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Mean-field-derived IBM-1 Hamiltonian with intrinsic triaxial deformation
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An interacting-boson-model-1 (IBM-1) Hamiltonian, derived from self-consistent mean-field calculations
using a Skyrme energy density functional is employed for the study of energy spectra and B(E2) transition
strengths in the even-even 162–184Hf and 168–186W. An intrinsic triaxial deformation, derived from fermionic
proxy-SU(3) irreps, is incorporated into the IBM-1 potential energy curve, which is subsequently mapped to the
fermionic one, in order to derive the parameters of the IBM-1 Hamiltonian. It is shown that the inclusion of the
intrinsic triaxial deformation derived from the proxy-SU(3) irreps leads to a significantly improved agreement
between the theoretical predictions and experimental data for the low-lying quadrupole bands in the examined
isotopes, without the need of higher-order terms in the IBM-1 Hamiltonian. The calculated B(E2) transition
strengths are also improved, compared to the axially symmetric case. The recently suggested preponderance
of triaxial deformation over extended regions of the nuclear chart is obtained as a byproduct. Future potential
improvements and extensions to this mapping approach are also discussed.
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I. INTRODUCTION

The nuclear shell model [1–3] is widely considered to
provide a detailed microscopic description of atomic nuclei in
terms of their constituent protons and neutrons. The spherical
shell model [1] is based on the isotropic three-dimensional
harmonic oscillator, possessing the SU(3) symmetry [4–6],
to which the spin-orbit force is added, which destroys the
SU(3) symmetry beyond the sd shell. In most cases only the
valence protons and valence neutrons outside spherical closed
shells are taken into account, in order to reduce the com-
putational demands, although recently no-core shell model
approaches [7–9] are being developed for light nuclei.

An alternative description of the collective properties of
atomic nuclei is provided by the macroscopic collective model
of Bohr and Mottelson [10–12], in which nuclear shapes are
described in terms of the collective variables β and γ , corre-
sponding to the departure from sphericity and to the departure
from axial symmetry, respectively.

A severe truncation of the shell model space in even-even
nuclei is provided by the phenomenological interacting bo-
son model (IBM) [13], having an overall U(6) symmetry, in
which the collective properties of medium-mass and heavy
nuclei are described in terms of s and d bosons, possess-
ing angular momentum 0 and 2, respectively. These bosons
correspond to correlated fermion pairs, equal in number to
the valence proton pairs and valence neutron pairs, measured
from the nearest closed shell. Only one- and two-body in-
teractions among the bosons are taken into account. Three
dynamical symmetries exist in IBM: U(5) [14], SU(3) [15],
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and O(6) [16], corresponding to vibrational (near-spherical),
axially deformed, and soft to triaxial deformation (called γ -
unstable) nuclei, respectively. In the original version of the
model, called IBM-1, no distinction is made between bosons
corresponding to valence protons and neutrons. When this
distinction is made, IBM-2 occurs. In the classical limit of
IBM [17–19], built through the use of coherent states (also
called intrinsic states [13]), potential energy surfaces (PESs)
corresponding to IBM Hamiltonians are obtained in terms of
the collective variables β and γ .

Along a different path, self-consistent mean-field many-
body methods have been developed for atomic nuclei, using
nonrelativistic interactions [20–22] or relativistic energy den-
sity functionals [23–25]. PESs are readily constructed within
this framework for nuclei of any mass, but the calcula-
tion of spectra and electromagnetic transition rates becomes
demanding.

A bridge between the mean field and IBM approaches
has been built by Nomura et al. [26–28]. Along this path,
the PES derived from the mean-field calculations is used to
determine the free parameters appearing in IBM, by fitting
the IBM PES to the mean-field PES. In this way one can
subsequently use the IBM codes [29] to derive predictions for
spectra and electromagnetic transition rates for specific nuclei
without having to fit any free parameters to the data of each
individual nucleus, as was done in the early days of IBM.
In other words, one is able to obtain detailed spectroscopic
predictions for a specific nucleus from an IBM Hamiltonian
with microscopically derived parameters.

On the other hand, triaxiality in even-even nuclei [30–32]
has been attracting recently considerable attention. While the
number of nuclei in which triaxiality is dominant is rather
small, as indicated by the experimental odd-even staggering
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within their γ bands [33,34], it has been recently pointed out
that some degree of triaxiality is present almost everywhere
on the nuclear chart [35–37].

It is known that within the standard IBM-1, in which
only one- and two-body interactions are included, no triaxial
shapes are obtained [38]. Triaxial shapes can be obtained by
taking into account three-body terms [38–41]. An alternative
path is to use the standard IBM-2 with only one- and two-
body interactions, in which distinction between protons and
neutrons is made. Triaxial shapes then occur when valence
protons are particles and valence neutrons are holes, or vice
versa [42]. In the SU(3) framework of IBM, particles are
described by prolate irreducible representations (irreps) of
the type (N1, 0), while holes are described by oblate irreps
of the form (0, N2). Combining these irreps one gets for the
whole nucleus the irrep (N1, N2), which is triaxial. This ap-
proach has been called the SU(3)∗ limit of IBM-2 [42–44].

In the present work we propose an alternative path for
the description of triaxiality in IBM-1, insisting on the use
of one- and two-body interactions only but introducing an
intrinsic triaxial deformation of microscopic origin. The value
of the intrinsic triaxial deformation is obtained through the
proxy-SU(3) approximation [45–47] to the shell model, de-
scribed below. The parameters of the IBM-1 Hamiltonian
are obtained by fitting its PES to the PES obtained from
mean-field calculations employing the Skyrme energy density
functional [48]. The present approach resembles the method
of Nomura et al. [26,27] with two main differences: a) the use
of an intrinsic triaxial deformation in the present case, and b)
the use of different energy density functionals. While the latter
difference is not expected to inflict major changes, since all
energy density functionals in use are known to provide good
results, the first one should reveal substantial differences, to be
estimated through comparison of the present results to earlier
approaches [49–51].

Discussion on the microscopic origin of the intrinsic triax-
ial deformation to be used within IBM-1 is now in place.

A bridge between the spherical shell model and nuclear
deformation has been built by Elliott [52–54], who pointed
out that the wave functions in a degenerate oscillator level,
classified according to the irreps of SU(3), for which the
symbol (λ,μ) is used [52], can be expressed as integrals of
the Hill-Wheeler type over intrinsic states, and furthermore
that all states belonging in a band involve the same intrinsic
state in the integral [53] with states in a band having all other
quantum numbers equal being distinguished by an additional
quantum number K [the “missing quantum number” in the de-
composition from SU(3) to SO(3)]. As a consequence, simple
expressions are obtained for the quadrupole moments, which
resemble those of a rotational model with permanent defor-
mation. In other words, Elliott revealed deformation within
the spherical shell model.

