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Background: The low-energy enhancement observed recently in the deexcitation γ -ray strength functions,
suggested to arise due to the magnetic dipole (M1) radiation, motivates theoretical efforts to improve the
description of M1 strength in available nuclear structure models. Reliable theoretical predictions of nuclear
dipole excitations are of interest for different nuclear applications and in particular for nuclear astrophysics,
where the calculations of radiative capture cross sections often resort to theoretical γ strength functions.
The quasiparticle random-phase approximation (QRPA) approach is arguably the most widely spread mi-
croscopic tool in this context since it can be applied to heavy nuclei and at the scale of the entire
chart.
Purpose: We aim to benchmark the performance of QRPA calculations with respect to M1 γ strength functions,
with a special emphasis on the description of the low-energy effects observed in the deexcitation strength.
Methods: We investigate the zero-temperature and finite-temperature (FT) magnetic dipole strength functions
computed within the QRPA and compare them to those obtained from exact diagonalizations of the same
Hamiltonian in restricted orbital spaces. Our sample consists of 25 spherical and deformed nuclei, with masses
ranging from A = 26 to A = 136, for which the exact diagonalization of the respective effective Hamiltonian in
three different valence spaces remains feasible.
Results: We find a reasonable agreement for the total photoabsorption strengths between both many-body
methods but show that the QRPA distributions are shown to be systematically shifted down in energy with
respect to exact results. Photoemission strengths obtained within the FT-QRPA formalism appear insufficient
to explain the low-energy enhancement of the M1 strength functions evidenced by the exact diagonalization
approach.
Conclusions: We ascribe the problems encountered in the zero- and finite-temperature QRPA calculations to the
lack of correlations in the nuclear ground state and to the truncation of the many-body space. In particular, the
latter prevents obtaining the sufficiently high level density to produce the low-energy enhancement of the M1
strength function, making the (FT-)QRPA approach unsuitable for predictions of such effects across the nuclear
chart.
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I. INTRODUCTION

Radiative neutron capture plays a crucial role in many
applications of nuclear physics, from reactor design to astro-
physical simulations. Experiments cannot realistically obtain
the cross section of this process in all relevant conditions or
even for all relevant nuclei; in the case of r-process nucleosyn-
thesis thousands of extremely exotic nuclei far beyond the
reach of current accelerators are involved [1]. Reaction theory
can provide the missing information through the statistical
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Hauser-Feshbach model, but the resulting cross section de-
pends strongly on the structure of the compound nucleus
formed and in particular on its probability to deexcite through
the emission of a γ ray [2]. This probability is characterized
by the γ -ray strength function of the nucleus, a quantity that
should ideally be predicted reliably across the entire nuclear
chart by nuclear structure models.

Although radiation of all multipolarities can contribute
to the strength function, the main contributions to neutron
capture cross sections are due to dipole radiation: both the
giant electric dipole resonance at high energy and the mag-
netic spin-flip resonance at low energy. Traditionally, dipole
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strength. functions were modeled in the fully phenomeno-
logical Lorentzian approximations [3,4]. However, important
deviations from statistical behavior were evidenced at low
γ -ray energies, in particular the so-called low-energy en-
hancement (LEE) of the dipole strength [5–10]. Such an
enhancement, if present in neutron-rich nuclei, could increase
the neutron-capture cross sections up to a 100 times [10],
depending on whether the electric or magnetic dipole strength
is largest.

Significant theoretical effort was devoted in recent years
to explain the LEE. The authors of Ref. [11] achieved an ini-
tial breakthrough: For the first time, the deexcitation strength
function was obtained from interacting shell-model (SM) cal-
culations, pointing to the magnetic-dipole character of the
LEE. Further SM calculations of both the M1 and E1 dipole
strength functions of 44Sc confirmed the magnetic-dipole na-
ture [12] of the LEE and predicted a flat behavior of the
E1 strength functions towards zero γ -ray energy. Further SM
studies adressed the LEE more systematically and concluded
that the enhancement is produced by the low-energy γ rays
coming from the quasicontinuum of nuclear states [13–18].

Other studies of the LEE so far have been based on the
(quasiparticle) random-phase approximation or (Q)RPA but
typically generalize the traditional QRPA formalism by in-
cluding, for instance, the effect of finite temperature. Two
early studies were limited to the electric dipole strength func-
tion [19,20], while a more recent study addressed both dipole
modes in 56Fe [21]. The combined deexcitation strength of E1
and M1 obtained by the authors of the latter appeared insuffi-
cient to describe the low-energy data from Oslo experiments
[5], while shell-model calculations achieved good agreement
with only the magnetic decay strength [22].

The interacting shell model with highly tuned empirical
Hamiltonians is known to provide precise results for spec-
troscopy and electromagnetic transitions. Unfortunately due
to computational complexity its applications are still restricted
to particular regions of nuclei. The necessity of deriving a
suitable effective interaction for each model space adds to
the already complicated task of the complete diagonaliza-
tion of the many-body Hamiltonian, making it impossible to
achieve systematic studies that span the nuclear chart. The
(quasiparticle) random-phase approximation or (Q)RPA ap-
proach provides an interesting alternative: This method scales
polynomially with particle number thanks to a truncation of
the many-body space to either two quasiparticle excitations
(QRPA) or particle-hole excitations (RPA) of a mean-field
reference state. Because of this favorable scaling, (Q)RPA and
its extensions [23] have been widely used in many different
contexts [24], from ab initio interactions to systematic studies
across the nuclear chart with energy density functionals (EDF)
[25–27].

However, the truncation of the many-body space of
(Q)RPA necessarily misses physical effects present in a
complete SM calculation such as the LEE. More advanced
many-body approaches aim to decrease such errors by includ-
ing higher-order excitations [two-particle two-hole (2p-2h),
3p-3h, phonon-coupling], which enhances the fragmentation
of the spectrum while shifting the centroid of the resonance

[28–32]. However, such calculations are generally very de-
manding and are impractical for global application. A more
pragmatic approach to provide a complete set of dipole γ -
ray strength functions derived from QRPA calculations was
developed in Refs. [26,33,34] by adding further empirical
corrections to account for the missing correlations and to
reproduce the available data. Reference [35] in particular pro-
vided a complete set of dipole strength functions that include
low-energy structure effects by phenomenological corrections
inspired by SM calculations. Such a treatment appeared suc-
cessful but surely is far from being satisfying if one aims
at a fully coherent microscopic description of strength func-
tions across the nuclear chart: A limited number of available
shell-model results does not guarantee the universality of
the observed low-energy effects which, if applied globally
through a phenomenological recipe, may introduce unrealis-
tic behaviors of the neutron-capture cross sections for exotic
nuclei. On the flip side, M1 strengths have been suggested
repeatedly as an excellent candidate observable to constrain
future EDF parametrizations since they are sensitive to the
spin-isospin channel [36–41].

