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Emulating the generator coordinate method with extended eigenvector
continuation for the Lipkin-Meshkov-Glick model

Q. Y. Luo , X. Zhang, L. H. Chen, and J. M. Yao *

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People’s Republic of China

(Received 16 April 2024; accepted 14 June 2024; published 2 July 2024)

We present a benchmark study of the generator coordinate method (GCM) combined with eigenvector
continuation (EC) in two different schemes for the low-lying states of the Lipkin-Meshkov-Glick (LMG) model,
where the interaction strength is treated as a controlling parameter, simulating quantum many-body systems with
the phase transition from noncollective to collective states. We demonstrate that the ECkmax scheme accurately
reproduces the low-lying states of the LMG model. In this scheme, the EC basis consists of the wave functions
of low-lying states up to the kmax-th state of sampling Hamiltonians. Compared to EC1, which only includes the
wave functions of the kth state of sampling Hamiltonians for the kth state of a target Hamiltonian, the ECkmax

scheme exhibits significantly improved efficiency and accuracy. This study suggests the potential utilization of
the extended EC scheme as an efficient emulator for GCM calculations.
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I. INTRODUCTION

The generator coordinate method (GCM) [1,2] is an impor-
tant tool for modeling large-amplitude collective motions in
atomic nuclei, including collective excitations [3–7], dynam-
ics of clusters [8,9], and nuclear fissions [10–13]. Recently,
it has attracted increasing interest as it has been utilized to
extend ab initio methods based on nuclear chiral interactions
to study the low-lying states [14,15] and giant monopole reso-
nance [16,17] of medium-mass deformed nuclei, as well as to
determine the nuclear matrix elements (NMEs) of candidates
for neutrinoless double-beta (0νββ) decay [18,19]. The exact
wave functions of nuclear low-lying states can, in principle, be
well represented with the GCM ansatz if a sufficient number
of generator coordinates are chosen. However, both complex-
ity and computational time grow rapidly with the number of
generator coordinates. Because of this complexity, quantify-
ing the statistical uncertainty of GCM-based approaches for
nuclear low-lying states has been a longstanding challenge.
Therefore, there is considerable interest in finding an effi-
cient optimization method or an emulator for GCM-based
approaches.

Recently, statistical machine-learning techniques, com-
bined with the subspace-selection algorithm based on or-
thogonality conditions [20], were utilized to optimize GCM
calculations for nuclear low-lying states and NMEs of 0νββ

based on various nuclear Hamiltonians or energy density func-
tionals (EDFs) [21]. However, extending this optimization
method to quantify uncertainties arising from the parameters
of Hamiltonians or EDFs remains challenging, as it neces-
sitates a significant number of repetitive GCM calculations
with different parameter samplings. One potential solution to
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address this challenge is to develop an efficient emulator for
GCM calculations.

In recent years, the eigenvector continuation (EC) method
[22], a special variant of reduced basis methods [23,24], has
emerged as a widely implemented technique for emulating
few- and many-body calculations. The basic idea of the EC
method is representing the eigenvector of a target Hamiltonian
within a low-dimensional manifold formed by the eigenvec-
tors (also known as training vectors) of a set of sampling
Hamiltonians. The smoother the manifold, the fewer train-
ing vectors are needed. The efficiency of the EC method in
conjunction with other many-body methods has been demon-
strated in various toy models [25–28] and in the application to
nuclear structure and scattering processes [29–35]. For further
insights into the EC method, readers are encouraged to refer
to recent reviews [36,37].

It is worth noting that the majority of applications of the EC
method in nuclear structure are focused on the ground states
of nuclei, whose wave functions are typically constructed as
a linear combination of the ground-state wave functions of
sampling Hamiltonians. There are only a few applications
to excited states. Recently, the excited states of a harmonic
oscillator were studied using EC combined with many-body
perturbation theory (MBPT) [25], where the wave function of
the kth excited state of a target Hamiltonian is expanded in
terms of the wave functions of the kth states of the sampling
Hamiltonians determined by the MBPT. This scheme is called
EC1 hereafter. In contrast, in the EC plus interacting shell
model (ISM) [38], the wave functions of the lowest kmax states
of sampling Hamiltonians were included into the EC basis to
expand those of target Hamiltonians. We call this extended EC
scheme as ECkmax. In the ECkmax scheme, the EC basis form
a complete basis as kmax → ∞, irrespective of the number of
sampling Hamiltonians. However, in practical application, the
number of the lowest states kmax is truncated to a finite number
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FIG. 1. Illustration of the LMG model, where N (=�) identical
fermions are distributed across two levels, each with a degeneracy of
�.

