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Global prediction of nuclear charge density distributions using a deep neural network
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A deep neural network (DNN) has been developed to generate the distributions of nuclear charge density,
utilizing the training data from the relativistic density functional theory and incorporating available experimental
charge radii of 1014 nuclei into the loss function. The DNN achieved a root-mean-square deviation of 0.0193 fm
for charge radii on its validation set. Furthermore, the DNN can improve the description in both the tail and
central regions of the charge density, enhancing agreement with experimental findings. The model’s predictive
capability has been further validated by its agreement with recent experimental data on charge radii. Finally, this
refined model is employed to predict the charge density distributions in a wider range of nuclide chart, and the
parameterized charge densities, charge radii, and higher-order moments of charge density distributions are given,
providing a robust reference for future experimental investigations.
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I. INTRODUCTION

Charge density distribution is a fundamental property of
atomic nuclei. It not only reflects the abundant nuclear struc-
ture information, such as shell structure, shape coexistence,
and shape transition but also is an important reference for val-
idating, developing, and perfecting nuclear structure models
[1–4]. The nuclear charge density can also constrain the key
parameters in the equation of state of nuclear matter and pro-
vide important inputs for nuclear astrophysics research, where
nuclear symmetry energy and its density dependence play a
significant role in understanding the astrophysical observa-
tions [5–7]. In atomic physics, the spectroscopic properties
of atoms affected by electron-nucleus hyperfine interactions
are sensitively dependent on the charge densities of nucleus,
so reliable nuclear charge densities are equally critical to
understand atomic structure and precise spectroscopic prop-
erties [8–10]. In addition, the accurate information of nuclear
charge density distribution lays a foundation for validating the
accuracy of quantum electrodynamics under extremely strong
electromagnetic field conditions [11–13].

High-energy electron elastic scattering is a primary exper-
imental technique for precisely measuring the charge density
distribution of nuclei [14–17]. At present, the experimental
distribution is limited to stable nuclei and long-lived unstable
nuclei [18]. There are two main methods for fitting experimen-
tal data to obtain charge density: model-dependent analysis
and model-independent analysis [18–20]. The former includes
the harmonic-oscillator model, the two-parameter Gaussian

*Contact author: jianli@jlu.edu.cn

model, and the two-parameter Fermi model, which fit fewer
parameters and are convenient to use. Because the specific
form of the charge density distribution is often unknown,
and there is a need to accurately fit experimental data of
electron elastic scattering over a large momentum transfer
range, model-independent analysis methods are frequently
used, such as the Fourier-Bessel (FB) series expansion and
sum of Gaussian method [21,22]. The parameters of these em-
pirical models depend on the structural properties of specific
nuclei and are usually derived from the experimental data of
each nucleus, which lacks the support of microscopic physical
mechanisms and is difficult to extrapolate to other nuclei,
especially unstable nuclei without experimental data. In view
of the demanding description and prediction of experimental
data of unstable nuclei and the developing trend of nuclear
theoretical models, it is necessary to use microscopic models
to study the charge densities of nuclei, develop methods suit-
able for a wider range of nuclei with more accurate prediction
capabilities, and study the microphysical mechanism.

The most widely used microscopic model to describe nu-
clear charge properties is density functional theory (DFT),
which includes both the nonrelativistic [23–25] and relativis-
tic [26–33] DFTs. DFT has become one of the standard
theoretical methods for studying nuclear structure [1], which
can achieve a unified, microscopic, and self-consistent de-
scription of almost all nuclei on the nuclide chart without
introducing any additional parameters. Nuclear relativistic
density functional theory is a relativistic quantum theory
based on the effective field theory and DFT to describe nuclear
many-body problems. In particular, relativistic DFT takes
into account the Lorentz covariance and the time and space
components of the corresponding nucleon four-dimensional
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Lorentz electromagnetic current correspond to the charge den-
sity and current, respectively, and can self-consistently and
microscopically describe the electromagnetic properties of
the atomic nuclei, including the charge density and radius,
originating from the electromagnetic density and current.
Relativistic DFT has received increasing attention in recent
years and has been successfully used to study the ground-
state and excited-state properties of stable and exotic nuclei
[27,28,30,33–43].