Elliott’s SU(3) symmetry is destroyed in shells beyond the
sd shell, because the spin-orbit interaction pushes down in en-
ergy the orbitals of each shell bearing the highest total angular
momentum j [1]. As a consequence a shell beyond the sd
one consists of its initial orbitals, minus the deserting orbitals
(those with the highest j, which went to the shell below), plus
the intruder orbitals coming from the shell above (in which

they were having the highest j). The proxy-SU(3) approxima-
tion for even-even nuclei [45–47] proved that a unitary trans-
formation [55] allows the replacement of the intruder orbitals
(except the single level with the highest projection of j) by the
deserting orbitals, thus reestablishing the SU(3) symmetry of
the shell, with the exception of the left-over single level, which
however is found to lie highest in energy, thus not influencing
most nuclei in the shell. The validity of the proxy-SU(3)
symmetry has been first proved [45,56] within the Nilsson’s
deformed shell model [57,58], while later its connection to
the spherical shell model has also been clarified [55].

In proxy-SU(3) symmetry the SU(3) irreps to which the
valence protons and the valence neutrons correspond are used,
labeled by (λp, μp) and (λn, μn), respectively, coupled to the
most stretched irrep (λ,μ) = (λp + λn, μp + μn) [46]. What
is of utmost importance is that for each kind of nucleons the
highest weight irrep is used, which is the most symmetric
one [59], as required by the Pauli principle and the short-range
nature of the nucleon-nucleon interaction, as discussed in
detail in Refs. [46,59]. It should be noticed that the highest
weight irrep is identical to the irrep possessing the highest
eigenvalue of the second order Casimir operator of SU(3),
related to the quadrupole-quadrupole interaction, up to the
middle of the shell, but this is not the case any more beyond
midshell, as it can be seen in Table I of Ref. [46].

The Elliott labels λ and μ are known to be connected to
the shape variables β and γ of the collective model, this
connection being achieved by mapping the eigenvalues of
the invariant operators of the two theories [60,61]. Using
this mapping from the (λ,μ) irrep characterizing a nucleus,
parameter-independent predictions for its deformation vari-
able β and its axial symmetry variable γ are obtained [46],
providing among other results an explanation for the dom-
inance of prolate over oblate shapes [62,63] in the ground
states of even-even nuclei, as well as an argument in fa-
vor of the recently suggested preponderance of triaxiality in
heavy deformed nuclei [35–37] supported by empirical evi-
dence, provided by the experimental ratio of the band head
of the γ band over the first excited state of the ground state
band, E (2+

γ )/E (2+
g ) [64], through use of the triaxial rotor

model [30,65,66], as seen in Sec. VI of [46].
Medium-mass and heavy deformed nuclei are described

in IBM-1 within its SU(3) dynamical symmetry [13,15], in
which the ground state band belongs to the SU(3) irrep
(2NB, 0), where NB is the number of bosons corresponding
to the specific nucleus. Since in this irrep one has μ = 0, the
value of γ is also close to zero. This is not the case in the
proxy-SU(3) scheme, in which almost all nuclei have μ �= 0,
as seen for example in Tables II and III of Ref. [46]. This
means that γ can obtain values away from zero, in agreement
with the experimental expectations, as seen in Figs. 5 and 6
of Ref. [46]. It is therefore reasonable to consider an IBM
description of medium-mass and heavy nuclei assuming an
intrinsic nonzero value of γ . The Hf and W series of isotopes
provide an appropriate test-ground for this assumption, since
data exist for several isotopes extending from moderate to
strong deformations [64].

It should be noticed that in IBM-1 the ground state band
(gsb) sits alone in the (2NB, 0) SU(3) irrep, while the γ
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(K = 2) and β (K = 0) bands lie in the next irrep, (2NB −
4, 2) [13,15]. As a consequence, no B(E2) transitions are
allowed to connect the γ band to the gsb, since they belong
to different irreps, which cannot be connected by the
quadrupole operator, which is a generator of SU(3), thus the
SU(3) symmetry has to be broken [67], since the experimental
B(E2)s connecting the γ band to the gsb are known to be
substantial [64]. This problem is avoided in the proxy-SU(3)
scheme, since the gsb and the γ band belong to the same irrep
with μ �= 0, thus no a priori need for breaking the SU(3) sym-
metry arises. The problem is known to be avoided also within
the pseudo-SU(3) scheme [68–70], an alternative way of re-
establishing the SU(3) symmetry of the three-dimensional
harmonic oscillator in medium-mass and heavy nuclei.

In short, Elliott proved microscopically that deformation
occurs within the spherical shell model based on an intrinsic
state. In the present approach, we exploit the fact that the
proxy-SU(3) irreps, dictated in a parameter-free way by the
Pauli principle and the short range nature of the nucleon-
nucleon interaction, exhibit non-vanishing values of the Elliott
label μ, i.e., nonvanishing values of the collective variable
γ , while in IBM-1 the SU(3) irreps containing the ground
state band have μ = 0, because of the bosonic nature of the
constituent particles. By introducing an intrinsic nonvanishing
value of γ in IBM-1, we therefore incorporate into the classi-
cal limit of IBM-1 the triaxiality feature required by the Pauli
principle and the short-range nature of the nucleon-nucleon
interaction.

In different words, Elliott, working within the micro-
scopic spherical shell model, discovered an intrinsic state
corresponding to departure from sphericity in the form of
axial deformation, prolate or oblate. Within the microscopic
spherical shell model the Pauli principle is explicitly taken
into account, since protons and neutrons are used, which are
fermions. In addition, the short-range nature of the nucleon-
nucleon interaction is taken into account through the form
of the harmonic oscillator potential. The question is how to
handle departure from axial deformation, i.e., triaxial shapes,
within the phenomenological IBM-1, in which the constituent
particles are bosons, ignoring the Pauli principle, without
adding higher order (cubic) terms, which would lead us
beyond the original definition of IBM-1, and without intro-
ducing the distinction between protons and neutrons, which
would lead us to IBM-2. The way proposed in the present
approach is to start from the classical limit of IBM-1, formed
with the use of coherent states, and add to it the triaxial defor-
mation in the form of a nonvanishing value of the deformation
variable γ . The specific value of γ is not treated as a free
parameter, but is obtained in a parameter-free way from the
proxy-SU(3) approximation to the shell model, in which both
the Pauli principle and the short-range nature of the nucleon-
nucleon interaction are explicitly taken into account, leading
to the choice of the highest weight SU(3) irrep as the one
describing the nucleus.