that gives a rather convergent solution. It has been shown in
the ECkmax + ISM that the choice of kmax = 5 improves the
relative error of the five lowest states of four sd-shell nuclei by
a factor of two [38]. In this work, we examine the performance
of these two EC schemes in the GCM calculations for the
low-lying states of the Lipkin-Meshkov-Glick (LMG) model
[39–41], and compare these results against the exact solutions
of the diagonalization method. The LMG model is an exactly
solvable model which has been widely used for testing various
many-body approaches, including random-phase approxima-
tion (RPA) [42] and GCM [43], as well as quantum computing
algorithms [44–47].

The article is structured as follows. In Sec. II, we present
the main formulas of the LMG model, including the exact
solution of the diagonalization method, Hartree-Fock (HF) ap-
proximation, GCM, and EC + GCM solutions. The results of
calculations with different many-body methods are compared
in Sec. III. Finally, a brief summary and outlook are provided
in Sec. IV.

II. THE LIPKIN-MESHKOV-GLICK MODEL

A. The Hamiltonian

The LMG model describes a system of N (= �) identical
fermions distributed in two �-fold degenerate levels labeled
with σ = ±, respectively. The energy gap between these two
levels is ε. The LMG model is schematically depicted in
Fig. 1. The Hamiltonian consists of a one-body term and a
monopole-monopole two-body interaction term [39]

Ĥ = ε

2

∑
σm

σ ĉ†
σmĉσm − V

2

∑
mm′σ

ĉ†
σmĉ†

σm′ ĉ−σm′ ĉ−σm

= εK̂0 − V

2
(K̂+K̂+ + K̂−K̂−), (1)

where V is the two-body interaction strength and

K̂0 = 1

2

�∑
m=1

(c†
+mc+m − c†

−mc−m), (2a)

K̂+ =
�∑

m=1

c†
+mc−m, (2b)

K̂− = (K̂+)†. (2c)

The operators c†
+m and c†

−m create particles in the upper and
lower levels, respectively. It can be proven that the operators
K̂0, K̂± satisfy the following commutation relations of angular
momentum operators:

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = 2K̂0. (3)

B. Exact solution with the diagonalization method

The wave function for the N particles in the LMG model
can be expanded in the configurations basis

|�k〉 =
∑
N+

f k
N+ |N, N+〉 , (4)

where the superscript k distinguishes different states, and
N+ represents the number of particle-hole (ph) excitations,
i.e., the number of particles excited from the lower energy
level (σ = −) to the upper energy level (σ = +) with its
value N+ ∈ [0, N]. If one introduces quasispin J = N/2 and
its projection M = N+ − N/2, then the basis |N, N+〉 can be
rewritten as

|N, N+〉 ≡ |N/2, N+ − N/2〉 = |J, M〉 (5)

with M = −J, · · · , J − 1, J . The dimension of the basis is
2J + 1 = N + 1. The operators K̂0, K̂± are then interpreted as
quasispin operators with the following relations [48]:

K̂0 |J, M〉 = M |J, M〉 , (6a)

K̂± |J, M〉 =
√

(J ∓ M )(J ± M + 1)|J, M ± 1〉, (6b)

from which one finds the expression for the matrix elements
of the Hamiltonian in the configuration basis [49],

〈N, N ′
+|Ĥ (χ )|N, N+〉 = εM − V

2
[C+(M )C+(M + 1)δN ′+,N++2

+ C−(M )C−(M − 1)δN ′+,N+−2] (7)

with C±(M ) = √
J (J + 1) − M(M ± 1). One can observe

that the matrix elements of the Hamiltonian are zero if N+ and
N ′

+ have opposite number parity. This implies that the space
formed by |N, N+〉 can be divided into two subspaces with
even and odd-number parity, respectively. The energy Ek and
expansion coefficient f k

N+ of the wave function (4) for the kth
state are obtained from the diagonalization of the Hamiltonian
matrix 〈N, N ′