At present, the charge density of nuclei based on relativistic
DFT is poorly studied, with the main focus on the charge ra-
dius. Relativistic DFT not only gives a good global description
of charge radius but also has a strong ability to predict the
evolution of some isotopic chains [34,44–46]. However, the
accuracy of the description of charge radius by DFT needs
to be further improved compared with the methods that take
into account the Garvey-Kelson local relations [47], and the
obtained accuracy varies considerably with different nuclei.
Meanwhile, the accuracy of the resulting nuclear charge den-
sity distribution still faces challenges, which further limits the
application of its charge density.

Employing neural network techniques can further enhance
the accuracy of results from microscopic models based on
existing data. Neural networks have been validated as uni-
versal data approximators, with deep neural networks (DNN)
demonstrating exceptional data processing capabilities. As
early as the 1990s, machine learning and neural networks
began to be applied to the modeling of observational data
in nuclear physics and have been widely adopted across
various fields [48,49]. Summarizing these studies, it is con-
cluded that the application of machine learning techniques
in the field of nuclear physics requires not only meticulous
consideration of model construction but also the integration
of physical information into the networks [50–52]. This ap-
proach ensures that these models not only serve as excellent
data fitters but also generate accurate extrapolative data. In
the realm of nuclear charge distribution, machine learning
methods have also shown impressive capabilities. In studies of
charge radii, artificial neural networks [53,54], Bayesian neu-
ral networks [55–57], convolutional neural networks [58,59],
naive Bayesian probability classifier [60], and kernel ridge
regression [61,62] methods have all achieved considerable
accuracy. Moreover, existing research confirms the promising
application prospects of machine learning methods in density
distribution. Whether by directly learning density distribution
values [63,64], or by fitting empirical model parameters [65]
or density functionals [66] to derive density distributions, ma-
chine learning has demonstrated its ability. However, there are
challenges, including the lack of globally applicable charge
density models and a unified description of charge density and
charge radius.

In this paper, we construct a DNN model with four
hidden layers, which can build a complex mapping re-
lationship between inputs and outputs through multiple
combinations of simple nonlinear functions, and use this to
train the nuclear charge density distribution derived from the
relativistic continuum Hartree-Bogoliubov (RCHB) theory
[27,34,67,68], which is given in the form of FB coefficients.
Finally, the information of the experimental charge radii is

incorporated into the network to constrain the charge density,
which makes it possible to improve the accuracy of the final
results.

The basic formulas of FB expansion and DNN methods are
presented in Sec. II, the results are shown in Sec. III, and the
summary and perspectives are presented in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Fourier-Bessel analysis

The Fourier-Bessel series expansion was introduced by
Dreher et al. [21]. For practical reasons, the nuclear charge
density ρc(r) is assumed to be zero beyond a certain cut-
off radius R. The first N (= Rqmax/π ) coefficients aν (ν =
1, 2, . . . , N ) of this series expansion are determined directly
from the experimental data. The FB expansion of density
distribution with the spherical symmetry imposed reads

ρc(r) =
{∑N

ν=1 aν j0
(

νπr
R

)
for r � R,

0 for r > R,
(1)

where j0(x) = (sin x)/x denotes the spherical Bessel function
of order zero. The normalization gives

4π

∫ ∞

0
ρc(r)r2dr = 4π

N∑
ν=1

(−1)ν+1aνR3

(νπ )2
= Z, (2)

where Z is the proton number. The coefficient aν can be
directly determined by the charge form factor:

aν = q2
ν

2πR
Fc(qν ) with qν = νπ

R
. (3)

The charge form factor Fc(q) can be regarded as the represen-
tation of charge density distribution in momentum space, and
it is given by a FB transformation of charge density,

Fc(q) = 4π

Z

∫ ∞

0
ρc(r) j0(qr)r2dr. (4)

Combining Eq. (3) with Eq. (4), the FB coefficients can be
determined directly when the charge density is given. By
expanding ρc(r) into FB series with finite terms using Eq. (1),
one can calculate the nth moment Rn of the charge density
distribution as