II. THEORETICAL PROCEDURE

We begin our analysis by performing constrained
Skyrme Hartree-Fock + Bardeen-Cooper-Schrieffer (BCS)

(denoted HF + BCS, for the sake of brevity) cal-
culations for each of the isotopes under study, with
the constraint being placed on the quadrupole deforma-
tion parameter, β. We employ the SKYAX [48] code
to carry out the energy density functional (EDF) cal-
culations on a two-dimensional mesh on the r-z plane,
where the mesh spacing of dr = dz = 0.7 fm is kept constant
throughout. The SV-bas [71] EDF is used for the calcula-
tions. This functional is the starting point for the systematic
variation (SV) set of parametrizations—a set of relatively
modern parametrizations to the Skyrme interaction, which
has reached a lot of success, being employed in various
theoretical studies in recent years—and as such, it was cho-
sen for our calculations (see also Ref. [72], and references
therein, for a more detailed discussion on the SV fam-
ily of EDFs). For the pairing, a density-dependent δ force
was employed (see Ref. [48] for more details). However, it
should be noted that, similar to the case of Refs. [26–28,49],
the choice of Skyrme interaction does not essentially im-
pact the results of the study, as long as the usual ones are
considered. For each isotope, a set of constrained HF +
BCS calculations is carried out for each value of β, lead-
ing to the construction of the corresponding potential energy
curve (PEC). Since the total energy is used for the map-
ping procedure, all of the ingredients, including those related
to kinetic terms, are supposed to be taken sufficiently into
consideration [49].

Having obtained the HF + BCS PEC for each isotope,
we move on to the IBM description of the PEC. The ex-
tended consistent Q formalism (ECQF) [73], first introduced
in [74,75], is adopted to write the IBM-1 Hamiltonian in the
form [76,77]

H (ζ , χ ) = c

[
(1 − ζ )n̂d − ζ

4NB
Q̂χ Q̂χ

]
, (1)

where NB is the number of valence bosons, n̂d = d† ·
d̃ , Q̂χ = (s†d̃ + d†s) + χ (d†d̃ )(2) the number operator for
quadrupole bosons, and the quadrupole operator, respec-
tively, and c is a scaling factor. The above Hamiltonian
encompasses the entire IBM symmetry triangle [65,78,79],
along with the U(5)–O(6)–SU(3) dynamical symmetry limits
of the IBM, by making use of two structural parame-
ters, ζ and χ . The parameters (ζ , χ ) describing a nucleus
can be placed in the IBM symmetry triangle by con-
verting them into polar coordinates, through the relations
[80,81]

ρ =
√

3ζ√
3 cos(θχ ) − sin(θχ )

, θ = π

3
+ θχ (2)

with θχ = (2/
√

7)(π/3)χ .
Finally, the coherent state formalism [17,19,82] of the IBM

is employed to extract the following expression for the en-
ergy surface, E (β, γ ), corresponding to the Hamiltonian of
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Eq. (1) [83]:

E (β, γ ) = cNBβ2

1 + β2

[
(1 − ζ ) − (χ2 + 1)

ζ

4NB

]

− 5cζ

4(1 + β2)
− cζ (NB − 1)

4(1 + β2)2

×
[

4β2 − 4

√
2

7
χβ3 cos 3γ + 2

7
χ2β4

]
. (3)

Equation (3) relates the structural parameters (χ, ζ ) of the
ECQF Hamiltonian with the (β, γ ) classical coordinates
linked to the Bohr geometrical variables [10,12,13]. More
specifically, ζ is related to the the axial quadrupole deforma-
tion parameter, β, while χ is associated with the triaxiality
parameter, γ , which regulates the degree of triaxial deforma-
tion of a nucleus.

It should be noted that the deformation parameter of the
boson system is not identical to that of the geometrical model,
since the former is derived by taking into account only the
valence bosons, in contrast to the latter, for which the entirety
of the shell-model space is considered [18]. Thus, the IBM
deformation parameter, β is always larger than the corre-
sponding fermionic one, βF , and, to a good approximation,
one can assume β ∝ βF [18]. One can then go on to write

β = CββF (4)

with Cβ (> 1) being the proportionality coefficient for the β

deformation [26,51].
Regarding the triaxiality parameter of the bosonic PEC, as

a first approach we assume axial deformations, and equate

γF = γ = 0◦. (5)

By imposing the conditions (5) and (4) in Eq. (3), we obtain
the boson potential energy curves for each of the studied
isotopes, as functions of the axial quadrupole deformation, β,
with parameters χ, ζ , c, and Cβ , namely,

E (β, γ = 0) → E (β ) ≡ E (βF ;Cβ, χ, ζ , c, NB). (6)

The procedure followed for the mapping of the IBM PECs to
the EDF calculated ones, and the subsequent determination
of the optimal set of IBM-1 parameters for each isotope, is
outlined below.

The intervals χ = [−√
7/2, 0] and ζ = [0, 1] are divided

in steps, with fixed step-sizes dχ and dζ , and the same is
done for Cβ , for which the selected interval is [1,10]. The
choice of the lower limit for Cβ has already been justified
by the discussion in the preceding paragraphs, while for the
upper limit of this range, a sufficiently large value has been
used, such that the Cbest

β optimal value is enclosed in the
defined interval. The choice of Cmax

β = 10 seems to be suf-
ficient, based on our results, as well as the results of similar
studies on 166−180Hf [51] and 182–194Hf [49], where an IBM-2
Hamiltonian was mapped to Hartree-Fock-Bogoliubov (HFB)
EDFs for calculations.

For each set of (χ i, ζ i,Ci
β ), an IBM PEC is generated

through Eqs. (3) and (6), and compared to the HF PEC.
The set of optimal (χ, ζ ,Cβ ) parameters are chosen such
that the best reproduction of the overall shape and curvature of

the HF PEC by the IBM PEC, up to a range of a few MeV from
the absolute minimum of the microscopic PEC is achieved
(Figs. 1 and 2).