+|Ĥ (χ )|N, N+〉. For a small value of �, it is not
difficult to derive analytical solutions [39]. For instance, there
are nine solutions for � = 8,1

E

ε
= 0,±

[
5 + 113

72
χ2 ± 4

(
1 + 38

72
χ2 + 550

74
χ4

) 1
2

] 1
2

,

±
[

10 + 118

72
χ2 ± 6

(
1 − 2

72
χ2 + 225

74
χ4

) 1
2

] 1
2

, (8)

where the interaction parameter χ is defined as follows:

χ = V

ε
(� − 1). (9)

Figure 2 illustrates the change in the probability of each
basis state |N, N+〉 in the exact ground state of the Hamilto-
nian Ĥ (χ ) as a function of the interaction parameter χ for
the � = 8 case. As pointed out in Ref. [43], in the limit of

1In the original paper [39], a factor of 6 is missing in the last four
solutions.

014309-2



EMULATING THE GENERATOR COORDINATE METHOD … PHYSICAL REVIEW C 110, 014309 (2024)

FIG. 2. Probability distribution | f k
N+|2 of the exact ground state

of the Hamiltonian Ĥ (χ ) with different interaction parameters χ ,
calculated in the basis |N, N+〉 as defined in Eq. (5), where N = 8.

χ → 0, the kth state will be the pure |N, N+ = k〉 compo-
nent, corresponding to kp-kh excitations. As the interaction
strength |χ | increases, whether attractive or repulsive, each
state becomes a complicated mixing of many ph excitations.
It is observed in Fig. 2 that the weights of components with
more particles excited from the lower level to the upper level
gradually increase. When χ increases beyond a critical value,
the system undergoes a phase transition from spherical (or
shell-model-like) to deformed (collective) states. Notably, the
probability distribution is symmetric with respect to χ = 0.

C. HF solutions

In the HF approach, the ground-state wave function is
approximated with a Slater determinant

|
(α, ϕ)〉 =
�∏

m=1

a†
0m(α, ϕ)|−〉, (10)

where the particle creation operator a†
0m(α, ϕ) in the HF basis

is related to the creation operator c†
±m in the single-particle

basis by [43](
a†

0m(α, ϕ)

a†
1m(α, ϕ)

)
=

(
cos α sin αe−iϕ

− sin αeiϕ cos α

)(
c†
−m

c†
+m

)
. (11)

The indices 0, 1 denote hole and particle states, respectively.
The two parameters (α, ϕ) are used to distinguish different
HF states. The expectation value of the Hamiltonian (1) with
respect to this HF state can be derived analytically [50],

EHF = −ε

2
�

(
cos 2α + 1

2
χ sin2 2α · cos 2ϕ

)
, (12)

which for � = 8 and χ = ±1.5 is plotted in Fig. 3. It
is observed that the energy minimum is located at α =
1
2 cos−1(1/|χ |) = 0.134π , with ϕ = 0,±π/2 for χ = 1.5
and −1.5, respectively. Figure 4 illustrates the normalized
energies EHF/ε of the HF states by the Hamiltonians with
different values of χ as a function of the parameter α,
where ϕ = 0. According to Eq. (12), the energy will be

FIG. 3. Contour plots of the normalized energies EHF/ε of HF
states in the (α, ϕ) plane, where the interaction strength is chosen as
χ = ±1.5, respectively.

independent of the value of χ for ϕ = π/4. In particular, the
energy curves with positive and negative values of χ are ex-
changed if the value of ϕ is switched from 0 to ±π/2. It means
that the value of ϕ also controls the two-body correlation of
the system. Notably, it is shown in Fig. 4 that the system
undergoes phase transitions as the interaction parameter χ

varies from −1.5 to 1.5. For |χ | < 1, the energy minimum
is located at the noncollective spherical shape with α = nπ .
When χ > 1, the energy minimum is found at the collective

FIG. 4. The energies EHF/ε of the HF states for the system with
� = 8 as a function of the parameter α, where ϕ = 0 and the inter-
action strength χ varies from −1.5 to +1.5.
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deformed shape with α = ± 1
2 cos−1(1/χ ) + nπ and ϕ = 0.