Rn ≡ 〈
rn

c

〉 = 4π

Z

∫ R

0
ρc(r)r2rndr. (5)

In particular, Rc is used in this paper to represent the square
root of the second moment, i.e., the charge radius

Rc ≡
√〈

r2
c

〉
. (6)

To get the data set of nuclear charge density distribution,
systematic spherical calculations over the nuclide chart in
the framework of RCHB theory with PC-PK1 [39] is per-
formed. As one of the most successful relativistic energy
density functionals, PC-PK1, which is fitted to the binding en-
ergies, charge radii, and empirical pairing gaps of 60 selected
spherical nuclei, has been used successfully in describing not
only nuclear ground-state properties [69–71] but also various
excited-state properties [72–79]. In particular, PC-PK1 pro-
vides a good description for the isospin dependence of binding
energy along either the isotopic or isotonic chain, which
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TABLE I. The hyperparameter set of DNN.

Number of Activation
ithlayer Name Number of neurons functions

0 Input Layer 2
1 Dense Layer 20 Tanh
2 Dense Layer 100 Tanh
3 Dense Layer 100 Tanh
4 Dense Layer 20 Tanh
5 Output Layer 17

Other hyperparameters Values and properties
Normalization Factor 14.85
Batch Size 16
Objective (Target) Function Loss1, Loss2

Optimizer Adam
λ in Eq. (11) 0.7
Learning Rate lr = 5 × 10−3 for Loss1

lr = 5 × 10−4 for Loss2

makes it more reliable for describing exotic nuclei [39,71].
After taking into account the intrinsic nucleon contributions
and nucleon spin-orbit contribution, the relativistic nuclear
charge density ρc can be self-consistently constructed [80].

Using RCHB to calculate nuclear charge density distribu-
tions and calculating the corresponding FB coefficients from
Eqs. (1) and (2), the data set that can be learned by the
neural network will be obtained. Meanwhile, the experimental
charge radius is introduced into the loss function to embed
the experimental information, and the charge density is con-
strained to make it more consistent with the experimental data,
so as to obtain a more reliable global description of charge
density distributions. To do this, deep neural networks are
reliable and efficient.

B. Deep neural network approach

In the present study, we build a six-layer fully connected
neural network, which includes an input layer, an output layer,
and four hidden layers. Each hidden layer receives incoming
information and passes it to the next layer through an activa-
tion function [81]

a(l ) = fl (W (l )a(l−1) + b(l ) ), (7)

where the a(l ) denotes the output of the lth layer; the W (l ) and
b(l ) are weight matrix and bias vector from the (l − 1)th to
lth layer, respectively; fl is the activation function of the lth
layer. Let a(1) = x, through layers of iterations of Eq. (7), the
network can be represented as

y = φ(x;W , b), (8)

as the x and y represent the input and output. In this work, the
input features are proton number Z and neutron number N .

How to find the suitable weight and bias becomes the most
immediate problem, which can be expressed statistically as
maximum likelihood estimation (MLE) [82]

θMLE = arg max
θ

log P(y | x, θ), (9)

where θ = {W , b}. The back-propagation algorithm is adopted
to approximate θMLE, which has been shown to have

excellent capabilities in neural network methods [83]. The
method adjusts neural network with back propagation of error,
by which the weight of the link chain converges toward θMLE.
All hyperparameters of DNN used in this paper are displayed
in Table I.

The charge radii of about 1000 nuclei have been measured
[84,85]. Among them, 67 nuclei are given by FB analysis,
with a maximum of 17 coefficients [18]. Therefore, the num-
ber of output neurons of DNN is selected as 17, standing
for each of FB coefficients. In order to realize the return of
experimental charge radius information to charge density, the
training of the neural network is divided into two steps in this
work. First, the network learns the FB coefficients of charge
density distribution derived from RCHB, and the loss function
used is the mean-square error (MSE) function, which reads