Although SM calculations cannot cover sizable portions
of the nuclear chart, their exact nature is the ideal bench-
mark of approximate methods that scale more gently such as
the QRPA [35,42]. Our goal here is to understand in more
detail the deficiencies of the QRPA approach: We study the
differences between strength functions obtained with exact
diagonalization and QRPA calculations in identical model
spaces and employing identical SM Hamiltonians. Reference
[43] constitutes a previous benchmark along this line: The
authors studied a number of transition operators (Gamow-
Teller, spin-flip, and quadrupole) but limited themselves to
a few nuclei in the sd and p f shells and RPA calculations
that did not include the effects of pairing. Here we concen-
trate on the magnetic dipole operator, include the effect of
pairing by utilizing the QRPA and cover a wider range of
nuclei, with masses from A = 20 to 136, in three distinct
model spaces. Standard QRPA by default only provides pho-
toabsorption strength functions; we extend the benchmark to
finite-temperature QRPA (FT-QRPA), which is arguably the
simplest possible extension of QRPA that offers access to the
photoemission strength function and that has been used to to
study the LEE [19].

This paper is organized as follows: We remind the reader of
the basics of both theoretical approaches in Sec. II. We present
the results for the nuclear ground states and photoabsorption
strength in Sec. III and discuss the origins of the discrepan-
cies between the many-body methods. In Sec. IV we discuss
the description of the photoemission strength in SM and FT-
QRPA, including the temperature behavior of the computed
strength functions and with an emphasis on the LEE. Finally,
Sec. V concerns our conclusions and perspective for future
developments aimed at the systematic microscopic description
of magnetic dipole strength functions.

II. THEORY FRAMEWORK

In order to compare the results of different theoretical ap-
proaches we will discuss the sum rules, centroids, and widths
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of strength distributions following the standard definitions
[23,43]. Denoting the ground state and all the excited states
by |0〉 and |ν〉, respectively, the total strength,

S0 =
∑

ν

|〈ν|Ô|0〉|2, (1)

is the non-energy-weighted sum rule associated with a tran-
sition operator Ô. The centroid and width of this strength
function are then

S̄ = S1

S0
, �S =

√
S2

S0
− S̄2, (2)

where

Sk =
∑

ν

(Eν − E0)k|〈ν|Ô|0〉|2 (3)

is the (energy-weighted) sum rule of the order k. We focus
here on the magnetic dipole operator:

Ô(M1) =
√

3

4π

∑
k

(
gl (k)l̂ (k) + gs(k)ŝ(k)

)
μN , (4)

where l̂ and ŝ are the orbital and spin angular momentum
operators and the sum runs over all individual nucleons. The
orbital and spin gyromagnetic factors are given by gl = 1
and gs = 5.586 for protons and gl = 0 and gs = −3.826 for
neutrons. We employ these bare values for the orbital angular
momentum but multiply the spin factors by 0.75 as is cus-
tomary for calculations limited to a valence space, see, e.g.,
Ref. [44] and references therein.

The reduced transition probability from an initial state |i〉
to a final state | f 〉 is calculated as

B f i = 1

2Ji + 1
〈 f ||Ô||i〉2. (5)

The B(M1) distributions are convoluted with Lorentzians
of an arbitrary width 2γ = 1 MeV and converted into pho-
tostrength function (in units of MeV−3) according to the
formula [45]

fM1 = 16π/27(h̄c)3
∑

f

B f i(M1)
1

π

γ

(E − �E f i )2 + γ 2
(6)

which leads to the continuous strengths presented in Figs. 3–7
and 9.

A. Model-space and Hamiltonian

Calculations are carried out using model spaces with
well-established empirical interactions that are capable of
describing (with a full diagonalization) the low-energy lev-
els of nuclei within the major shell with an accuracy of
around 200 keV: USDb [46] for the 1s0d shell, LNPS [47]
for the 1p0 f shell, and GCN5082 interaction [48,49] in the
0g7/21d2s1/20h11/2 shell. Those shell-model interactions were
proven to give a good agreement with experimental data in
hundreds of studies of various observables, including those
that depend on spin-isospin parts of the Hamiltonian, see,
e.g., Refs. [50–53]. In particular, the analysis of 48 magnetic
moments, 101 M1 and 232 Gamow-Teller matrix elements for

the USD family of the interactions was presented in Ref. [54],
showing little dependence of those observables on the selected
Hamiltonian and a good consistency with data. We emphasize
that all shell-model studies known to us consistently indicate a
low-energy enhancement of the M1-dipole strength functions,
of magnitude compatible with experimental evidence, and this
independently on the details of valence space and effective
Hamiltonian; see the discussion in Ref. [18].

For the purpose of this study we perform full-model space
diagonalizations of the chosen Hamiltonians. As such di-
agonalizations become quickly difficult/impossible with the
number of valence particles in the 0g7/21d2s1/20h11/2 model
space, only a few nuclei close to the N = Z line and close
to the N = 82 shell closure are considered (roughly the same
nuclei for which the radiative decay was previously studied
within the shell-model framework in Ref. [55]). The same
quenching factor of 0.75 is applied on the spin part of the
magnetic operator in all model spaces, even though more
sophisticated prescriptions exist for a better agreement with
experiment (see, e.g., Ref. [56]). However, the choice of ef-
fective operators does not play any role in this study aiming
only in comparison of many-body methods.

B. Exact diagonalization

The reference results in this work are obtained in the shell-
model framework, i.e., by diagonalization of the Hamiltonian
in the basis of many-body states that can be constructed by
placing n nucleons in the valence-space orbitals. We will dub
those results hereafter as exact or shell-model results. Distri-
butions of B(M1) strengths in the shell model are computed
using Lanczos strength functions method which permits to
get the strength per energy interval in an efficient way [44].
We remind that the choice of the starting vector, called pivot,
used in the Lanczos diagonalization procedure is arbitrary.
Given a transition operator Ô one can define a pivot of the
form Ô|�i〉, where |�i〉 can be chosen any shell-model state,
and carry on Lanczos diagonalization. The unitary matrix Ui j

that diagonalizes the Hamiltonian after N Lanczos iterations
contains then in its first row the amplitude of the pivot in the
jth eigenstate. Thus U 2

1 j as function of eigenergies Ej defines
the strength function of the pivot state. Note that to obtain
the total strength S0 for the ground state to be compared to
QRPA only diagonalization of the 0+ state has to be carried
out in even-even nuclei, as the sum rule is the norm of the
pivot state obtained by acting with the transition operator on
the initial state. The remaining moments of the distribution
presented in tables are extracted from the peaked-fence distri-
butions obtained with the Lanczos strength function method
with 100 iterations. These calculations are done using the
m-scheme shell-model code ANTOINE [44,57]. In addition
to photoabsorption strength, the decay strength functions are
also computed employing the Bartholomew definition [58],
following Refs. [12,18]:

fM1(Eγ , Ei, Ji, π ) = 16π/9(h̄c)3〈B(M1)〉ρ(Ei, Ji, π ), (7)

where ρi(Ei, Ji, π ) is the partial level density determined at
a given initial excitation energy Ei and 〈B(M1)〉 averaged
reduced transition probability per energy bin. As such a
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calculation requires computation of hundreds of converged
excited states, the j-coupled code NATHAN [44] is employed
to achieve this task and avoid numerical problems appearing
in the m-scheme where large number of Lanczos iterations is
necessary [44]. The details about energy and spin cutoffs of
these calculations are given in Sec. IV for each of considered
nuclei.