The resulting χ and ζ values, along with the valence boson
number, NB, are then used as inputs for the diagonalization of
the IBM-1 ECQF Hamiltonian of Eq. (1), carried out with the
IBAR code by Casperson [29]. The scale, c, entering Eq. (1)
to obtain quantitative results for the calculated energy levels,
is chosen so as to reproduce the experimental E (2+

1 ) for each
isotope.

The assumption of “pure” axial deformations (γ = 0◦) is
enough to sufficiently reproduce the first few low-lying energy
levels of the gsb of the studied nuclei (up to the 8+

1 level,
in most cases). However, the following discrepancies still
persist:

(i) The R4/2 ≡ E (4+
1 )/E (2+

1 ) ratios (see Table I and
Figs. 3 and 4) are generally underestimated, compared
to the experimental ones.

(ii) The calculated gsb energy levels begin to diverge
from the experimental ones, with increasing values of
spin (Figs. 5(a) and 5(e)).

(iii) The band spacings of the members of the β band are
not accurately reproduced (Figs. 5(c) and 5(g)).

(iv) The energy values for the γ band members are
systematically underpredicted, while there is a
pronounced odd-even staggering [i.e., 2+

γ , (3+
γ , 4+

γ ),
(5+

γ , 6+
γ ),...] within the γ bands (Figs. 6(a) and 6(b)).

The resulting band levels for 162–184Hf and 168–186W are
shown in Figs. 5(a), 5(c), 5(e), 5(g), and 6(a)–6(d) (see also
Fig. 7(a) for an indicative level scheme). It is evident that
this initial approach cannot provide a sufficiently accurate
simultaneous description of the ground, β, and γ bands in the
investigated members of the Hf and W isotopic chains.

Taking a closer look at the empirical values for the tri-
axiality parameter, γ , spanning the entire rare-earth region
of the nuclear chart, it is observed that even for the most
axially-symmetric nuclei, low, yet nonzero values of γ ≈ 8◦
appear (this is discussed in [18,30,65,66,84], see also Fig. 5 of
Ref. [46]). Thus, the incorporation of a degree of triaxiality,
and the impact on the various bands follows as the next step
in our calculations.

In the framework of the IBM-1, triaxiality can be achieved
through the inclusion of higher order terms, such as three-
and four-body terms of the form (d† × d† × d†) · (d̃ × d̃ ×
d̃ ) [38,39], (Q̂ × Q̂ × Q̂), (L̂ × Q̂ × L̂) and (L̂ × Q̂) · (L̂ ×
Q̂) [85,86]. An alternate path to triaxiality was undertaken in
recent years, through the implementation of group-theoretical
methods, utilizing SU(3) irreps (see, e.g., [85–89], and refer-
ences therein).

For our calculations, we make use of the proxy-SU(3)
highest-weight (h.w.) irreps [46,90], to derive a value for the
triaxiality parameter [60,61]:

γs = arctan

( √
3(μ + 1)

2λ + μ + 3

)
. (7)

We then go on to substitute the above expression, along
with Eq. (4), into Eq. (3), obtaining the following IBM-1
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FIG. 1. SV-bas EDF potential energy curves (black) vs the corresponding IBM-1 ones (red), for 162–184Hf. The IBM-1 PECs resulted from
the mapping process outlined in Sec. II, with the incorporation of proxy-SU(3) irreps.
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FIG. 2. Same as in Fig. 1, for 168–186W.

PECs:

E (β, γ = γs) → E (β ) ≡ E (βF ;Cβ, χ, ζ , c, NB). (8)

The same procedure as in the case of γ = 0◦ is then under-
taken for the determination of the new values of (χ, ζ ,Cβ ),

for each of the studied Hf and W isotopes. The parameters are
tabulated in Table II (see also Fig. 7(b) for an indicative level
scheme).

In Fig. 2 of the paper [91] the proxy-SU(3) predictions for
the deformation variable γ of the Hf and W isotopes under
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TABLE I. The parameters of the IBM-1 Hamiltonian of Eq. (1), derived from the mapping process described in Sec. II, for the case of
γ = 0◦. The NB, χ, ζ , c parameters were used as IBAR code inputs for the calculation of energy levels for the ground, β, and γ bands in the
studied Hf and W isotopes. Tabulated are also the effective charges, eB, proportionality coefficients for β deformation, Cβ , and the experimental
(exp.) and calculated (th.) R4/2 energy ratios.

Isotope NB χ ζ c [MeV] eB [efm2] Cβ R4/2 (exp.) R4/2 (th.)

162Hf 9 −0.185 0.770 2.080 14.7 3.070 2.56 2.58
164Hf 10 −0.344 0.820 2.405 16.0 3.070 2.79 2.95
166Hf 11 −0.370 0.790 1.956 16.9 2.620 2.97 2.97
168Hf 12 −0.357 0.780 1.652 17.0 2.440 3.11 3.00
170Hf 13 −0.357 0.760 1.503 16.6 2.260 3.19 3.00
172Hf 14 −0.357 0.750 1.473 16.2 2.170 3.25 3.02
174Hf 15 −0.370 0.760 1.572 15.2 2.260 3.27 3.11
176Hf 16 −0.370 0.770 1.723 14.3 2.350 3.28 3.18
178Hf 15 −0.384 0.790 1.790 14.7 2.530 3.29 3.19
180Hf 14 −0.384 0.810 1.723 14.7 2.710 3.31 3.19
182Hf 13 −0.397 0.830 1.733 14.6 2.980 3.29 3.18
184Hf 12 −0.410 0.830 1.725 15.2 3.160 3.26 3.17
168W 10 −0.304 0.770 1.870 17.7 2.710 2.82 2.77
170W 11 −0.291 0.730 1.423 18.0 2.260 2.95 2.71
172W 12 −0.278 0.700 1.084 18.1 1.990 3.06 2.65
174W 13 −0.344 0.760 1.549 17.0 2.350 3.15 2.98
176W 14 −0.370 0.790 1.871 15.8 2.530 3.22 3.13
178W 15 −0.344 0.750 1.713 15.1 2.350 3.24 3.05
180W 14 −0.344 0.780 1.689 15.1 2.620 3.26 3.08
182W 13 −0.331 0.780 1.448 15.3 2.710 3.29 3.01
184W 12 −0.331 0.800 1.529 15.4 2.980 3.27 3.01
186W 11 −0.344 0.840 1.685 15.3 3.520 3.23 3.05

study have been compared to the Gogny D1S predictions of
Ref. [21], as well as to empirical values, with good agreement
seen. This fact adds reliability to the proxy-SU(3) predictions,
making them appropriate for use in the present work.