Loss1(ytar, ypre ) = 1

Ns

Ns∑
i=1

(
ytar

i − ypre
i

)2
, (10)

where ytar and ypre represent the target value (the result of
RCHB) and the network output value, respectively. They are
all vectors of 17 FB coefficients. Ns is the batch-size hyper-
parameter of the network, which does not have a significant
impact during this study and is selected as 16. Through this
step, DNN learns the charge density information of RCHB.
The second step is to consider the experimental charge radii
and incorporate this information into the loss function on the
basis of the existing neural network that has been trained by
RCHB data. The expression of the loss function is given as

Loss2(ytar, ypre ) = (1 − λ)
1

Ns

Ns∑
i=1

(
ytar

i − ypre
i

)2

+ λ
1

Ns

Ns∑
i=1

(
Rtar

c,i − Rpre
c,i

)2
, (11)

where λ is the weight hyperparameter, and Rtar
c is the con-

straint, that is, the experimental charge radii. The DNN’s
charge radii Rpre

c can be obtained by combining Eqs. (1) and
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FIG. 1. Comparison of charge radii obtained by the deep neural network (DNN) and the relativistic continuum Hartree-Bogoliubov
(RCHB) theory on the nuclide chart. The blue (red) squares indicate that the charge radii obtained by DNN are closer to (further deviate
from) the experimental values compared with those by the RCHB theory. The mean-square error of charge radii by DNN is 0.0183 fm on the
training set and 0.0193 fm on the validation set, while that of the RCHB method is 0.0430 fm.

(5). The value of λ and the learning rates of the two steps
can be found in Table I. Through the above two steps of
training, the outputs of DNN are expected to be close to the
experimental charge density distribution.

The whole training process is completed under the PY-
TORCH framework. Each training step converges well within
10 000 epochs, which typically takes around an hour of
GPU time for training (performed on the NVIDIA GeForce
RTX 3070 Ti), while the predictions take just a few
milliseconds.

III. RESULTS AND DISCUSSION

To assess the impact of information of experimental charge
radii on DNN, a total of 1014 measured nuclei [84,85] are
used for the data set. The theoretical FB coefficients of these
nuclei are derived from the RCHB calculations. The data sets
are randomly split into the training and validation sets in an
8:2 ratio, and this data set split is fixed for the subsequent
training. For the training set, the DNN initially learns the
theoretical FB coefficients, and incorporates the experimental
charge radii into the loss function for the second step, as
mentioned in Sec. II.

The outputs of DNN are the FB coefficients, from which
the corresponding charge radius can be calculated using
Eqs. (5) and (1). Figure 1 presents the overall comparison of
the charge radii calculated by this method and those calculated

by RCHB on the nuclide chart, with the experimental values
as the benchmark. If the DNN’s result is closer to the experi-
mental charge radius than that of RCHB, it is represented by
a blue square; otherwise, it is represented in red. In Fig. 1, it
is evident that the DNN shows significant improvements over
RCHB in the light-to-medium mass region, especially in the
area of 20 < Z < 65, where only a few nuclei are slightly
worse than RCHB’s calculations, mostly distributed at the
ends of the isotopic chains.

It is worth discussing that DNN cannot accurately represent
the evolutionary trend of the charge radius of Ca isotopes:
Ca isotopes exhibit a strong kink structure at N = 28, a peak
between the two closed shells at N = 20 and 28, and a rapid
increase in charge radius after N = 28. This evolution may be
attributed to complex physical effects, such as the collective
effect [92–94]. Since the unique evolution of charge radius
in Ca isotopes is not present in other isotopic chains, it is
challenging for neural network methods to replicate such kink
structures without overfitting.

A similar situation occurs around Z = 80. For Au isotopes,
at N = 107 and 108, the experimental charge radius suddenly
decreases, indicating a strong deformation exists at N = 107
[95]. For Hg isotopes, there is a noticeable odd-even stagger-
ing in the experimental values of charge radius for N � 105,
while the evolution trend becomes smoother for N > 105.
These complex patterns significantly impact the accuracy of
DNN. On the one hand, it attempts to learn the corresponding
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FIG. 2. Differences in charge radii from DNN and RCHB rel-
ative to experimental values. The red dots indicate deviations for
DNN, and blue triangles for RCHB. The gray shaded area represents
a range of ±0.02 fm.

evolutionary trends, but the unconventional numerical fluc-
tuations make it difficult to achieve success; on the other
hand, these evolution patterns affect the DNN’s judgment on
the surrounding isotopic chains, as seen in its unsatisfactory
performance in the rich-proton regions of Tl and Pb isotopes,
where the experiences of Au and Hg isotopes lead it to ex-
hibit even more peculiar behavior, but this only yields poorer
results.