Conversely, for χ < −1, the energy minimum is located at
α = ± 1

2 cos−1(−1/χ ) + nπ and ϕ = ±π/2 + nπ , where n
is an integer. Since both the energies and wave functions
are periodic functions of the parameters α and ϕ, we need
only consider the HF states with these two parameters in the
interval [−π/2, π/2], subsequently.

D. GCM solutions

In the GCM, the wave function |�κ
GCM(χ )〉 is constructed

as a linear combination of HF states |
(α, ϕ)〉 with different
values of parameters (α, ϕ). For the sake of simplicity, we
introduce a symbol q to stand for (α, ϕ). In practical appli-
cations, the generator coordinates q are discretized. The wave
function |�κ〉 becomes

∣∣�κ
GCM(χ )

〉 =
Nq∑

q=1

f κ (χ ; q) |
(q)〉 , (13)

where Nq represents the number of HF states which are inde-
pendent of the interaction parameter χ . Since the operator a†

0m

defined in Eq. (11) mixes the operators of c†
+m and c†

−m, the HF
state |
(α, ϕ)〉 does not have a definite number of particles
in the upper or lower levels, even though the total particle
number is still conserved. Therefore, the nonorthogonal basis
formed by {|
(q)〉} cannot be divided into two subspaces
anymore. The weight function f κ (χ ; q) is determined by the
Hill-Wheeler-Griffin (HWG) equation

Nq∑
q′=1

〈
(q)|Ĥ (χ )|
(q′)〉 − Eκ〈
(q)|
(q′)〉) f κ (χ ; q′) = 0.

(14)

The norm kernel and Hamiltonian kernel of the GCM can be
derived analytically [43],

〈
(q)|
(q′)〉 = (Nqq′ )�, (15)

〈
(q)|Ĥ (χ )|
(q′)〉

= −ε�

2
{cos2(α) cos2(α′) − sin2(α) sin2(α′)e2i(ϕ−ϕ′ )

+ χ [sin2(α) cos2(α′)e2iϕ + sin2(α′) cos2(α)e−2iϕ′
]}

× (Nqq′ )�−2 (16)

with Nqq′ ≡ cos(α) cos(α′) + sin(α) sin(α′)ei(ϕ−ϕ′ ).

E. Emulating GCM solutions with the EC method

In the EC + GCM, the wave function |�k (χ�)〉 of the
kth state for a target Hamiltonian Ĥ (χ�) is represented in a
manifoldMEC of the many-body Hilbert space, formed by the
NEC EC basis functions

∣∣�k
EC(χ�)

〉 =
kmax�k∑
κ=1

Nt∑
t=1

gk (κ, χt )
∣∣�κ

GCM(χt )
〉
, (17)

where Nt represents the number of sampling (training) Hamil-
tonians Ĥ (χt ) used to produce the set of EC basis functions

|�κ
GCM(χt )〉 with κ = 1, 2, . . . , kmax. Thus, the dimension of

the EC basis is NEC = Nt kmax. This scheme is called ECkmax +
GCM(Nt ), for convenience. The weight gk (κ, χt ) for the kth
state of the target Hamiltonian Ĥ (χ�) is determined by the
following generalized eigenvalue equation:

kmax∑
κ ′=1

Nt∑
t ′=1

[Hκκ ′
tt ′ (χ�) − Ek

χ�Nκκ ′
tt ′

]
gk (κ ′, χt ′ ) = 0, (18)

where the norm and Hamiltonian kernels of the EC method
are defined as

Nκκ ′
tt ′ = 〈

�κ
GCM(χt )

∣∣�κ ′
GCM(χt ′ )

〉
, (19a)

Hκκ ′
tt ′ (χ�) = 〈

�κ
GCM(χt )

∣∣ Ĥ (χ�)
∣∣�κ ′

GCM(χt ′ )
〉
. (19b)

F. Time complexities of GCM and EC + GCM

Let us compare the time complexity of the GCM and
EC + GCM methods for the low-lying states of Nχ� target
Hamiltonians, where Nχ� could be on the order of 106 for
chiral Hamiltonians [29]. The time complexity of the Nχ�
repetitive GCM calculations is

TGCM = O
(
N2

q Nχ�
)
�T1, (20)

where �T1 represents the time cost for computing each
GCM kernel (16) between two different HF states. For the
EC + GCM(Nt ) with Nt sampling Hamiltonians, one needs
to explicitly evaluate all the EC kernels (19). Thus, the time
complexity is composed of two parts,