C. QRPA at zero and finite temperature

FT-QRPA builds on top of finite temperature Hartree-
Fock Bogoliubov (FT-HFB) calculations where a mean-field
pure Bogoliubov state is replaced by a statistical mixture
of such states that minimizes the free energy subject to a
particle-number constraint [59]. The resulting mixture is fully
determined by (i) a Bogoliubov transformation that defines a
set of quasiparticle operators {β, β†} in terms of the single-
particle operators {c, c†},

(
β

β†

)
=

(
U V ∗
V U ∗

)†(
c
c†

)
, (8)

and (ii) occupation numbers f related to the quasiparticle
energies Eμ by

fμ ≡ 1

1 + e
Eμ

kBT

. (9)

The generalized density matrix is diagonal in the quasiparticle
basis and is entirely specified by the occupation numbers:

R0 =
(

f 0
0 1 − f

)
. (10)

Taking a FT-HFB mixture as a reference point, FT-QRPA
proceeds to define excitation modes 	†

μ parametrized by finite
temperature amplitudes X μ,Y μ, Pμ, Qμ as

	†
μ ≡ 1

2

∑
i j

(
Pμ

i j β
†
i β j + X μ

i j β
†
i β

†
j − Y μ

i j β jβi − Qμ
i jβ jβ

†
i

)
.

(11)

These amplitudes are obtained as solution of an eigen-
value equation that results from a linearization of either the
time-dependent-FT-HFB equations [60] or the equation of
motion [61,62].

FT-QRPA contains two different approximations that will
make it deviate from the exact diagonalization:

(i) The limitation of Eq. (11) to two-quasiparicle-
excitations, preventing in particular explicit p-n cor-
relations and restoration of symmetries broken by the
mean-field reference state,

(ii) the quasiboson approximation that is used in the
derivation of the eigenvalue equation to evaluate
nested commutators, thereby violating the Pauli exclu-
sion principle [61].

The susceptibility of a nucleus with respect to a one-body
transition operator F 1, χF is defined as

χF (ω) ≡ 〈[	(ω), F ]〉T , (12)

where 	(ω) ≡ ∑
μ

	μ

ω−�μ
, �μ are the FT-QRPA poles and

the notation 〈 〉T indicates a thermal trace over the sta-
tistical mixture of HFB states. As a function of the
susceptibility, the FT-QRPA excitation strength function
becomes

SF (ω) ≡ − 1

π (1 − e−βω )
ImχF (ω). (13)

This strength contains both an absorption (ω > 0) and a de-
excitation part (ω < 0) that will be considered when studying
the LEE.

Zero-temperature QRPA is naturally obtained as a limiting
case of FT-QRPA, where all f identically vanish along with
the Pμ and Qμ amplitudes. This also means that the dimen-
sionality of FT-QRPA is twice as large as that of QRPA. In
practice, only single-particle states close to the Fermi energy
are unblocked at low temperature, which tends to enrich the
QRPA strength at low energies via the apparition of low-lying
poles. The zero-T limit of Eq. (13) only retains transitions
from ground to excited states while the thermal prefactor be-
comes a step function by making the deexcitation part vanish
identically. In the rest of this work, zero-T QRPA is referred
to as QRPA.

In the present work, we employ the recent numerical imple-
mentation of the finite amplitude method (FAM) for solving
FT-QRPA equations. FT-QRPA-FAM replaces the intensive
calculation and diagonalization of the FT-QRPA matrix by a
set of nonlinear equations of similar dimension to that of the
static Hartree-Fock-Bogoliubov mean-field approach it builds
upon. The QRPA-FAM, first proposed in Refs. [63,64], has
proven to be a very efficient tool to obtain electric [65,66]
and charge-exchange [67,68] strength functions, as well as to
determine collective inertia [69], quasiparticle-vibration cou-
pling [70], discrete eigenmodes [71], and sum rules [72]. In
a recent work [21] a QRPA-FAM implementation to compute
zero- and finite-temperature strength functions using ab initio
interaction was presented. Here we use the same numerical
implementation to study dipole strength functions but with
shell-model Hamiltonians. In particular, the present QRPA-
FAM implementation does not impose axial symmetry and
allows for reference states with triaxial deformatoin as we
discuss in Sec. III D.

Axially symmetric QRPA-FAM calculations have been
benchmarked with numerical implementation of the matricial
FT-QRPA formalism presented in Ref. [60] to the HF-SHELL
code published in Ref. [59]. The results of both implementa-
tions match up to numerical precision. The results at (finite T)
zero T will be indifferently referred to as (FT-)QRPA calcu-
lations in the following. Only even-even nuclei are computed
in this work with FT-QRPA, an extension to odd systems is
envisioned.

1In the case of M1 transition, F ≡ M1μ.
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III. GROUND STATES: ABSORPTION STRENGTH

We use a set of 25 spherical and deformed nuclei which can
be described in the 1s0d , 1p0 f , and 0g7/21d2s1/20h11/2 spaces
within the shell-model approach by exact diagonalization
in the full model space. The same orbital spaces with
their respective effective Hamiltonians are then used to per-
form calculations of transition strengths within the QRPA
framework.

A. Mean-field solutions

The starting point of all (FT-) QRPA calculations is a
mean-field state: We construct either (i) the HFB state that
minimizes the total energy at zero temperature or (ii) the sta-
tistical mixture of HFB states that minimizes the free energy at
finite temperature [59]. These configurations are constructed
from single-particle states of definite proton or neutron nature
expanded in the basis of the valence space orbitals, i.e., we
do not allow for isospin mixing between protons and neu-
trons. We allow for the spontaneous breaking of rotational and
particle number symmetry but restrict ourselves to axial sym-
metry except when explicitly mentioned. We summarize the
results of our zero-temperature HFB calculations in Table I:
We list ground-state energies from the exact diagonalization
(ESM) and the difference with respect to the HFB states (�E ).
To gauge the degree of symmetry breaking present in our
mean-field configurations, we also include the quadrupole
deformation β20 and whether the neutrons or protons form a
pair condensate at the mean-field level.2

As can be seen from the table, the results for the ground-
state energy fall into two groups: of light nuclei (sd-shell
and p f -shell) where the disagreement is large and of the
heavier nuclei (gdsh-shell) where difference between exact
and HFB energies is smaller, especially when compared to the
total binding energy. In most cases, particle number and rota-
tional symmetry are not simultaneously broken. If the former
symmetry is not spontaneously broken, then the HFB formal-
ism reduces in practice to the Hartree-Fock (HF) formalism
while QRPA reduces to RPA.3 In what follows, we will use
QRPA indiscriminately in all cases except when explicitly
mentioned.