It is noteworthy that the difference of the target function
values on the training and validation sets is quite small. As
demonstrated in Fig. 1, the root-mean-square errors (RMSE)
on the training and validation sets with respect to the cor-
responding experimental charge radii are 0.0183 fm and
0.0193 fm, respectively. This represents a significant improve-
ment over the RMSE of 0.0430 fm for RCHB. Additionally,
the stability of the DNN’s results has been validated. Re-
peatability tests are conducted with random initialization of
network parameters, and the fluctuations in the charge radius
RMSE do not exceed 5%. The normalization test is also used
in the DNN. The error between the proton numbers calculated
by Eq. (2) and the actual ones is about 0.2%, and thus we do
not impose the relevant penalties on the network.

FIG. 3. Charge radii predicted by DNN for the Mg, Cu, Kr, In, Yb, and Rn isotopes, where the training regions are indicated by shadows
and the magic numbers of neutron are indicated by the vertical dashed lines. The RCHB results and the corresponding experimental data are
also shown for comparison.
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FIG. 4. (a) and (d): Charge radii for the Cr and Zn isotopes. The training regions are indicated by shadows and the magic numbers are
indicated by the vertical dashed lines. (b), (c), (e), and (f): Charge density distributions of 52Cr, 54Cr, 68Zn, and 70Zn. The RCHB results and
the corresponding experimental data are also shown for comparison.

Quantitative data are presented in Fig. 2, where the red
(blue) dots represent the deviation of charge radii between
the DNN (RCHB) results with respect to the correspond-
ing experimental values. The gray area in the background
marks the deviation less than 0.02 fm, which is the error
margin of the charge radii of several dozens of nuclei used
by RCHB for fitting experimental data [39]. As shown in
Fig. 2, the corrections made by DNN are significant, espe-
cially in the region where the mass number A < 150. In the
range of larger mass numbers, RCHB itself demonstrates a
high accuracy, and DNN achieves a comparable or better
accuracy.

DNN has learned the charge density distribution and
charge radius information on the entire nuclide chart, which
not only makes it perform well from a global perspective but
also allows it to show advantages in detail. Figure 3 shows
the charge radii of the Mg, Cu, Kr, In, Yb, and Rn isotopes
obtained from DNN as well as RCHB, and compares with the
corresponding experimental values. In several isotopic chains
shown in Fig. 3, the variation of charge radius with the number
of neutrons, including the evolution trend and values, is in a
good agreement with experiment data. In the Kr isotopes, the
kink structure at N = 50 and the previous decline as well as

the subsequent sharp rise are successfully evolved by DNN;
In the Yb and Rn isotopes, the DNN provides not only a
correct evolutionary trend but also a better fit experimental
data than RCHB. In addition, to test the extrapolation per-
formance of DNN, several nuclei are extended outward for
each isotopic chain in Fig. 3, and most of these results are
consistent with the evolutionary trends. Repeatable tests are
employed to obtain the error bars for the DNN data, and the
network’s exceptional stability resulted in error bars smaller
than the size of the points in Fig. 3 for 100 repeated tests.

By introducing experimental charge radii, DNN naturally
captures beyond-mean-field information and deformation ef-
fects, in contrast to (spherical) RCHB. Taking Kr isotope as
an example, according to the results of triaxial relativistic
Hartree-Bogoliubov (TRHB) with the PC-PK1 density func-
tional [35], after considering the deformation effect, the kink
structure at N = 50 can be well reproduced, and the value is
in agreement with the experimental ones. However, there is a
dip at N = 40 by TRHB, where the calculated charge radius is
significantly smaller than the experimental value, which may
be caused by the unexpected deformation parameter β given
by TRHB. According to the calculation of TRHB [96], 76Kr
and its neighbors have soft potential energy surfaces, which
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FIG. 5. Charge radii predicted by DNN on the nuclide chart. Gray squares denote the nuclei with available experimental charge radii;
Others represent charge radii (in fm) calculated by Eq. (5) with the DNN-inferred charge density distribution.

infers an obvious beyond-mean-field effect. In contrast, Kr
isotopes with N > 42 have harder potential energy surfaces,
and they agree well with the experimental values. The DNN
gives similar results to the experiment, suggesting that the
DNN may capture the beyond-mean-field effects associated
with the deformation.

