19.7 MeV, and these values are a bit smaller than
those from the Pb isotopes. In the fitting we also discarded
the region around I∗ = 0, corresponding to the N = Z = 20
case. The final asym values fitted from Figs. 4(d) and 5(d)
are also tabulated in Table III with the results of other mass
tables, AME2020 and FRDM2012. In particular, we note that
the DRHBc_cor value is larger, by about 1 MeV, than those
from the other Coulomb corrected results using Sets I and II.

C. Surface symmetry energy correction

Hereafter, we will disentangle the contribution of the sur-
face symmetry energy to asym by comparing the two results
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FIG. 5. Same as Fig. 4, but for Ca isotopes. The numbers in parentheses are the central values and the rms deviations.

of Pb and Ca isotopes. We will try to extract a model-
independent av

sym value. We use the S∗
2p − S∗

2n formula given
by Eq. (5), which divides the symmetry energy into volume
(av

sym) and surface (as
sym) parts. By using the ratio of as/av

from nuclear models [8], we deduce the av
sym values and tabu-

late them in Table IV.
If we compare the results in Table III to those in IV (see the

first six rows for the DRHBc case), the av
sym value is increased

compared to the asym value by about 7.5 MeV for Ca and
4.5 MeV for Pb isotopes, due to the surface symmetry energy
(as

sym) correction, in the DRHBc model case. If we use a bit
larger value of as/av , from FRDM, the change amounts to a
larger value, 10.86 and 6.62 MeV for Ca and Pb isotopes. It is
interesting that the corrections for Ca isotopes are larger than
those by Pb isotopes. It suggests that the surface contribution
to the symmetry energy becomes larger in light nuclei rather
than in heavy nuclei as expected from Eq. (5).

D. Results from other mass models

Here we perform the evaluation of S∗
2p − S∗

2n and asym

for Ca and Pb by using each of the nuclear mass models,
AME2020 and FRDM2012. For example, Fig. 6 presents the
results of S∗

2p − S∗
2n and asym from other mass models. We

note that the results by AME2020 and FRDM2012 are lower
than those by DRHBc. The final results for av

sym, corrected
by the surface contribution, are tabulated in Table IV for
the nuclear mass models. The results for av

sym depend on

TABLE IV. Macroscopic parameters (as/av) deduced from dif-
ferent mass formulas [8], and the results of av

sym extracted after
correcting asym by the surface contribution. We start from asym values
for Ca and Pb isotopes, as tabulated in Table III, coming from the
DRHBc, AME2020, and FRDM2012 approaches. The numbers in
the parentheses are rms deviations.

HFB FRDM Ref. [8]

as/av 1.11 1.41 1.13

DRHBc

Ca_av
sym_I 26.27 (2.28) 29.56 (2.83) 26.49 (2.31)

Ca_av
sym_II 26.25 (2.26) 29.53 (2.82) 26.47 (2.30)

Ca_av
sym_cor 27.17 (2.40) 30.57 (2.30) 27.40 (2.44)

Pb_av
sym_I 24.53 (0.71) 26.14 (0.80) 24.64 (0.71)

Pb_av
sym_II 26.57 (1.52) 28.31 (1.70) 26.69 (1.53)

Pb_av
sym_cor 27.80 (3.56) 29.63 (3.87) 27.93 (3.58)

AME2020

Ca_av
sym_I 27.49 (1.07) 31.36 (1.23) 27.74 (1.08)

Ca_av
sym_II 27.44 (1.06) 31.30 (1.23) 27.70 (1.07)

Pb_av
sym_I 24.24 (0.48) 25.93 (0.50) 24.36 (0.48)

Pb_av
sym_II 27.40 (0.90) 29.31 (0.99) 27.54 (0.91)

FRDM2012

Ca_av
sym_I 27.59 (1.08) 31.03 (1.47) 27.82 (1.10)

Ca_av
sym_II 27.57 (1.06) 31.00 (1.46) 27.79 (1.09)

Pb_av
sym_I 25.30 (0.72) 26.95 (0.61) 25.41 (0.72)

Pb_av
sym_II 27.34 (0.61) 29.13 (0.71) 27.46 (0.61)
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FIG. 6. S∗
2p − S∗

2n (a) and asym (b) for Ca from DRHBc, AME2020, and FRDM2012, which correspond to the results in Figs. 5(c) and
5(d). S∗

2p − S∗
2n (c) and asym (d) for Pb from DRHBc, AME2020, and FRDM2012, which correspond to the results in Figs. 4(c) and 4(d). The

numbers in the parentheses of panels (b) and (d) are the central values and the rms deviations.

the as/av value. All of the results for av
sym are summarized

in Table IV. For example, the values from FRDM2012 are
larger than the values from other models. Final results of
asym and av

sym with the ratio as/av extracted from the mass
tables are tabulated and compared to other results [47,50] in
Table V.

Here we mention that the uncertainty on the asym coming
from the treatment of the Coulomb exchange term, which is
estimated from the difference of the results by Set I and Set II,

is about 0.5 (0.1) MeV for Ca isotopes and 2.7 (1.6) MeV for
Pb isotopes by DRHBc (FRDM).

E. Model independent approach

Since the ratio as/av in Eq. (5) is not well determined by
other experimental observables, we take it as a free parameter
and try to fix av

sym from the present asym in Pb and Ca isotopes.
The final results are presented in Fig. 7.

