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We investigate parameter dependence of the calculated β-decay properties as well as low-lying states for
the neutron-rich Zr isotopes within the neutron-proton interacting boson model (IBM-2) and interacting boson-
fermion-fermion model (IBFFM-2). It is shown that the calculated log10 f t values for the transitions of the 0+

1

ground states of the parent even-even nuclei 96–102Zr into the 1+
1 states of the daughter odd-odd nuclei 96–102Nb

consistently exhibit a strong dependence on those parameters associated with the quadrupole-quadrupole boson
interaction, and with the residual interaction between an unpaired neutron and an unpaired proton in the IBFFM-2
Hamiltonian for the odd-odd Nb nuclei. By the reduction in magnitude of the quadrupole-quadrupole interaction
strength by approximately a factor of 2, the calculated log10 f t values for the Zr(0+

1 ) → Nb(1+
1 ) transitions

increase and agree with the experimental values. This points to a significant improvement over the previous study
performed in the same mass region, that consists of the mapping from a relativistic energy density functional
calculation onto the IBM-2 Hamiltonian.

DOI: 10.1103/PhysRevC.110.014303

I. INTRODUCTION

Nuclear β-decay is a process in which a neutron in a
nucleus is converted into a proton, or vice versa, emitting
an electron (positron) and an antielectron (electron) neutrino.
The β decay plays an essential role in the rapid neutron-
capture processes in astrophysical nucleosynthesis, which
produce heavy chemical elements, and is also used as an
experimental technique to measure energy levels of a given
nucleus. The β-decay rates of numerous neutron-rich heavy
nuclei have been measured extensively by experiments in
major radioactive-ion-beam facilities worldwide [1–5], which
also calls for reliable theoretical predictions.

Accurate theoretical predictions as well as experimental
measurements of the β decay also provide input to evaluate
the double-β decay nuclear matrix elements [6–8]. It is a rare
process in which, when the Qβ value of the single-β decay
from the even-even to odd-odd nuclei is high enough, a de-
cay process may occur between neighboring even-even nuclei
with the neutron and proton numbers (N, Z ) = (N ∓ 2, Z ±
2), emitting two electrons (positrons) and some light particles.
Theoretical evaluation of the double-β decay nuclear matrix
elements currently differs by a factor of 2–3 among different
nuclear models, and reduction of the theoretical uncertainty is
under active investigation.

Precise calculations of the nuclear wave functions for the
low-lying states of the initial and final nuclei, which enter the
relevant transition operators, are crucial to provide reliable
predictions of the β-decay properties, such as the half-lives
and log10 f t values. Theoretical approaches that allow for the
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calculation of the β-decay properties along with a quantitative
and detailed description of the low-energy excitations have
been made, e.g., by the nuclear shell model [9–12], quasiparti-
cle random phase approximations [13–21], and the interacting
boson model (IBM) [22–35].

In a recent article [35], a simultaneous description of
the low-lying states and (allowed) β-decay properties of
the neutron-rich even-even and odd-odd nuclei from the
36Kr to 48Cd isotopes near N = 60 was made by using
the IBM that is based on the energy density functional
(EDF) framework. In Ref. [35], the constrained self-consistent
mean-field (SCMF) calculations were performed within the
relativistic Hartree-Bogoliubov (RHB) model [36,37] using
the density-dependent point-coupling (DD-PC1) EDF [38]
and the separable pairing force of finite range [39]. The con-
strained calculations provided each even-even nucleus with
the potential energy surface (PES) in terms of the triaxial
quadrupole deformations, which is then mapped onto the
expectation value of the neutron-proton IBM (IBM-2) Hamil-
tonian in the boson condensate state [40] for the even-even
nuclei. This mapping procedure completely determines the
parameters of the IBM-2 Hamiltonian. The same RHB SCMF
calculation produced single-particle energies and occupation
probabilities at spherical configuration for the neighboring
odd-odd nuclei, and these quantities were used to determine
the neutron-proton interacting boson-fermion-fermion model
(IBFFM-2) [41,42] Hamiltonian for the odd-odd systems.
Remaining coupling constants for the interactions between
an odd neutron and an odd proton, and between an odd
nucleon and even-even boson core were fit to reproduce a
few low-lying states of each odd-odd nucleus to a reason-
able accuracy. The Gamow-Teller (GT) transition strengths
between an even-even and an odd-odd nuclei have been
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computed by using those nuclear wave functions that were
obtained from the IBM-2 and IBFFM-2 Hamiltonians, respec-
tively, and were employed for calculating the β-decay log10 f t
values.