The inclusion of an intrinsic γ deformation, in the form
of γs, resulting from the use of proxy-SU(3) h.w. irreps has
minimal impact on the curvature and overall shape of the

FIG. 3. Experimental (blue diamonds) vs calculated R4/2 ratios
for 162–184Hf. Results for the case of “pure” axial deformations (γ =
0◦) are shown in empty black triangles, while the predictions made
with the use of proxy-SU(3) irreps are plotted in black color with
solid symbols (see Sec. II for details on the calculations).

calculated IBM-1 PECs, which are (almost) indistinguishable
to the ones obtained in the γ = 0◦ case, with the use of Eq. (6).
This is also reflected in the Cβ proportionality coefficients
tabulated in Tables I and II, which are (nearly) identical in
both cases. Thus, only the IBM-1 PECs obtained from Eq. (8)
are plotted in Figs. 1(a)–1(l) and 2(a)–2(j), together with the
SV-bas EDF PECs, shown for comparison.

As it can be seen from Figs. 3 and 4, the inclusion of
an intrinsic γ deformation, through the use of proxy-SU(3)

FIG. 4. Same as in Fig. 4, for 168–186W (experimental values
shown in blue diamonds, theoretical ones shown in red triangles).
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FIG. 5. Experimental (solid lines and symbols) vs theoretical (dashed lines with empty symbols) g.s. and β-band energies for the examined
Hf and W isotopes. Calculations with γ = 0◦ are shown in the left column [(a), (c), (e), (g)], while calculations performed with γ = γs and the
use of the αβ , αγ mass coefficients are shown on the right [(b), (d), (f), (h)].

014313-8



MEAN-FIELD-DERIVED IBM-1 HAMILTONIAN WITH … PHYSICAL REVIEW C 110, 014313 (2024)

FIG. 6. Similar to Fig. 5, but for the γ bands. Theoretical calculations and experimental data are split into separate panels, to improve
readability.

h.w. irreps leads to a significant improvement in the predicted
R4/2 ratios for the studied isotopes. Additionally, there is a
significantly improved agreement for the higher-spin levels
of the gsb, which can be attributed to the contribution to the
corresponding moment of inertia via the second order Casimir
operator of SU(3) [52–54,92],

Ĉ2[SU(3)] = 2Q̂ · Q̂ + 3
4 L̂2, (9)

entering implicitly in the calculations via the (λ,μ) irreps
used to derive γs through Eq. (7). Furthermore, the level spac-
ings for the β bands are much improved, while there is also a
vast improvement in the predicted behavior for the staggering
inside the γ bands.

For the final step in our calculations, we perform a rescal-
ing of the predicted energy levels for the β and γ bands to
the respective experimental band heads, where available (see
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TABLE II. The parameters of the IBM-1 Hamiltonian of Eq. (1), derived from the mapping process described in Sec. II, for the case of
γs. The NB, χ, ζ , c parameters were used as IBAR code inputs for the calculation of energy levels for the ground, β, and γ bands in the studied
Hf and W isotopes. Tabulated are also the effective charges, eB, proportionality coefficients for β deformation, Cβ , the intrinsic γ deformation
parameter, γs, the experimental (exp.), and calculated (th.) R4/2 energy ratios.

Isotope NB χ ζ c [MeV] eB [efm2] Cβ γs R4/2 (exp.) R4/2 (th.)

162Hf 9 −0.265 0.790 2.370 14.6 3.340 13.923 2.56 2.71
164Hf 10 −0.291 0.740 1.759 16.6 3.070 12.834 2.79 2.69
166Hf 11 −0.397 0.790 2.015 16.8 2.620 8.308 2.97 3.02
168Hf 12 −0.463 0.780 1.841 16.5 2.440 13.407 3.11 3.13
170Hf 13 −0.503 0.770 1.672 15.9 2.350 14.840 3.19 3.18
172Hf 14 −0.463 0.760 1.638 15.6 2.260 12.949 3.25 3.17
174Hf 15 −0.397 0.760 1.616 15.1 2.260 7.735 3.27 3.14
176Hf 16 −0.529 0.760 1.893 13.7 2.350 14.840 3.28 3.26
178Hf 15 −0.661 0.780 2.066 13.6 2.530 18.793 3.29 3.29
180Hf 14 −0.728 0.790 1.998 13.4 2.710 19.423 3.31 3.30
182Hf 13 −0.609 0.820 1.925 13.9 2.980 16.558 3.29 3.28
184Hf 12 −0.463 0.830 1.796 15.0 3.160 9.339 3.26 3.20
168W 10 −0.384 0.770 2.048 17.5 2.710 12.834 2.82 2.89
170W 11 −0.503 0.750 1.945 17.0 2.440 18.048 2.95 3.04
172W 12 −0.542 0.720 1.600 16.8 2.170 19.423 3.06 3.05
174W 13 −0.556 0.740 1.785 16.2 2.260 17.418 3.15 3.16
176W 14 −0.450 0.770 1.899 15.6 2.440 11.860 3.22 3.17
178W 15 −0.635 0.740 2.122 14.0 2.350 19.423 3.24 3.26
180W 14 −0.979 0.740 2.230 12.8 2.530 23.606 3.26 3.31
182W 13 −1.111 0.750 2.094 12.4 2.800 24.523 3.29 3.32
184W 12 −0.767 0.780 1.994 13.8 2.980 21.772 3.27 3.29
186W 11 −0.489 0.830 1.871 14.8 3.520 14.496 3.23 3.19

Table III). This rescaling, which will be discussed in the next
section, does not affect the energy ratios or the staggering
within individual bands. However, it is necessary in order
to obtain quantitative results for the energy levels. The final
band levels are presented for the even-even 166–180Hf and
170,176–186W in Figs. 5(b), 5(d), 5(f), 5(h), and 6(e)–6(f) (see
also Fig. 7(c) for an indicative level scheme).

Level schemes, similar to those presented for 180Hf in
Fig. 7, are provided for all of the studied Hf and W isotopes
in Supplemental Material [93] of this paper.

III. RESULTS AND DISCUSSION

A. Parameter systematics

The parameter systematics tabulated in Tables I and II are
plotted in Fig. 8 for the Hf and W isotopes studied in this
work. The same notation is used for all of the panels of Fig. 8,
i.e., dot-dashed lines with empty symbols for the case of
γ = 0◦, solid lines with filled symbols for the case of γ = γs,
black color for Hf and red for W.