Further, to demonstrate the predictive performance of
DNN, we compare the newly measured charge radii on four
isotopic chains of Z = 28, Z = 46, Z = 80, and Z = 83,
which are shown in Table II. In the situations where extrap-
olations by DNN extend several nuclei beyond the training
region, the extrapolated charge radii can still be deemed re-
liable. For example, in the isotopic chains with Z = 46 and
Z = 83, where extrapolations span more than a dozen nuclei
from the training region, most of the predicted outcomes
closely match the experimental data. In the isotopic chain of
Z = 28, despite the DNN not delivering sufficiently precise
figures, it nevertheless offers a more gradual downward trend
within the N = 54–56 range compared to the RCHB predic-
tions. The last row of Table II shows the rms deviation of the
corresponding model with respect to the experimental values.
The DNN results are closer to the experimental values than
those of RCHB and are optimized by about 0.01 fm.

When focusing on the charge density distribution itself,
the DNN also provides satisfactory results. Figure 4 dis-
plays the outcomes for charge radii and densities in the
Cr and Zn isotopes. Given the lack of experimental data
on charge density, two nuclei per isotopic chain are se-
lected for detailed presentation. Besides offering improved

data on charge radii, the DNN also makes good corrections
to the charge density. On the one hand, the DNN opti-
mizes the central density predicted by RCHB, making it
more consistent with the experimental distribution; on the
other hand, the DNN is capable of replicating the distri-
bution of the experimental density tails, as demonstrated
in Figs. 4(b) and 4(c). While the RCHB density shows
an exponential decline, the experimental density exhibits a
tail. The DNN, by leveraging information from experimental
charge radii, keenly captures this feature and reproduces it
accurately.

Finally, the well-trained deep neural network is utilized to
predict nuclear charge density distributions. The prediction
range is selected to include nuclei listed in AME2020 with
Z � 8. Figure 5 shows the specific distribution of the pre-
diction range. These results are detailed in the Supplemental
Material [97].

IV. SUMMARY AND PROSPECTS

A deep neural network model is trained to generate nuclear
charge density distributions. The training data for the model
is based on the distributions generated by the RCHB theory,
together with 1014 experimental data of charge radii. The
model not only provided more accurate charge radii on a
global scale but also corrected the density distribution curves
to align more closely with existing experimental outcomes.
The predictive capability of the model is validated by compar-
ing it with the recently measured experimental data on charge
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TABLE II. Comparison of charge radii of the Ni, Pd, Hg, and Bi isotopes obtained by DNN with the corresponding RCHB and experimental
values. The corresponding experimental data are from the references mentioned in the last column.

RDNN
c RRCHB

c Rexp
c

Z A N (fm) (fm) (fm) Ref.

54 26 3.7851 3.7220 3.7366 [86]
55 27 3.7808 3.7074 3.7252 [87]
56 28 3.7785 3.6974 3.7226 [87]
59 31 3.7967 3.7423 3.782 [88]

28 63 35 3.8618 3.8058 3.842 [88]
65 37 3.8828 3.8365 3.856 [88]
66 38 3.8895 3.8513 3.870 [88]
67 39 3.8949 3.8703 3.873 [88]
70 42 3.9099 3.8914 3.910 [88]

98 52 4.4303 4.3950 4.4192 [89]
99 53 4.3940 4.4025 4.4316 [89]

100 54 4.4834 4.4192 4.4532 [89]
46 101 55 4.4528 4.4280 4.4646 [89]

112 66 4.5881 4.5422 4.5957 [89]
114 68 4.6033 4.5586 4.6094 [89]
116 70 4.6166 4.5132 4.6189 [89]
118 72 4.6279 4.5872 4.6268 [89]

80 207 127 5.4834 5.4952 5.4923 [90]
208 128 5.4917 5.5100 5.5033 [90]

187 104 5.4253 5.4186 5.4345 [91]

83
188 105 5.4330 5.4250 5.4907 [91]
189 106 5.4400 5.4279 5.4428 [91]
191 108 5.4519 5.4381 5.4473 [91]

σ 0.0273 0.0374

radii. Finally, the model is used to predict a broader range
of charge density distributions, offering a reference for future
experiments.