2The values of β20 we list should not be compared to values ex-
tracted from experimental data. The values we present reflect only
the deformation of the valence nucleons, while intrinsic quadrupole
deformation is a collective phenomenon that naturally includes con-
tributions from all nucleons. We did not include a rescaling of the
quadrupole operator to account for this effect here for simplicity.

3When pairing vanishes, QRPA reduces to the combination of RPA
and PP-RPA: the first dealing with 1p-1h excitations and the second
with 2p and 2h excitations [23]. We ignore this subtlety here, since
the matrix element of the M1 operator between two Slater determi-
nants with different particle number vanishes and hence does not
contribute to strength functions. In general, however, the zero-pairing
limit of HFB and QRPA approaches should be treated with care
[73,74].

TABLE I. Ground-state properties of the nuclei considered in
this study, organized by the corresponding valence space. We list mi-
nus the binding energy ESM obtained with exact diagonalization (in
MeV) and the energy difference with respect to (zero-temperature)
HFB calculations �E ≡ ESM − EHFB (in MeV) as well as the
quadrupole deformation β20. The last two columns indicate whether
pairing correlations are present in the HFB solution for each nucleon
species (Y = yes, N = no).

Nucleus ESM �E β20 Ep En

20Ne −40.47 −4.07 0.30 N N
24Ne −71.72 −5.32 0.18 N Y
24Mg −87.10 −6.34 0.27 N N
28Mg −120.49 −4.87 0.18 N N
28Si −135.86 −5.84 −0.24 N N
32Si −170.52 −4.18 −0.13 N N
32S −182.44 −6.05 0.00 N N
36Ar −230.27 −3.61 −0.11 N N
44Ti −46.88 −3.65 0.12 N N
50Ti −108.68 −4.34 0.00 Y N
48Cr −98.72 −4.67 0.16 N N
52Cr −142.88 −4.08 0.05 Y N
52Fe −151.64 −6.51 0.12 N N
56Fe −195.40 −7.27 0.12 N Y
56Ni −205.92 −6.36 0.00 N N
60Ni −248.04 −6.64 0.00 N Y
64Zn −303.02 −6.81 −0.15 Y N
64Ge −310.84 −8.56 −0.15 N N
104Te −50.26 −2.23 0.05 N N
108Te −98.05 −2.68 0.07 N Y
108Xe −102.52 −4.09 0.08 Y Y
128Te −282.14 −2.53 0.03 Y Y
132Te −309.51 −1.25 0.00 Y Y
134Xe −353.22 −2.08 −0.02 Y Y
136Ba −396.02 −2.61 −0.03 Y Y

B. M1 dipole response

The characteristics of the B(M1) distributions for all com-
puted nuclei are plotted in Fig. 1 comparing shell model to the
axially deformed QRPA calculations. The general trends are
easy to note and independent on the model space/Hamiltonian
employed. The total strengths [Fig. 1(a)] exhibit the same
tendencies in both approaches and agree within 20% for the
majority of nuclei. One of the largest discrepancies, well
visible in Fig. 1 around A = 100, concerns the N = Z 108Xe
nucleus, which was predicted in a previous shell-model study
with the same interaction to be triaxially deformed with β =
0.16 and γ = 24◦ [49]. The QRPA is missing nearly twice
the strength predicted in the shell model in this case. Interest-
ingly, in the other triaxial nucleus, 24Mg, the QRPA sum rule
overshoots the shell-model value by 35%. Thus the triaxiality
itself is not the reason behind the missing strength observed in
108Xe. The symmetry-unrestricted calculations verifying the
actual impact of nonaxiality on the strength distributions in
these two nuclei are presented in Sec. III D.

While the total strength seems reasonably reproduced
by QRPA with a few exceptions, the centroids are always
shifted to lower energies than the SM ones and the QRPA
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FIG. 1. Total strengths (a), centroids (b), and widths (c) for magnetic dipole operator as obtained in SM (red) and QRPA (blue) approaches
for nuclei listed in Table I. The lines connect the same Z numbers.

distributions are less spread. This appears to be a common
feature of the QRPA method for all transition operators as one
can conclude comparing our results and those of Ref. [43].
One can also note that the width of the strength distributions
are worse reproduced in spherical nuclei. While the small
fragmentation of QRPA strengths can be attributed to the
lack of higher-order particle-hole correlations, the shift of
the centroid is more troublesome and additionally does not
seem correlated with quadrupole deformation. The authors of
Ref. [43] suspected inclusion of pairing within HFB + QRPA
would improve the situation: As can be taken from our results,
pairing correlations are not sufficient to cure the general shift
of the QRPA distributions to lower energies. One can note
from Fig. 1 that the behavior of centroids and widths is also
the same in all studied regions, while only in the heaviest
nuclei truly paired HFB mean-field solutions are obtained.
The influence of pairing is, however, addressed in more detail
in Sec. III C where the solutions with/without pairing corre-
lations in selected nuclei are discussed.

The second hypothesis addressed in Ref. [43] was that
the missing low-energy strength is due to the incomplete
restoration of the symmetries in the RPA. For quadrupole
strength, that is naturally impacted by rotational properties of
the nucleus, the argument is indeed very well plausible and
confirmed by other studies [75]. However, we suspect this
does not hold for M1 transitions that are not expected to be
of rotational character.

A possible explanation of the regular shift of the centroid
towards lower energies can be traced back to the correlations
missing in the mean-field treatments of ground and excited
states. In Ref. [21] the effect of introducing correlations be-
yond HF + RPA on E1 photoabsorption cross sections was
discussed with ab initio interactions. It was shown that in-
troducing correlations to the ground state via coupled-cluster
RPA or in-medium RPA leads to shifting of the whole strength
in 16O by 5 to 6 MeV providing a desired effect in view of our
results. However, adding correlations also to the excited states
through the second RPA method pushes the whole strength
down by the same amount, resulting in photoabsorption cross
section closer to the initial HF + RPA result. To get more in-
sight into the correlations present in different approaches, we
have computed occupations of the spherical orbits resulting
the HF(B) calculations of the ground states for selected nuclei
where the disagreement with the shell-model diagonalization

is particularily large. Those are compared to occupations
from exact diagonalization in Table II. Since we consider
N = Z nuclei and the interactions are isospin conserving, the
proton and neutron occupations are equal thus only one of
them is reported in the table. We have also truncated shell-
model calculations in order to get similar occupations as in
HF(B)—those are indicated in the table as SMmod. Further,
we recomputed the M1 sum rules on such modified ground-
state wave functions and used them as pivots in the Lanczos
strength function method. The values of total strengths, cen-
troids and widths obtained with such modified shell-model
wave functions are given in Table III together with QRPA and
full-space diagonalization results.