TEC+GCM = O
(
N2

q N2
t

)
�T1 + O

(
N2

ECNχ�
)
�T2. (21)

The first term represents the computation time for the GCM
kernels 〈
(q, χt )| Ĥ (i) |
(q′, χt ′ )〉, which is usually the most
time-consuming part. Here, Ĥ (i) is the ith interaction term in
the Hamiltonian which should be multiplied with the interac-
tion strength parameter χ (i),

Ĥ (χt ) =
∑

i

χ
(i)
t Ĥ (i). (22)

The second term in Eq. (21) represents the computation time
for evaluating the EC kernels (19) using precalculated GCM
kernels,

Hκκ ′
tt ′ (χ�) =

∑
i

χ
(i)
�

Nq∑
q=1

Nq∑
q′=1

f κ (χt ; q) f κ ′
(χt ′ ; q′)

× 〈
(q, χt )| Ĥ (i) |
(q′, χt ′ )〉 . (23)

The �T2 is the time cost for computing the above EC kernel
Hκκ ′

tt ′ (χ�), which only evolves the loops over the index i of
interaction terms, and the generator coordinates q and q′.

In the LMG model, since the HF states are independent
of the interaction parameter χ , the first term in Eq. (21)

simplifies to O(N2
q Nt )�T1, representing Nt times of compu-

tations of N2
q GCM overlaps. Moreover, the computation time

�T1 is negligible as one has an analytical expression for the
overlaps. Therefore, the advantage of using EC + GCM for
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FIG. 5. The convergence of the energies of states with the num-
ber of natural states for � = 30 particles in the LMG model with the
interaction strength parameter χ = −3. The first generator coordi-
nate α ranges from −π/2 to π/2, with 40 equally distributed mesh
points. The second generator coordinate ϕ is fixed at (a) 0, (b) ±π/2,
and (c) (0, ±π/2), respectively. The energies of exact solutions are
indicated with horizontal lines. The first four states are displayed in
blue, orange, green, and red color, respectively.

the LMG model is not obvious, if �T2 � �T1. However, in
many GCM studies based on EDFs or Hamiltonians defined in
the full single-particle space [6,18], the most time-consuming
part is the calculation of the GCM overlaps, i.e., �T1 
 �T2.

In this case, TEC+GCM � O(N2
q N2

t )�T1, and thus the ratio
TEC+GCM/TGCM = N2

t /Nχ� which decreases with the increase
of number (Nχ� � 106) of target Hamiltonians. As it will be
demonstrated later, the ratio can be further reduced in the
ECkmax scheme as the number Nt of sampling Hamiltonians
can be much smaller than that in the EC1 scheme.

III. RESULTS AND DISCUSSION

A. Results of GCM calculations

We first examine GCM calculations for the low-lying states
in the LMG model. Figure 5 displays the convergence behav-
iors of the energies of the low-lying states for � = 30 particles
in three types of GCM calculations against the number of
natural states, where the interaction strength parameter is cho-
sen as χ = −3. Since the GCM basis are nonorthonormal, a
proper choice of the number of natural states is necessary [50].
It is shown in Fig. 5(c) that selecting generator coordinates
q(α, ϕ) with three different values of ϕ(0,±π/2) produces
redundancy in the basis and thus generates spurious states.
We note that the norm kernelsNqq′ in Eq. (15) are always real
numbers when the values of ϕ are chosen as ϕ = ϕ0 + nπ ,
where n is an integer number, and ϕ0 can be an arbitrary angle.
In this case, the problem of spurious states can be avoided. In
addition, we find that if one only chooses ϕ = 0, one may miss
certain low-lying states, see Fig. 6. The results of HF calcu-
lation and two types of GCM calculations with the choices
of ϕ = 0 and ϕ = ±π/2 are compared with exact energies
for different Ĥ (χ ). It is seen that the choice of ϕ = ±π/2
not only yields exact energies for states but also results in
the fastest convergence rate, see Fig. 5(b). Therefore, in the
subsequent calculations, we choose ϕ = ±π/2. Moreover, it
is interesting to note from Fig. 6 that the HF energy is getting
closer to the ground-state energy with the increase of the
number of particles from � = 3 to � = 30.