One can immediately notice the relation between the pro-
portionality coefficient, Cβ (Fig. 8(a)) and the ζ parameter
of the IBM-1 Hamiltonian of Eq. (1) (Fig. 8(b)), related to
axial quadrupole deformation. Both parameters follow the
same trend, exhibiting minima around the middle of the ma-
jor shell where the PEC shows the largest deformation. This
behavior is in agreement with the results of earlier works of
Nomura et al. on Xe and Ba isotopes [27], situated in the N =
50–82 major neutron shell, as well as 166–194Hf [49,51], for

the N = 82–126 shell. In the former, an IBM-2 Hamiltonian
was mapped to a microscopic PES, derived from Hartree-
Fock+BCS calculations employing SLy4 [94] and SkM* [95]
effective interactions, while for the latter, a microscopic PES
obtained from Hartree-Fock-Bogolyubov calculations with
Gogny D1S [96] and D1M [97] EDFs was used for mapping
to an IBM-2 Hamiltonian. The Cβ values of [49,51] are also
plotted in Fig. 8(a), for comparison (green dashed curves with
solid squares).

Despite the use of different IBM models (IBM-1 vs
IBM-2), pairing schemes (HF+BCS vs HFB), and effective
interactions (Skyrme type SV-bas vs Gogny D1M/D1S), there
is a very good qualitative agreement between the results
presented in this work, and the ones of [49,51], for the Hf
isotopes. The quantitative differences for the proportionality
coefficients, Cβ , can be explained by the use of different
effective interactions, leading to larger βF values for the
microscopic PECs/PESs (see e.g. Table VI of [51] for a
comparison between Gogny D1M and D1S energy density
functionals). Furthermore, depending on the employed EDF,
the maximum deformation is observed at either N = 100 or
102, 4 or 2 neutrons away from the N = 104 midshell, re-
spectively (see also discussion and Fig. 3(a) of [98] for a
comparison of quadrupole deformation parameters between
various nuclear models). The calculated βmin

F values are plot-
ted as functions of N , together with the experimental data [99],
in Figs. 8(c) and 8(d).

It can be seen from Figs. 8(a) and 8(b) that the inclusion
of an intrinsic deformation, γs, resulting from the use of

014313-10



MEAN-FIELD-DERIVED IBM-1 HAMILTONIAN WITH … PHYSICAL REVIEW C 110, 014313 (2024)

FIG. 7. Experimental (black) vs calculated (red) g.s., β- and γ -
band levels of 180Hf, for the case of γ = 0◦ (a) and γ = γs (b). Levels
calculated for γ = γs, with the use of mass coefficients, are plotted in
dark cyan color and compared with the experimental ones (in black)
in (c) (see Sec. II for details).

proxy-SU(3) h.w. irreps, has only a minor quantitative effect
on Cβ , and only in some of the considered Hf and W isotopes.

However, this is not the case for γs and χ , the IBM-1
Hamiltonian parameter associated with the degree of triaxi-
ality in the nucleus. As it can be seen from Figs. 8(e) and 8(f),
the inclusion of γs leads to a drastically different picture
for χ , compared to the γ = 0◦ case. Again, the trend of γs

translates well into χ , with larger values of γs leading to
larger deformations. These values are more realistic, since
they get closer to the SU(3) limit of χ = −√

7/2 = −1.323,

TABLE III. Values for the quadrupole deformation parameter at
the energy minimum of the HF PECs, denoted as βmin

F , for each of
the studied Hf and W isotopes. The mass coefficients for the β (αβ )
and γ (αγ ) bands are also tabulated.

Isotope βmin
F αβ αγ

162Hf 0.208 – –
164Hf 0.253 – –
166Hf 0.287 0.803 0.821
168Hf 0.307 0.750 0.893
170Hf 0.317 0.756 1.031
172Hf 0.327 0.799 1.261
174Hf 0.328 0.813 1.616
176Hf 0.328 0.844 1.231
178Hf 0.318 0.716 0.818
180Hf 0.298 0.650 0.795
182Hf 0.278 – –
184Hf 0.267 – –
168W 0.262 – –
170W 0.280 0.578a 0.883
172W 0.296 – –
174W 0.310 – –
176W 0.313 0.659 1.058
178W 0.309 0.652 0.819
180W 0.291 0.740 0.553
182W 0.273 0.605 0.576
184W 0.255 0.609 0.585
186W 0.236 0.619 0.673

aCalculated by replacing 0+
β with 2+

β in Eq. (12), due to the absence
of an experimental value for 0+

β in [100].

as is typically the case for well-deformed nuclei. Furthermore,
the local minima of γs for N = 102, 112, which correspond
to proxy-SU(3) neutron irreps with μ = 0 [46], are translated
into local maxima for χ , in qualitative agreement.

B. Energy spectra

We now proceed to a more thorough examination of the
calculated level schemes for the Hf and W isotopes, building
upon the first observations made at Sec. II.

Regarding the gsb levels of the studied isotopes, the calcu-
lations performed with γ = 0◦ can sufficiently reproduce the
energies of the first few low-lying states (up to 8+

1 ), with diver-
gences from experimental data making their appearance for
higher spins. These divergences have been associated with the
moment of inertia, and for well-deformed rotational nuclei,
they have been remedied through the inclusion of an addi-
tional (L̂ · L̂) term to the employed IBM Hamiltonian, which
provided the experimentally observed L(L + 1) level energy
dependence [28]. In our calculations, this contribution to the
moment of inertia is taken into account implicitly, through the
use of h.w. proxy-SU(3) irreps, thus overcoming the need to
add extra terms to the IBM-1 ECQF Hamiltonian of Eq. (1).

On the subject of the first K = 0+ excited bands, which
are associated with the β bands in this mass region, these
are formed by the calculated 0+

2 , 2+
3 , 4+

3 , 6+
3 , and 8+

3 states,
both in the γ = 0◦ and in the γ = γs cases. However, their
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FIG. 8. Systematics for the IBM parameters as functions of the neutron number, N . Experimental quadrupole deformation parameters, β2,
taken from [99].
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structure differs significantly between the two cases, with a
behavior assimilating a �L = 2 staggering presenting itself
for γ = 0◦. Such a behavior has been recently observed also
in 154Gd, in the framework of the sdg-IBM-1 (see Fig. 3
of [101]), and appears to arise from the assumption of “pure”
axial deformations (i.e., axial symmetry at a mean-field level,
without any intrinsic triaxial deformation). The inclusion of
the intrinsic deformation, γs, stemming from the proxy-SU(3)
h.w. irreps, is enough to remedy this picture, leading to a
good qualitative agreement with the experimental data, while
preserving the axial symmetry of the IBM potential energy
surface, which is dictated by the cos 3γ term in Eq. (3).