Taking first as examples spherical nuclei 32S and 56Ni, the
HF wave functions are simply the lowest-filling configurations
without correlations which are present in the shell-model so-
lutions as seen from the table and the QRPA reduces to RPA
in this case. We have thus truncated the SM configuration
space to force the 0+ states to be 0p-0h configurations with
respect to the reference Slater determinant and then allowed

TABLE II. Occupation of spherical orbits resulting the HF(B)
calculations, exact diagonalization (SM), and truncated SM calcula-
tions (SMmod) in selected N = Z nuclei. See text for further details.

Nucleus orbital HF(B) SM SMmod

32S 0d5/2 6 5.48 6
1s1/2 2 1.45 2
0d3/2 0 1.06 0

56Ni 0 f7/2 8 6.98 8
1p3/2 0 0.46 0
0 f5/2 0 0.48 0
1p1/2 0 0.07 0

104Te 0g7/2 0.45 0.53 0.41
1d5/2 0.95 0.90 1.02
2s1/2 0.36 0.29 0.36
1d3/2 0.24 0.16 0.21
0h11/2 0.0 0.12 0.0

108Xe 0g7/2 1.40 1.37 1.31
1d5/2 1.58 1.49 1.67
2s1/2 0.55 0.53 0.64
1d3/2 0.39 0.31 0.38
0h11/2 0.08 0.30 0.0
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TABLE III. Properties of the M1 strength distributions obtained
in QRPA and SM and with modified SM wave functions of the
ground state; see text for further details.

Nucleus QRPA SM SMmod

32S S0 8.21 5.68 10.55
S̄ 11.07 12.36 11.41

�S 0.27 3.20 0.30
56Ni S0 12.59 11.68 15.06

S̄ 10.82 11.58 10.99
�S 0.23 2.66 0.24

104Te S0 3.31 3.81 3.27
S̄ 3.09 5.10 4.03

�S 0.58 1.96 0.95
108Xe S0 3.64 6.29 4.91

S̄ 3.15 5.65 4.12
�S 0.98 2.08 1.43

for maximally 1p-1h excitations to the remaining orbits for
both protons and neutrons to describe excited 1+ states. A
comparison of the shell-model M1 strength obtained in full
and truncated model space is shown in Fig. 2, together with
the RPA results, while the values characterizing these dis-
tributions are given in Table III. As can be seen, in 32S the
M1 strength in RPA calculations is concentrated in a single
peak at 11.1 MeV with three other states predicted by the
theory that carry very little strength. The diagonalization also
gives four states at similar energies, with one major peak at
11.4 MeV. As one can see in the table, the diagonalization
predicts, however, larger total strength but the centroid and

FIG. 2. M1 strength in RPA, SM, and modified SM calculations
in 32S and 56Ni. See text for details.

width are very close to the RPA values. Similarly, in 56Ni the
RPA gives two peaks, the one at 10.82 MeV carrying 99% of
the M1 strength, in a good agreement with the restricted-space
diagonalization, though the total strength is larger in the latter.
Since the ground-state correlations and particle-hole content
of excited states is now the same, the remaining difference
between SMmod+(1p-1h) and RPA most likely comes from
the quasiboson approximation [23].

Contrary to the spherical nuclei 32S and 56Ni, in 104Te
the HF solution is much closer to that of the diagonalization
though the 0h11/2 orbital remains empty in HF while 0.1
particle is occupying this orbital in the SM. The diagonal-
ization performed preventing the particles to be promoted to
the 0h11/2 orbital gives very similar occupations to the HF
solution, see Table II, one can thus suppose the ground-state
correlations are equally taken into account in the RPA and
the SMmod. Performing strength function calculations without
any further restriction on the structure of excited states one
recovers the total RPA strength in 104Te; see Table III. Still, the
centroid and width of the distribution with a modified ground
state are between the RPA and full SM values meaning the
approximations made in the RPA to describe excited phonon
states are insufficient. Adding more nucleons in 108Xe nontriv-
ial pairing solutions are obtained in the ground state resulting
in occupation of the 0h11/2 orbital of 0.08 particle versus 0.3
particle in the exact wave function. Repeating the exercise
for 108Xe to get similar orbital occupancy in SM and HFB
ground states, the total strength from the exact solution goes
lower without populating the 0h11/2 and thus gets closer to
the QRPA value. The conclusions remain, however, the same
as in 104Te, in spite of pairing interactions additionally taken
into account this time. These calculations evidence the crucial
role of the simultaneous inclusion of correlations in ground
and excited states to reproduce the centroid and width of the
distribution. They also show (for the first two studied cases)
that the quasiboson approximation introduces an additional
inaccuracy to the calculation of the QRPA strength.

C. Role of pairing correlations

Since our selection contains many N = Z nuclei, a re-
mark about proton-neutron pairing correlations is in order.
Those are not taken explicitly into account in the mean-field
calculations which constitutes a difference with respect to
the SM diagonalization. The role of T = 1 and T = 0 pair-
ing interactions on rotational properties of lightest Xe nuclei
with GCN5082 interaction employed here was previously dis-
cussed within the shell model in Ref. [49]. The deuteron-like
J = 1 isoscalar pairs were shown to have a negligible presence
in these nuclei and removing the T = 0 pairing interaction did
not affect the quadrupole properties. In particular, the possi-
bility of existence of the T = 0 pair condensate in the ground
state of 108Xe was refuted. The removal of isovector T = 1
pairing was shown to impact mostly the moment of inertia
without considerably alternating of the decay properties of the
band. Here we repeat the calculations from Ref. [49] to study
the impact of p-n pairing interactions on M1 distributions
in 108Xe. To this end, a schematic pairing Hamiltonian was
constructed with a strength adjusted to that of the GCN5082
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FIG. 3. M1 strength distributions of 108Xe obtained by exact
diagonalization with the full SM Hamiltonian (SM) and after remov-
ing schematic T = 1 (no T = 1 pair) and T = 0 (no T = 0 pair)
interactions compared to the QRPA results. See text for details.