While the model achieved overall high accuracy, it still
failed to replicate specific features such as the kink structure
in the charge radii of Ca isotopes and the dramatic decline
in charge radii near Z = 80. The lack of information on
the experimental nuclear charge density distribution has also
hindered related research, but as techniques develop, more
and more charge density of unstable nuclei will be measured
[98], and new charge radius data can also be obtained using
methods such as hadronic probe [99], both of which will
provide more abundant data for machine learning research in
the future. Furthermore, interpreting the results of the neural

network remains a challenge. How to better apply machine
learning methods to physics research remains an open ques-
tion that requires further investigation in the future.
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Borschevsky, K. Chrysalidis, T. E. Cocolios, T. Day Goodacre,
J.-P. Dognon, M. Elantkowska et al., Large shape staggering
in neutron-deficient bi isotopes, Phys. Rev. Lett. 127, 192501
(2021).

[92] F. Barranco and R. Broglia, Correlation between mean square
radii and zero-point motions of the surface in the Ca isotopes,
Phys. Lett. B 151, 90 (1985).

[93] E. Caurier, K. Langanke, G. Martínez-Pinedo, F. Nowacki, and
P. Vogel, Shell model description of isotope shifts in calcium,
Phys. Lett. B 522, 240 (2001).

[94] T. Naito, T. Oishi, H. Sagawa, and Z. Wang, Comparative study
on charge radii and their kinks at magic numbers, Phys. Rev. C
107, 054307 (2023).

[95] C. Ma, Y. Y. Zong, Y. M. Zhao, and A. Arima, Evaluation of
nuclear charge radii based on nuclear radii changes, Phys. Rev.
C 104, 014303 (2021).

[96] See the calculated potential energy surfaces of nuclei with
Z = 36 obtained by Triaxial relativistic Hartree-Bogoliubov
Results with the PC-PK1 density functional at http://
nuclearmap.jcnp.org/index.html.

[97] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.110.014308. for all FB coefficients pro-
vided by the DNN.

[98] K. Tsukada, Y. Abe, A. Enokizono, T. Goke, M. Hara, Y.
Honda, T. Hori, S. Ichikawa, Y. Ito, K. Kurita et al., First obser-
vation of electron scattering from online-produced radioactive
target, Phys. Rev. Lett. 131, 092502 (2023).

[99] J. Zhang, B. Sun, I. Tanihata, R. Kanungo, C. Scheidenberger,
S. Terashima, F. Wang, F. Ameil, J. Atkinson, Y. Ayyad et al.,
A new approach for deducing rms proton radii from charge-
changing reactions of neutronrich nuclei and the reaction-target
dependence, Sci. Bull. 69, 1647 (2024).

014308-11

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/j.adt.2021.101440
https://doi.org/10.1103/PhysRevLett.127.182503
https://doi.org/10.1103/PhysRevLett.129.132501
https://doi.org/10.1103/PhysRevLett.128.022502
https://doi.org/10.1103/PhysRevLett.128.152501
https://doi.org/10.1103/PhysRevLett.126.032502
https://doi.org/10.1103/PhysRevLett.127.192501
https://doi.org/10.1016/0370-2693(85)91391-7
https://doi.org/10.1016/S0370-2693(01)01246-1
https://doi.org/10.1103/PhysRevC.107.054307
https://doi.org/10.1103/PhysRevC.104.014303
http://nuclearmap.jcnp.org/index.html
http://link.aps.org/supplemental/10.1103/PhysRevC.110.014308
https://doi.org/10.1103/PhysRevLett.131.092502
https://doi.org/10.1016/j.scib.2024.03.051