The effect of the proxy-SU(3) irreps is even more impactful
on the γ bands, which are formed by the 2+

2 , 3+
1 , 4+

2 , 5+
1 ,...,

9+
1 excited states. These bands exhibit a pronounced odd-

even staggering, when only axial deformations are assumed
(Figs. 6(a), 6(b), and 7(a)). Such a behavior has been observed
in the past, in calculations using the mapping method for
190Os, in the framework of sd-IBM-2 [102]. The inclusion
of a g boson (L = 4) does not seem to resolve this stagger-
ing, which also appeared in 154Gd, in the framework of the
sdg-IBM-1 [101]. The path followed in [102] to remedy this
behavior for the case of 190Os involved the inclusion of a
three-body term in the IBM-2 Hamiltonian, of the form

H3B =
∑
ρ �=ρ ′

θρ[d†
ρd†

ρd†
ρ ′ ](3) · [d̃ρ ′ d̃ρ d̃ρ](3), ρ = π, ν. (10)

The above term is associated with a cos2 3γ term, capable
of producing triaxial minima in the IBM potential energy
surface.

In this work, the introduction of the intrinsic triaxial de-
formation, γs, resulting from the proxy-SU(3) h.w. irreps is
sufficient to achieve a qualitative agreement with the ex-
perimental staggering for the γ bands (Fig. 7(b), see also
Supplemental Material [93]), thus avoiding the need for ad-
ditional terms in the IBM Hamiltonian, and the associated
computational complexity arising from the addition of extra
parameters.

A final step towards obtaining quantitative results for the
energy levels of the β and γ bands in the studied isotopes is
undertaken with the inclusion of different mass coefficients
for these bands, determined via a rescaling with respect to the
experimental band heads, i.e.,

Eβ(γ )(J ) → Ẽβ(γ )(J ) = αβ(γ )Eβ (J ), (11)

where

αβ = E exp.(0+
β )/E (0+

β ), αγ = E exp.(2+
γ )/E (2+

γ ). (12)

The need for the introduction of different mass coefficients
in phenomenological models, associated with the varying mo-
ments of inertia for different modes of excitation (ground band
rotational motion, β and γ vibrations), has been outlined and
discussed in the works of Jolos et al. (see, e.g., [103–107], and
references therein).

However, it should be stressed that the inclusion of differ-
ent mass coefficients for the β and γ bands does not alter the
qualitative picture of the calculations, but rather affects the
calculated energy values on a quantitative level. The resulting

band levels are presented for 166–180Hf and 170,176–186W in
Figs. 5(b), 5(d), 5(f), 5(h) and Figs. 6(c)–6(f).

Overall, the inclusion of an intrinsic triaxial deformation,
resulting from the use of proxy-SU(3) irreps, leads to a signif-
icant improvement on the qualitative description of the g.s., β,
and γ bands, further improved on the quantitative level with
the introduction of different mass coefficients for these bands.
The unusually low γs predictions of proxy-SU(3), for N =
94, 102, 112 (neutron irreps with μ = 0) are also reflected in
the IBM-1 calculations. These small γs values, while sufficient
for the qualitative description of ground state and β bands, are
not able to completely remedy the γ -band staggering, leading
to a qualitative picture which is closer to the γ = 0◦ case.

C. E2 transitions

We move on to calculate the B(E2) values for some
low-lying gsb states. In the ECQF formalism, the relevant
transition operator is defined as [29]

T̂ (E2) = eBQ̂χ · Q̂χ , (13)

where Q̂χ is the quadrupole boson creation operator of Eq. (1),
and eB is the effective charge. One option for the determina-
tion of the effective charge is the use of a fixed value across
the isotopic chain studied, chosen such that it reproduces the
experimental B(E2; 2+

1 → 0+
1 ) for a specific isotope. How-

ever, as shown in previous IBM fitting calculations in the
W, Os [108] and Hf [51] isotopic chains, the assumption
of a constant value for eB leads to a maximization of the
B(E2; J → J − 2) values at the midshell N = 104 (176Hf,
178W), in contrast with the experimentally observed maxima
at N = 98 for W and N = 100 for Hf [99].

An alternative for the derivation of the effective charges
is the assumption of a mass dependence, with two possible
options; the first one is the choice of eB individually for each
nucleus, fitted to the corresponding experimental B(E2; 2+

1 →
0+

1 ) values. This is a commonly used approach amongst IBM
calculations (see, e.g., [80,81,83,109–111]).

The second one is the choice of eB individually for each
nucleus, such that the intrinsic quadrupole deformation pa-
rameter, βt (2+

1 → 0+
1 ) of the EDF-IBM model equals the

βmin
F minimum of the mean-field PEC [51]. More specifi-

cally, in the framework of the nuclear collective model, the
intrinsic quadrupole deformation parameter, βt (J → J ′) is re-
lated to the transition quadrupole moment, Qt (J → J ′), and
the associated B(E2; J → J ′) matrix element, through the
relations [12]

Qt (J → J ′) =
√

16π

5

B(E2; J → J ′)
(J200|J ′0)2

(14)

and

βt (J → J ′) =
√

5π

3ZR2
Qt (J → J ′), (15)

where J and J ′ the spins of the initial and final states,
(J200|J ′0) the relevant Clebsch-Gordan coefficient, Z the
atomic number and R the nuclear radius. By equating
βt (2+

1 → 0+
1 ) = βmin

F , one obtains the effective charge, eB, for
each isotope under investigation.
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FIG. 9. Experimental vs calculated B(E2; J → J − 2) values for the Hf and W isotopes studied in this work. Calculations for γ = 0◦ are
shown as dot-dashed lines with open symbols, while solid lines and symbols, of the same color, correspond to calculations for the case of
γ = γs. Literature data were taken from [99,100,112] for Hf, and [99,100,111] for W.

Since the HF+BCS calculations with the SV-bas EDF give
a satisfactory reproduction of the systematics of the β2 values,
and, by extension, the B(E2; 2+

1 → 0+
1 ) for the Hf and W iso-

topic chains, the latter approach is adopted for the derivation
of eB. This choice comes with the advantage of avoiding the
addition of extra fitting inputs, albeit at the cost of some small
quantitative deviations from the experimental B(E2) values.