interaction on the two-body level. Further such a pairing
Hamiltonian was substracted from the interaction and the
diagonalization of the 0+ state carried out, followed by a
calculation of the strength function. Figure 3 shows shell-
model results with the full GCN5082 Hamiltonian and after
removal of the T = 0 and T = 1 schematic pairing interac-
tions. The T = 0, J = 1 proton-neutron pairing interaction
does not play major role: The binding energy of the ground
state is higher by 640 keV and the sum rule is enlarged by 8%
without those correlations. The removal of the T = 1, J = 0
interactions has a bigger, though still limited impact, lowering
the binding of the 0+ by 900 keV and increasing the total
strength by 11%. As can be seen in the figure, once convo-
luted with Lorentzians, the distributions look fairly similar:
the whole distribution is shifted down when the T = 1 pairing
is absent but the shape remains the same as in the full calcu-
lation. The absence of the T = 0 pairing produces no effect at
the lowest energies but more strength is accumulated around
5 MeV. Overall, these effects are not significant enough to
explain the difference with QRPA. The centroids of the three
distributions agree within 100 keV and the widths within
300 keV. This little influence of pairing in the SM calcu-
lation of 108Xe is not astonishing as its structure, similarly
to the structure of many other nuclei along the N = Z line,
is dominated by quadrupole correlations in the shell-model
picture. The proton-neutron pairing correlations in the N = Z
nuclei studied here are thus of minor importance, and one can
suppose that taking them into account on the HFB level would
not cure the rather important model differences.

Now let us turn back to the T = 1 pairing correlations
and their role in the QRPA calculations. As said before, the
results of Ref. [43] exhibited similar, systematic behaviors of
the centroids and widths of the computed strength functions
as we observe here for the magnetic dipole. This previous
study was done within the RPA method only and thus pointed
to the pairing correlations as possibly improving the results.
To illustrate the effects of pairing in more detail, we have
computed 60Ni and 136Ba nuclei using HF + RPA approach
and compared to HFB + QRPA results, as depicted in Fig. 4.
Clearly, the presence of pairing correlations is responsible for
a shift of the strength of around 2 MeV in 136Ba that is due

FIG. 4. Comparison of the HF + RPA, HFB + QRPA, and SM
strengths in 60Ni and 136Ba.

to the lower energy of the HFB vacuum compared to the HF
one. Pairing correlations also help with the spreading of the
strength that turns out to be more fragmented. A shift of the
centroid in the right direction is also observed in 60Ni although
less pronounced than in 136Ba. This is probably explained by
the fact that 60Ni is only singly open-shell and only the neu-
trons are paired in the HFB calculation. These results suggest
that symmetry-restored QRPA calculations [76] (in which the
mean-field is expected to be more paired) might give results
closer to SM.

D. Influence of triaxiality

In Fig. 5 the QRPA results obtained starting from the
axially deformed and triaxial mean-field solutions are shown
in both triaxial nuclei studied here, 24Mg and 108Xe. The
changes due to triaxiality seem minor but go into the de-
sired direction in both cases (note that the behavior of axial
and nonaxial results is different in both nuclei): In 24Mg
the SM calculation gives S0 = 4.24µ2

N , S̄ = 12.41 MeV, and
�S = 3.75 MeV. The QRPA calculation based on the axi-
ally deformed mean-field yields S0 = 5.72µ2

N , S̄ = 9.39 MeV,
and �S = 2.19 MeV. As can be noted from the figure, the
inclusion of nonaxiality in the ground state provides some
reduction of the total strength (S0 = 4.96µ2

N ) and shifts the
centroid to higher energies (S̄ = 9.92 MeV). There is, how-
ever, no broadening of the distribution. Contrary to 24Mg, the
total strength in 108Xe is increased in the triaxial calculation
from S0 = 3.64µ2

N to S0 = 4.87µ2
N , bringing the solution to a

slightly better agreement with the SM one: S0 = 6.29µ2
N . The

centroid shifts by 200 keV to the higher energy and is located
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FIG. 5. Comparison of axially deformed and triaxial QRPA cal-
culations to exact diagonalization for 24Mg and 108Xe nuclei.

at 3.34 MeV, still being too low with respect to the SM value
of 5.65 MeV.

Similarily to what has been observed in Sec. III C,
symmetry-breaking systematically goes in the direction of SM
and further supports the idea that symmetry-restored QRPA
might potentially help by favoring large symmetry breaking
in the reference state and therefore improve prediction of M1
strength functions.

IV. EXCITED STATES: ABSORPTION
AND EMISSION STRENGTH

Diverting our attention from the strength functions as-
sociated with the nuclear ground state, we turn to the M1
photoabsorption and photoemission strength at finite excita-
tion energy, focusing on the origin of the LEE and whether
it can be reproduced through QRPA calculations. We discuss
first the photoabsorption and -emission strengths (and their
difference) obtained from direct diagonalization, illustrating
the presence of an LEE. We then extend our discussion to FT-
QRPA: We compare exact and FT-QRPA results for both the
absorption and emission strengths. To finish this section, we
discuss future perspectives on the development of approaches
that can account for this physical effect and yet avoid the
computational cost of exact diagonalization.

A. Exact diagonalization: Absorption and emission

In Fig. 6, we compare the photoabsorption and emission
strengths obtained from exact diagonalization in two heavy
nuclei, 134Xe (top panel) and 133Xe (bottom panel). The

FIG. 6. Photoabsorption (colored, smooth lines) versus pho-
toemission (black bins) strength functions obtained from exact
diagonalization for 134Xe (top panel) and 133Xe (bottom panel).
We label the photoabsorption curves with the quantum number and
excitation energy (in parentheses, expressed in MeV) of the corre-
sponding excited state.

figure includes the absorption strength for the ground state
and several excited states, indicated by their quantum number
and excitation energy. The decay strengths were computed by
averaging transitions from many excited states using Eq. (7),
including all excited states up to 6.0 MeV and J = 7 for 134Xe
and up to 4.0 MeV and J = 15/2. This selection included
states of both parities for 133Xe, but we limited ourselves to
positive-parity states for the even-even nucleus for the sake of
comparison to FT-QRPA results.

The LEE is clearly evident for 134Xe: The deexcitation
strength in the bin of lowest Eγ (0–0.2 MeV) is the largest
across the entire energy range. The absorption strength of the
nucleus grows with increasing excitation energy and approxi-
mates the decay strength across almost the entire range of the
figure, except for the very lowest γ -ray energy bin. This figure
illustrates the origin of the LEE as discussed in preceding
shell-model studies: The LEE consists of low-energy γ tran-
sitions connecting the excited states in the quasicontinuum of
nuclear levels. These conclusions are not significantly affected
by our selection of states to compute the decay strengths [55]:
(i) They are only weakly dependent on the considered spin
and excitation energy range and (ii) negative-parity states in
those nuclei contribute even more to the decay strength at
low energy, leading to an even more pronounced LEE for
134Xe, had we considered them. In fact, even restricting the
calculation to 0+ and 1+ excited states still leads to similar
shape and magnitude of the decay strength.
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The deexcitation strength of the odd-even nucleus 133Xe is
qualitatively similar to that of 134Xe, taking into account the
4-MeV cutoff in excitation energy in our calculation. There
is a qualitative difference in the photoabsorption strengths,
however: In contrast to the even-even nucleus, the odd-mass
nucleus has significant strength for Eγ below 1 MeV even for
the ground state. The origin of this difference is pairing: The
low-energy spectrum of the even-even nucleus is much more
sparse than that of its odd-mass neighbor, with the first 1+ in
134Xe at 2 MeV and the first excited state 1/2+ in 133Xe at
0.25 MeV.