It was found in Ref. [35], however, that the log10 f t values
for the β− decay of the studied even-even into odd-odd nuclei,
especially for those of Kr, Sr, and Zr nuclei near N = 60
and Z = 40, are systematically underestimated by a factor of
≈1.5 within the mapped IBM-2 framework. These too small
log10 f t values, hence too large GT transition matrix ele-
ments, imply some deficiencies of this method, which could
be effectively accounted for by introducing certain amount
of quenching of the axial-vector coupling constant gA. The
significant discrepancy between the experimental and calcu-
lated log10 f t values encountered in Ref. [35], however, would
require one to use an unrealistically large quenching factor to
reproduce the data. A possible cause of this discrepancy was
also investigated in that study, and was attributed to the choice
of the employed EDF that is a basis for determining most of
the model parameters. Another possible factors that could give
rise to the too small log10 f t values would lie in the IBM-2 and
IBFFM-2 calculations, which provide nuclear wave functions
for the parent and daughter nuclei.

In the present article, we report an extensive analysis of the
dependence of the log10 f t predictions on various model pa-
rameters involved in the nuclear structure calculations within
the IBM-2 and IBFFM-2, and attempt to identify which of
the model parameters affect most significantly the final results
on the log10 f t values. We show systematic behaviors of the
calculated properties, such as the excitation energies for each
parent and daughter nuclei, and the log10 f t values, as func-
tions of a given model parameter. The present study is based
on the previous work of Ref. [35], and hence the Hamiltonian
parameters, and other ingredients, e.g., single-particle ener-
gies and occupation probabilities, that were obtained in the
mapped IBM-2 calculations of Ref. [35] are here considered
as a starting point for our analysis. In that way, we explore
possible ways of improving the mapped IBM-2 description of
β decay. We further calculate low-lying states of each of the
parent and daughter nuclei to investigate how an optimal set
of parameters that gives a reasonable agreement with the ob-
served log10 f t values can reproduce the experimental energy
spectrum in comparison to the previous calculation [35]. The
parameter dependence of the excitation energies of odd-odd
nuclei has been investigated within the IBFFM-2, e.g., in
Ref. [34], but to the best of our knowledge the behaviors of
the log10 f t values according to the IBFFM-2 parameters have
not been studied.

Considering the fact that a large number of independent
parameters enter the model, which in principle correlate with
others and also differ from one nucleus to another, to keep
the discussion as simple as possible we here focus on the β−
decay of the 96–102Zr isotopes. The low-lying structure of the
neutron-rich Zr isotopes has attracted considerable attention,
since they exhibit a rapid shape transition at N ≈ 60 and a
possible shape coexistence [43]. 96Zr is also a candidate nu-
cleus for the two-neutrino and neutrinoless double-β decays,
and its nuclear structural and single-β decay properties should
be of much relevance.

The paper is structured as follows. In Sec. II we review the
IBM-2 and IBFFM-2 Hamiltonians, their parameters, and GT
transition operators, which were used in Ref. [35]. We show
in Sec. III the parameter dependence of the log10 f t values
on the model parameters. The variations with the parameters
of the calculated excitation energies are discussed in Sec. IV.
Section V gives a summary and perspectives for a future study.