For each isotopic chain, two separate sets of eB are cal-
culated, one for the case of γ = 0◦ and one for γ = γs. The
resulting B(E2) values are plotted, together with the exper-
imental data existing in the literature [99,100,111,112], in
Fig. 9.

A reasonable agreement with the experimental values, on
both qualitative and quantitative levels is observed for the
B(E2; 2+

1 → 0+
1 ) and B(E2; 4+

1 → 2+
1 ) transition strengths.

This seems to hold true also for B(E2; 6+
1 → 4+

1 ) and

B(E2; 8+
1 → 6+

1 ), however, the lack of experimental data, and
the large uncertainties accompanying the existing ones, pre-
vent a clear comparison between trends for these quantities.

The maximal B(E2) values are obtained for N = 102, in-
stead of N = 100 for Hf and N = 98 for W, which can be
attributed to the particular choice of EDF (see also earlier
discussion in Sec. III A). This displacement of the maxima
with respect to N = 104 indicates a saturation of collectiv-
ity on the neutron-deficient side, as one moves towards the
neutron midshell in the examined isotopic chains. The pre-
midshell saturation of the B(E2) transition strengths, which
gets more pronounced with increasing proton numbers, was
partially attributed in [113] to the influence of a hexadecapole
deformation, β4, entering the expression for the transitional
quadrupole moment, Qt . In the sd-IBM framework, such an
effect, caused by the renormalization of g bosons, could be
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incorporated to an extent via an expansion of the expression
for the quadrupole operator of Eq. (1), made to include higher-
order (two-body) terms [51,113]. A more extensive study on
the influence of hexadecapole deformations on B(E2; 2+

1 →
0+

1 ) was undertaken for the even-even nuclei of the Er-Yb-Hf-
W mass region in [112], however, it could not offer a complete
explanation of the early B(E2) maxima.

The B(E2) systematics calculated in this work are consis-
tent with earlier findings of Ref. [51,112] on 166–180Hf and
Ref. [111,112] on 172–182W, while at the same time expanding
the area of study towards the more neutron deficient side of
these isotopic chains.

It should be noted that the inclusion of an intrinsic triaxial
deformation, γs, generated through the proxy-SU(3) irreps,
has minimal influence on the B(E2) values for the gsb transi-
tions examined. More specifically, it leads to a lowering of the
B(E2) predictions, which gets slightly more pronounced for
higher-spin states (Fig. 9). Overall, the B(E2) strengths appear
to exhibit similar sensitivity to the inclusion of γs compared
to Cβ , which is not unexpected, given their connection to the
quadrupole deformation parameters [see also Eqs. (14) and
(15)].

IV. SUMMARY AND OUTLOOK

In view of recent findings, which indicate the presence of
some degree of triaxiality all over the nuclear chart [35–37],
an effort is made to include triaxiality in the framework of
the standard IBM-1, in which only one- and two-body terms
are taken into account, and no distinction between protons
and neutrons is made. The aim of this effort is to provide an
easy tool (the existing IBM code [29]) for calculating spectra
and B(E2) transition rates for many medium-mass and heavy
nuclei.

Along the path taken, potential energy curves are calcu-
lated using a self-consistent mean-field approach employing a
Skyrme energy density functional, namely the axial Hartree-
Fock+BCS code SKYAX [48]. The PECs derived by IBM-1
are then fitted to the microscopic PECs, in order to have the
IBM-1 parameters determined. Once this is done, spectra and
B(E2) transition rates for the nuclei under study are readily
obtained through the IBAR code [29].

Two sets of calculations have been performed, one assum-
ing axial symmetry, as it is the case in the original IBM-1
with only one- and two-body terms included in the Hamil-
tonian, and an additional one, in which an intrinsic triaxial
deformation has been added to the potential energy curve
corresponding to the classical limit of IBM-1. The intrinsic
triaxial deformation has not been treated as a free parameter;
on the contrary, it has been obtained from the proxy-SU(3)
approximation to the shell model [45–47] in a parameter-free

way, taking into account the Pauli principle and the short-
range nature of the nucleon-nucleon interaction.

Significantly improved results have been obtained in
the latter case, providing an a posteriori justification for
the inclusion of a microscopically derived intrinsic triaxial
deformation in the potential energy curve corresponding to the
classical limit of IBM-1.

In conclusion, the preponderance of triaxial shapes over
most of the nuclear chart is predicted in a parameter-free way
by the proxy-SU(3) approximation to the shell model, while
detailed predictions for spectra and B(E2) transition rates for
specific nuclei can be readily calculated through the IBM-1
code IBAR [29] after including an intrinsic triaxial deformation
to the potential energy curve of the IBM-1 in its classical limit,
and determining the IBM-1 parameters through fitting of the
resulting potential energy curve to the one derived through the
axial Hartree-Fock+BCS code SKYAX [48].

In the present work, the Hf and W series of isotopes have
been used as the test ground of the new approach. A region of
obvious interest for further calculations consists of the Os and
Pt series of isotopes, for which sufficient experimental data
exist for chains of isotopes ranging from moderate to strong
quadrupole deformation, extending beyond N = 116, where
a prolate to oblate shape/phase transition is expected to take
place [46,114–117].

It would be interesting to examine if and how much the
results of the present approach would be influenced by fitting
the IBM-1 PEC with intrinsic triaxial deformation to a micro-
scopic PEC derived by a self-consistent mean-field approach
including triaxiality [118,119]. Recent calculations in the Ce
isotopes [120] have indicated that triaxiality appears only for
N < 82, but the validity of this result has to be checked at
higher Z .

Regarding the Hf and W isotopes studied in the present
work, triaxial mean-field calculations performed in the frame-
work of the HFB formalism with the Gogny D1S EDF [21]
result in axially symmetric PESs, with minima along the γ =
0◦ line of the β-γ plane. These calculations are available in the
AMEDEE database [121] (see column 5 in the table of [122]).
The γ deformation at the HFB energy minimum is 0◦ for all of
the examined Hf and W isotopes (with the exception of 180W,
for which γ = 1◦ � 0◦). This is consistent with the results of
similar calculations found in Refs. [49,51], which were carried
out on the β-γ plane with the HFB + Gogny D1S and D1M
EDFs, and the results of the present work.

Still, many of the constrained mean-field calculations per-
formed with triaxial quadrupole deformations give energy
surfaces that have a triaxial minimum or are considerably γ

soft. This might play a role as one moves on to examine more
axially asymmetric nuclei (e.g., Os and Pt), making for an
interesting future study subject.
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