B. QRPA at finite temperature: Absorption

We first discuss the evolution of the M1 photoabsorption
strength function with increasing excitation energy: Figure 7
shows the (FT-) QRPA strength functions for different values
of the temperature in solid lines for one nucleus in each of
the model spaces. We remind the reader that, as discussed
in Sec. II C, the photoabsorption fM1 strengths are obtained
from the positive-energy part of the FT-QRPA microscopic
strength function SM1. For each nucleus, an increase in tem-
perature shifts the centroid to slightly lower γ -ray energies.
The total strength obtained rises initially when increasing the
temperature, but this trend reverses at the highest temperatures
due to the limitations of the model space. Approaches based
on energy density functionals are typically not limited to va-
lence spaces: We anticipate that in such approaches the total
strength will monotonously rise with increasing temperature.

Aside from these effects that affect the strength function as
a function of temperature in a smooth way, there are discon-
tinuous changes to be seen in the middle and bottom panels
of Fig. 7. For 50Ti, this is the development of two additional
peaks, first near 5 MeV and at higher temperatures also near
2.5 MeV. For 134Xe, the change in shape of the absorption
strength is even more dramatic. In both cases, these changes
reflect the discontinuous structural changes in the underlying
mean-field solution that mark a temperature phase transition.
These are illustrated in Fig. 8: The top panel shows the pairing
phase transition in 50Ti by means of the average proton pairing
gap while the bottom panel shows the shape transition in
134Xe by means of its quadrupole deformation β20. 24Mg also
undergoes a phase transition from a prolate to a spherical
shape, but for our model space and Hamiltonian this occurs
for temperatures above those we consider here [59].

It is not trivial to compare FT-QRPA and SM results: The
former depend on temperature and the latter on excitation
energy. We relate the temperature of an excited 0+ state to its
excitation energy through a (phenomenological) model of the
level density of the corresponding nucleus: T = √

(E∗ − δ)/a
with E∗ the calculated excitation energy, δ a pairing energy
shift, and a the level density parameter. We use values of the
latter two parameters from both the back-shifted Fermi gas
and Gilbert-Cameron model as tabulated in Ref. [4], resulting
in two temperatures for each excited SM state that we take
as an indicative range. The resulting M1 strength functions
obtained through exact diagonalization are drawn in Fig. 7 as
dashed lines. The centroids of the SM M1 absorption strength
for excited 0+ states shift to energies that are several MeV

FIG. 7. The M1 photoresponse strength functions for 24Mg (top),
50Ti (middle), and 134Xe (bottom) as obtained through FT-QRPA
calculations for different values of the temperature (solid lines) and
through exact diagonalization from initial states of different excita-
tion energy (dashed lines).

lower than that of the ground state: many more 1+ states
find themselves in the direct vicinity of excited states. The
total strength rises monotonously with temperature in this
range of Eγ , although also the diagonalization approach will
eventually face the limitations of the valence space at even
higher excitation energies.

Comparing FT-QRPA and SM, we see a qualitative sim-
ilarity in that the centroids shift to lower Eγ and that the
total strengths increase with increasing excitation energy in
both approaches. It is, however, immediately clear from all
panels in Fig. 7 that these effects are too small in FT-QRPA:
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FIG. 8. Illustration of the temperature phase transitions for the
FT-QRPA. Top panel: Average proton pairing gap in 50Ti as a func-
tion of kT . Bottom panel: Quadrupole deformation β20 for 134Xe.

The FT-QRPA absorption strength at high excitation energy
differs dramatically from the exact result in all cases. This
is in spite of the rather fair reproduction of the ground-state
absorption strength for all three nuclei in Fig. 7, although
the overall performance of FT-QRPA improves somewhat for
heavier nuclei.

The reason for the failure of FT-QRPA is its level den-
sity: Because it is limited to two-quasiparticle excitations, the
total number of many-body states that can be constructed is
much smaller than those in an exact diagonalization. This
is not so problematic when studying photoabsorption of the
nuclear ground state, as many of the missing states are lo-
cated at (comparatively) high excitation energy. Although the
introduction of finite temperature allows for the construction
of additional many-body states compared to a ground-state
calculation (the thermal unblocking effect referred to in
Sec. II C), this does not suffice to capture the complexity of
the entire many-body space. As an illustration, only 48 1p-1h
excitations with Jπ = 1+ can be constructed for 24Mg in the
sd-shell while there are in total 3096 1+ states that figure in
an exact diagonalization.

Although our comparison is limited to even-even nuclei,
we note that it is likely that FT-QRPA would compare some-
what better to the SM result for odd-mass and odd-odd nuclei.
In those, the level density at low excitation energy is much
higher as discussed in Sec. IV A such that FT-QRPA could
possibly be able to capture a part of the absorption strength at
low Eγ of the exact results.

C. QRPA at finite temperature: Deexcitation

In Fig. 9 we show the deexcitation strength func-
tion of 134Xe obtained from SM and FT-QRPA calcu-
lations, the latter of which is derived from the micro-
scopic strength function SM1(E ) at negative energy as
discussed in Sec. II C.4 The evaluation of the SM strength

4We remind the reader that SM1(E ) vanishes at negative energy at
kT = 0: The formalism reduces to QRPA and the nuclear ground
state cannot decay by emission of a photon.

FIG. 9. Photoemission strength functions in 134Xe obtained in
the FT-QRPA approach versus the deexcitation strength function
obtained from the shell-model diagonalization (see text for details).

included excited states up to ∼6 MeV, which should cor-
respond to a maximal temperature of kT = 0.6–1.1 MeV:
We report FT-QRPA strength for a corresponding range
of kT = 0.5–1.5 MeV.