FIG. 6. Comparison between the energies of low-lying states
obtained from exact solutions, two types of GCM calculations, and
HF solutions for (a) � = 3, (b) � = 8, and (c) � = 30 particles,
respectively.

B. Results of EC1 + GCM calculations

In this subsection, we examine the validity of the EC1 +
GCM calculation for the low-lying states of the LMG model
with � = 30 using different Hamiltonians. Figure 4 illustrates
that changing the value of χ can simulate the system un-
dergoing a phase transition from noncollective to collective
states. Let us first consider the Hamiltonians with χ < −1.
The EC basis consists of the wave functions of five sampling
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FIG. 7. Comparison between the energies of the first three
states of the LMG model for � = 30 particles obtained from
the exact solution and EC1 + GCM calculations. The results of
EC1 + GCM calculations using different numbers (the arrow in-
dicates the direction of increasing the training vectors from 1 to
5) of training Hamiltonians with the interaction parameter χ =
−1.1, −1.3, −1.5, −1.7, and −1.9 are provided for comparison. See
the main text for details.

Hamiltonians with χ = −1.1,−1.3,−1.5,−1.7, and −1.9,
respectively. The results of EC1 + GCM calculations for the
first three states are shown in Fig. 7. For comparison, we
increase the number of sampling Hamiltonians from one to
five. It is observed that increasing the number of sampling

TABLE I. The logarithm of the overlap log10 (〈�k
EC |�k′

EC〉 ) be-
tween the first four states of the LMG model for � = 30 particles
from the EC1+GCM calculations for the target Hamiltonian with
χ� = −3. See Fig. 7 for more details.

∣∣�1
EC

〉 ∣∣�2
EC

〉 ∣∣�3
EC

〉 ∣∣�4
EC

〉
〈
�1

EC

∣∣ 0 −11.3 −0.2 −12.0〈
�2

EC

∣∣ − 0 −12.0 −1.4〈
�3

EC

∣∣ − − 0 −13.9〈
�4

EC

∣∣ − − − 0

Hamiltonians does not always improve the agreement with
the exact energies, especially for the excited states. A similar
phenomenon is found for other values of χ . Particularly, we
find it challenging to reproduce the energies of the target
Hamiltonians with χ > 0 using the wave functions of sam-
pling Hamiltonians with χ < 0. We further examine the wave
functions of different low-lying states from the EC1 + GCM
calculations, which are found to be nonzero in some cases. Ta-

ble I presents the logarithm of the overlaps log10 (〈�k
EC |�k′

EC〉 )
between the first four states from the EC1 + GCM calcula-
tions for the target Hamiltonian with χ� = −3. It is shown
that the overlap between the kth and k′-th states is sizable
if both k and k′ are even or odd. Thus, one needs to ensure
the orthogonality of the wave functions of different low-lying
states for a given Hamiltonian in the EC method.

C. Results of ECkmax + GCM calculations

The orthogonality condition between the wave functions
of different low-lying states is automatically fulfilled in the
ECkmax scheme as all the states share the same set of EC basis.
Figure 8 presents the results of ECkmax + GCM calculations
for the same systems as those in Fig. 7. With the choice of
kmax = 20, the exact energies of the first three states by the
Hamiltonians with different values of χ are excellently repro-
duced in the ECkmax + GCM calculations, even in the case
with only one sampling Hamiltonian (Nt = 1). It is demon-
strated in Fig. 9 that with a sufficient number of kmax, the
low-lying states of the Hamiltonian with χ > 0 can be well
represented even using the wave functions of the Hamiltonians
Ĥ (χ ) with χ < 0.

Figure 10 illustrates the performance of the extreme case
in the ECkmax scheme, i.e., with kmax = 20 and only one
sampling Hamiltonian Ĥ (χt = 0). For comparison, the results
of calculations with the EC1 scheme are also plotted. It is
shown that the EC1 + GCM(1) totally fails to reproduce the
energies of states. In contrast, the EC20 + GCM(1) is able to
reproduce the low-energy spectra of different Hamiltonians
with χ ∈ [−4, 4]. According to Eq. (21), the time complexity

of EC + GCM with only Nt = 1 is simplified into O(N2
q )�T1.