TABLE V. Summary of asym, av
sym, and as/av for Ca and Pb with DRHBc, AME2020, and FRDM2012. Kim I and Kim II [50] are the

results by using full range mass data, respectively, from DRHBc and AME2020. The Tian [47] results used AME2012 data [48].

asym av
sym as/av

Ca (DRHBc) 18.7–a 19.3 26.2–27.4 (–30.6)b 1.10–1.13 (–1.41)b

Ca (AME2020) 18.9–19.0 27.4–27.7 (–31.4) 1.10–1.13 (–1.41)
Ca (FRDM2012) 19.6–19.7 27.5–27.8 (–31.3) 1.10–1.13 (–1.41)

Pb (DRHBc) 20.0–22.7 24.5–27.9 (–29.6) 1.10–1.13 (–1.41)
Pb (AME2020) 19.6–22.1 24.2–27.5 (–29.3) 1.10–1.13 (–1.41)
Pb (FRDM2012) 20.7–22.3 25.3–27.4 (–29.1) 1.10–1.13 (–1.41)

Kim I (A = 208)c [50] 21.36 27.85 1.38d

Kim II (A = 208) [50] 22.32 28.54 1.29d

Tian [47] 22.25 28.32 1.27d

aThe range “–” comes from the Coulomb correction recipes in Table IV.
bThe number in the parentheses is the result by the FRDM model, which shows a large as/av = 1.41.
cKim I, Kim II, and Tian employed a formula asym(A) = asym(1 − κA1/3) with κ = as

sym/av
sym.

dThis value is κ = as
sym/av

sym.
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Ratio Ratio

Ratio

FIG. 7. av
sym as a function of the ratio as/av for each nuclear mass model.

Since the Coulomb corrections were performed mainly for
light and medium nuclei due to the paucity of mirror nuclei
in heavy mass region, we consider only the results for Ca
isotopes using Sets I and II, and those for Pb isotopes using
only Set II (see the large rms deviation in the results using
Set I in Table II). We note that the results from Ca isotopes
using Sets I and II as well as those from Pb isotopes using
Set II clearly show a crossing point at av

sym = 27 MeV with
as/av = 1.1 ± 0.1. This result is almost model independent.
The results from Pb isotopes using Set I deviate somehow;
we should stress, however, that Set I is characterized by a
larger rms deviation (cf. Table II). In addition, the Coulomb
corrections may be more meaningful for light and medium
mass nuclei, due to the paucity of mirror nuclei in the heavy
mass region. These issues deserve further investigation.

IV. SUMMARY AND CONCLUSION

Our motivation, in the current study, was to highlight a
new, alternative way of deducing the volume and surface
symmetry energy coefficients of the nuclear mass formula.
Despite many attempts to extract the symmetry energy from
nuclear structure or reaction measurements, or from neutron
star observation, the density dependence of the symmetry
energy is still plagued by significant uncertainties. Symmetry
coefficients of the mass formula can provide useful, comple-
mentary information. We have extracted them from the proton
and neutron separation energies of Pb and Ca isotopes.

First, we deduced the symmetry energy coefficient, asym.
We used the mass table provided by the DRHBc model. Our
approach was applied starting from other mass tables. We
used, then, the ratio as/av as an input to disentangle the
volume and surface symmetry coefficients. Our final results
for asym and av

sym values for Ca and Pb isotopes are tabulated
in Table V. The asym values in the present work, obtained from
the two-nucleon separation energies, are consistent with other
results [47,50]. If we take the central value of av

sym results in
Table V, when as/av = 1.10–1.13, we obtain av

sym as av
sym =

27.0+0.96
−2.8 considering the Pb isotopes, and av

sym = 27.0+0.8
−0.8

considering the Ca isotopes. The uncertainties stem from the
treatment of the Coulomb interaction. The central value of
av

sym turns out to be independent of the nuclear species; the
larger as/av = 1.41 from FRDM is discarded here.

Since the ratio as/av is determined neither by nuclear
theory nor by experimental data, we investigated av

sym by
using the ratio as/av as a free parameter. Finally, we ob-
tained av

sym = 27.0 MeV, almost irrespective of nuclear model
and isotopic chain. The ratio as/av is constrained also to be
as/av = 1.10–1.13. From the deduction of the symmetry en-
ergy coefficients, asym and av

sym, we may discuss the symmetry
energy as well as its slope parameter. We leave it as a future
work.

Finally, we mention that the inclusion of Coulomb ex-
change energy or the lack thereof play a relevant role in the
extraction of the symmetry energy. The exchange term is a
physical effect that should be in principle considered using
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some realistic approximation. A microscopic model with ex-
act exchange term that can be applied to the whole isotope
chart, including deformed and/or drip-line systems, is not
available at present. DRHBc does not include a Fock term
(i.e., is a Hartree model) formally; however, some part of
exchange effects are implicitly taken into account when the
parameters are optimized to reproduce the empirical binding
energies. It is not easy to quantify this implicit effect. FRDM
has different recipes to include the exchange effects that are
discussed in our paper. As said elsewhere, in the present
work we can only discuss the consequences either of the fact
that models are different or of the fact that, specifically, they
are different in the treatment of Coulomb exchange. Further

investigation of the Coulomb exchange can be envisioned for
future works.
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