Looking first at the FT-QRPA results by themselves, we
see a significant evolution in the overall decay strength:
As the temperature increases from kT = 0.5 to 1.5 MeV
the total strength increases significantly across the range of
Eγ .5 This increase is more rapid at higher Eγ , such that
the centroid of the decay strength increases with increasing
temperature. The nuclear susceptibility χ (ω) depends on kT
implicitly and carries most of the structural information of
the mean-field configuration, but it varies very slowly with
increasing temperature in the absence of phase transitions
[77]. Most of the thermal evolution visible in Fig. 9 is due
to the thermal prefactor in Eq. (13) which varies quickly
with kT .6

Although some temperature enhancement is visible, the
FT-QRPA strength at the lowest γ -ray energies differs from
the SM result by roughly an order of magnitude even at high
temperature. As the temperature increases, the level density
accessible to FT-QRPA enlarges but this effect is not sufficient
to produce an LEE that is comparable to the one obtained
from exact diagonalization. Although some decay strength is
produced at low energy, such strength is the tail of a peak
located at roughly 2 MeV; this is a generic feature of even-
even nuclei and it thus seems unlikely that FT-QRPA or other
extensions of QRPA techniques that do not explicitly consider
excited states would ever be able to produce a sufficiently
large LEE. Similarly, approaches that obtain decay strength
functions through photoabsorption strength functions of the
ground states in even-even nuclei will likely fail to produce

5There is no discontinuous change due a phase transition visible on
Fig. 9; the shape phase transition for 134Xe is slightly below kT = 0.5
MeV.

6This thermal prefactor was not included in the study of dipole
response based on ab initio Hamiltonians of Ref. [21]. The authors
compared the susceptibility χ (ω) with experimental data on the
photodecay of 56Fe.
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the LEE, barring explicit inclusion through phenomenology.
As discussed above, it is possible the situation is less dire for
odd-mass and odd-odd nuclei where the level density at low
energy is much higher.

As we mentioned above, the FT-QRPA is arguably the
simplest extension of QRPA that directly results in decay
strength functions. By virtue of the comparative simplicity
of QRPA, FT-QRPA is likely the least numerically intensive
many-body technique that provides such access. It is clear
that this approach is, however, too simple to produce an LEE
comparable to the SM result; one should look elsewhere for
an approach that can cover the nuclear chart but still pro-
vide accurate dipole strength functions. There are multiple
candidates for such an approach: A first is extending the
QRPA framework with the calculation of all transitions be-
tween pairs of constructed states as opposed to just those rates
involving the nuclear ground state [78]. Using the excitation
energies and the reduced matrix elements obtained in this way,
it should be possible to construct a decay strength function
that probes a far larger level density although this has not
yet been demonstrated at scale [79]. Multiphonon approaches
constitute another path: These couple together multiple QRPA
phonons and overcome some of the downsides of QRPA such
as the fragmentation of the M1 strength [80,81] but have so
far not been used to investigate the LEE due to M1 radiation.
Although it has not been applied so far to describe dipole
strength functions, the projected generator coordinate method
(PGCM) is perhaps the most promising future avenue. PGCM
has the potential to improve on (FT-) QRPA by (i) restoring
quantum numbers lost by spontaneous symmetry breaking
and hence enriching the nuclear ground state with additional
correlations and (ii) capturing vibrational and rotational de-
grees of freedom within one single framework. Although this
method scales modestly compared to exact diagonalization,
polynomial as opposed to combinatorial, it remains demand-
ing and has so far not been deployed at scale [82]. Finally,
one could conceivably look for different computational tech-
niques while keeping the power of SM results: shell model
Monte Carlo (SMMC) techniques can provide exact results,
up to statistical errors, in larger valence spaces than traditional
diagonalization methods [83]. Reference [84] recently proved
that one can use such techniques to study the LEE in rare-earth
nuclei and it is plausible that even heavier nuclei could be
addressed, though it is unlikely that systematic SMMC calcu-
lations will ever become feasible since the method remains
bound to the construction of a valence space and effective
interaction.

Although we conclude that standard (FT-) QRPA is not
able to describe the LEE of magnetic dipole strength func-
tions, we mention here that the method will likely fare better
for the electric dipole strength function. SM calculations have
shown that 1p-1h excitations typically suffice to describe low-
energy E1 strength [12,85] while multiphonon approaches
indicate that this strength can be captured by one-phonon
calculations [86]. Because of this, we expect that most of
the physically relevant part of the many-body space is ac-
cessible to (FT-) QRPA and the corresponding description
of E1 transitions to be more successful. We will test this

expectation in a forthcoming study along the same lines as this
one.

V. CONCLUSIONS

We have compared the absorption and decay magnetic
dipole strength functions obtained from (FT-) QRPA and exact
diagonalization in identical shell-model valence spaces and
employing the same Hamiltonians. Our study spanned 25
even-even nuclei, from nuclei with A ∼ 28 in the sd-shell
up to medium-heavy nuclei with A ∼ 130. Future work will
be devoted to the study of electric dipole transitions along
the same lines. The ground-state photoabsorption strength
obtained from QRPA calculations is rather satisfactory: It typ-
ically agrees with the exact result within about 20%, although
larger deviations occurred in our calculations. Other aspects of
the (FT-) QRPA predictions are less appealing, and our results
highlight two issues of this approach to obtain magnetic dipole
strength functions.

The first issue concerns the lack of correlations in the
nuclear ground state, which causes a systematic shift of the
centroids of the M1 strengths towards lower γ -ray ener-
gies. We established that the size of this effect is somewhat
lessened when the mean-field reference state incorporates
more correlations through spontaneous symmetry breaking:
Both the appearance of triaxial deformation and pairing con-
densate tend to improve the agreement with exact results,
although we found proton-neutron pairing to be of very lim-
ited relevance. Nevertheless, it is unlikely that even the most
general symmetry-broken configurations will be able to com-
pletely offset this effect, but our observation indicates that
symmetry-restoration techniques are a promising route since
they tend to drive the reference state towards less symmetrical
configurations.

A second problem of the (FT-) QRPA is the truncation of
many-body space to two-quasiparticle excitations on top of
a mean-field reference state. This approximation leads to a
level density that is too low, even at high excitation energies,
leading to (i) a lack of fragmentation of the strength and
(ii) a lack of strength at low Eγ for both photoabsorption
and -decay strength functions of excited states. Most studies
in the literature deal with the ground-state photoabsorption
strength function of even-even nuclei; in this regime these
deficiencies of QRPA are not immediately apparent since (i) a
phenomenological smearing factor is incorporated to provide
fragmentation and (ii) the sparsity of the low-energy spectrum
of even-even nuclei forbids finite strength at low Eγ . The
generalization of the formalism to finite temperature slightly
enlarges the model space and allows for the appearance of
some low-lying M1 strength, but the effect is typically far
too small compared to the exact result. In particular, this
indicates that traditional (FT-) QRPA approaches may not be
reliable to predict the presence or absence of a low-energy
enhancement of the M1 strength below the neutron emission
threshold.

We cannot exclude that both drawbacks (lack of fragmen-
tation and strength at low energy) can be partially remedied
by incroporating M1 observables in parameter adjustements
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of effective interactions or EDFs. We do not recommend
this course of action though, as it seems unlikely that such
a simple parameter renormalization would adequately cap-
ture these many-body effects. We discussed briefly alternative
approaches to tackle this issue in a more systematic way
that have a potential for global application; in particular,
we mention that development of a framework to extract M1

strength functions from PGCM calculations based on shell-
model Hamiltonians is underway [87].
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