In this case, the generalized eigenvalue problem in the EC
becomes the standard eigenvalue problem, where the norm
kernel in the EC is an identity matrix. It demonstrates the
super advantages of the ECkmax scheme in emulating GCM
calculations, compared to the EC1 that has been frequently
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FIG. 8. Same as Fig. 7, except that the EC1 + GCM is replaced
by the ECkmax + GCM, where kmax = 20.

employed in the literature. In particular, we note that the
ECkmax scheme is able to reproduce the low-lying states with
level crossings.

Figure 11 displays the weight distribution of each EC basis
in the first four states for three different target Hamiltonians
with χ� = 1, 2, and 3, respectively. The EC basis comprises
the first 20 GCM states of the Hamiltonian Ĥ (χt = 0). It is
evident that as the interaction strength increases, all the first
four states exhibit a broader distribution over the EC basis,
highlighting the importance of including the wave functions
of excited states of the sampling Hamiltonian.

FIG. 9. Same as Fig. 8, except that different values of kmax are
used in the ECkmax + GCM calculations.

Figure 12(a) displays the overlaps of the wave functions
of the first two states of the Hamiltonian Ĥ (χ2) with the first
state of the Hamiltonian Ĥ (χ1 = 1.9) as a function of χ2. The
overlaps of the wave functions of the third and fourth states of
the Hamiltonian Ĥ (χ2) with the third state of the Hamiltonian
Ĥ (χ1 = 2.2) are shown in Fig. 12(b). It is evident that there
are level crossings around χ = 1.99 and 2.30, respectively,
which explain the exchange of the predominant components
of the first two states of the target Hamiltonian with χ� = 2
in Fig. 11(b) from odd (even) to even (odd) number indexed
basis, as well as the exchange of the components of the
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FIG. 10. Comparison between the energies of the first four states
of the LMG model for � = 30 particles obtained from the ex-
act solution (red crossings), EC1 + GCM (blue dashed curves),
and ECkmax=20 + GCM (black solid) calculations for different target
Hamiltonians Ĥ (χ�). In both types of EC + GCM calculations, only
one sampling Hamiltonian (indicated with an open diamond) with
χt = 0 is used.

third and fourth states in Fig. 11(c). In summary, the ECkmax

scheme, even with only one sampling Hamiltonian, can repro-
duce the level crossings in the low-lying states of the LMG
model.

FIG. 11. The weight distribution of the first four states of the
target Hamiltonian Ĥ (χ�) with χ� = 1, 2, 3, respectively, over the
EC basis, which correspond to the first 20 states of the sampling
Hamiltonian Ĥ (χt = 0). See main text for details.

FIG. 12. (a) Overlaps of the wave functions of the first two states
of the target Hamiltonian Ĥ (χ2) with the first state of the Hamilto-
nian Ĥ (χ1 = 1.9), (b) and the overlaps of the wave functions of the
third and fourth states of the target Hamiltonian Ĥ (χ2) with the third
state of the Hamiltonian Ĥ (χ1 = 2.2), as a function of the parameter
χ2. All eigenvectors are expanded based on the states of the sampling
Hamiltonian Ĥ (χt = 0). See text for details.

IV. SUMMARY

In this study, we integrated the eigenvector continuation
(EC) method into the generator coordinate method (GCM)
to investigate the low-lying states of the Lipkin-Meshkov-
Glick (LMG) model. We compared the results obtained using
two different EC schemes. In contrast to the commonly used
EC1 scheme, which utilizes the wave functions of the kth
states from sampling Hamiltonians to expand the kth states of
the target Hamiltonian, the ECkmax scheme, incorporating the
wave functions of low-lying states up to the kmax-th (kmax > k)
state of sampling Hamiltonians into the EC basis, demon-
strates superior performance in terms of both efficiency and
accuracy in the GCM calculations, even for states of different
phases. Our findings showcase the remarkable capability of
ECkmax + GCM in accurately reproducing the low-lying states
of the LMG model with only a few sampling Hamiltonians. It
should be pointed out that this conclusion is obtained based
on the simple Lipkin model. It would be very interesting
to examine the ECkmax + GCM in more realistic cases. This
investigation underscores the promising application of the EC
method as an efficient emulator of GCM-based approaches for
nuclear low-lying states, which could be utilized to quantify
the statistical uncertainties of calculations for the observables
of interest in future studies.
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