II. THEORETICAL FRAMEWORK

This section gives a brief reminder of the IBM-2 and
IBFFM-2 frameworks for calculating the β decay matrix
elements. More detailed descriptions of these theoretical
framework are found in Ref. [35] for the neutron-rich Zr
region, and for general descriptions of the β-decay studies
of odd-mass and odd-odd nuclei the reader is referred to
Refs. [23,24,42] and [26,27], respectively.

A. Model Hamiltonian and GT operator

Within the IBM-2, an even-even core nucleus is described
in terms of the neutron sν and dν bosons, and the proton sπ and
dπ bosons [44]. From a microscopic point of view, the neutron
(proton) sν and dν (sπ and dπ ) bosons represent collective
monopole and quadrupole pairs of valence neutrons (protons),
respectively [44–46]. For the IBM-2 Hamiltonian we take the
form

ĤB = εd (n̂dν
+ n̂dπ

) + κQ̂ν · Q̂π

+ κνQ̂ν · Q̂ν + κπ Q̂π · Q̂π + κ ′L̂ · L̂, (1)

where the first term stands for the d-boson number operator
with n̂dρ

= d†
ρ · d̃ρ (ρ = ν or π ) and with εd the single d

boson energy. The second, third, and fourth terms are the
quadrupole-quadrupole interactions between neutron and pro-
ton bosons, between neutron and neutron bosons, and between
proton and proton bosons, respectively. The quadrupole op-
erator Q̂ρ is defined as Q̂ρ = s†

ρ d̃ρ + d†sρ + χρ (d†
ρ × d̃ρ )(2),

with χν and χπ being dimensionless parameters. κ , κν , and κπ

are strength parameters. The fifth term in Eq. (1) stands for
a rotational term, with κ ′ being the strength parameter, and
L̂ = L̂ν + L̂π denotes the angular momentum operator with
L̂ρ = (d†

ρ × d̃†
ρ )(1).

The IBM-2 is extended to treat odd-odd nuclear systems by
including an unpaired neutron and an unpaired proton degrees
of freedom, and their couplings. The IBFFM-2 Hamiltonian is
expressed in general by

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + V̂ ν
BF + V̂ π

BF + V̂νπ . (2)

The first term represents the IBM-2 core Hamiltonian (1). The
second and third terms of Eq. (2) represent the single-neutron
and -proton Hamiltonians, respectively, and take the form

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1(a†

jρ
× ã jρ )(0) ≡

∑
jρ

ε jρ n̂ jρ , (3)

where ε jρ stands for the single-particle energy of the odd
neutron or proton orbital jρ . a(†)

jρ
represents the particle an-

nihilation (creation) operator, with ã jρ defined by ã jρmρ
=

(−1) jρ−mρ a jρ−mρ
. On the right-hand side of Eq. (3), n̂ jρ

stands for the number operator for the odd particle. The
single-particle space taken in the present study comprises
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the neutron 3s1/2, 2d3/2, 2d5/2, and 1g7/2 orbitals, and the
proton 1g9/2 orbital in the N = 50–82 and Z = 28–50 major
oscillator shells for calculating the positive-parity states of the
odd-odd Nb nuclei. For 96–102Nb, since the odd neutron and
odd proton are, respectively, treated as a particle and a hole,
the corresponding even-even boson cores are the 96–102Mo
nuclei, respectively.

The fourth (fifth) term on the right-hand side of Eq. (2)
denotes the interaction between a single neutron (or proton)

and the even-even boson core, and is given as [42,47]

V̂ ρ
BF = 	ρV̂ ρ

dyn + 
ρV̂ ρ
exc + AρV̂ ρ

mon, (4)

where the first, second, and third terms represent the
quadrupole dynamical, exchange, and monopole interactions,
respectively, with the strength parameters 	ρ , 
ρ , and Aρ .
Each term in the above expression reads

V̂ ρ
dyn =

∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
× ã j′ρ

)(2) · Q̂ρ ′ , (5)

V̂ ρ
exc = −(s†

ρ ′ × d̃ρ ′ )(2) ·
∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ :

[(
d†

ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ )](2)
: +(H.c.), (6)

V̂ ρ
mon = n̂dρ

n̂ jρ , (7)

where the j-dependent factors γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ ,
and β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ , with Qjρ j′ρ =
〈�ρ

1
2 jρ‖Y (2)‖�′

ρ
1
2 j′ρ〉 being the matrix element of the fermion

quadrupole operator in the single-particle basis. Q̂ρ ′ in
Eq. (5) denotes the quadrupole operator in the boson system,
introduced in Eq. (1). The notation : (· · · ) : in Eq. (6) stands
for normal ordering. Note that the forms of V̂ ρ

BF have been
discussed on microscopic grounds in Refs. [42,47]. Within
this framework the unperturbed single-particle energy, ε jρ , in
Eq. (3) should be replaced with the quasiparticle energy ε̃ jρ .

The last term of Eq. (2), V̂νπ , corresponds to the residual
interaction between the unpaired neutron and proton. The
following form is here considered for this interaction:

V̂νπ = 4πvdδ(r)δ(rν − r0)δ(rπ − r0)

+ vt

[
3(σν · r)(σπ · r)

r2
− σν · σπ

]
. (8)

The first and second terms stand for the δ and tensor interac-
tions, with vd, and vt being strength parameters, respectively.
Note that r = rν − rπ is the relative coordinate of the neutron
and proton, and r0 = 1.2A1/3 fm. The matrix element of V̂νπ

depends on the occupation v j and unoccupation u j ampli-
tudes.

The GT transition operator is here defined by

T̂ GT =
∑
jν jπ

ηGT
jν jπ

(
P̂jν × P̂jπ

)(1)
, (9)

with the coefficients η calculated as

ηGT
jν jπ = − 1√

3

〈
�ν

1

2
jν

∥∥∥∥σ

∥∥∥∥�π

1

2
jπ

〉
δ�ν�π

. (10)

P̂jν and P̂jπ in Eq. (9) are one-particle transfer operators,
expressed as

P̂jν = ζ ∗
jν ã jνmjν

+
∑

j′ν

ζ ∗
jν j′ν

sν

(
d†

ν × ã j′ν

)( jν )

mjν
, (11)

P̂jπ = −θ∗
jπ sπa†

jπ mjπ
−

∑
j′π

θ∗
jπ j′π

(
d̃π × a†

j′π

)( jπ )

mjπ
, (12)

for the β− decay of the Zr isotopes. The operators in Eqs. (11)
and (12), respectively, increase and decrease the number of
like-hole nucleons, and both of them decrease the valence
nucleon number by 1. The coefficients ζ j , ζ j j′ , θ j , and θ j j′

in Eqs. (11) and (12) are calculated within the generalized se-
niority scheme [23], and depend on the u j and v j amplitudes.
Their explicit forms are found in Ref. [35].

The f t values in seconds are obtained via the calculated
GT matrix element between the initial Ii state of the parent
nucleus and the final I f state of the daughter nucleus, MGT =
〈I f ‖T̂ GT‖Ii〉, i.e.,

f t = 6163( gA

gV

)2|MGT|2
, (13)

with gA = 1.27 and gV = 1 being the axial-vector and vector
coupling constants, respectively.

B. Summary of the model parameters

The parameters for the IBM-2 Hamiltonian involved in the
present study are εd , κ , κν , κπ , χν , χπ , and κ ′. To reduce the
number of parameters, as in the previous study [35], a simpli-
fication is made on the strength parameters for the different
quadrupole-quadrupole boson interactions, so that κν = κπ =
κ/2 for the even-even 96–102Zr nuclei and κν = κπ = 0 for
the even-even 96–102Mo nuclei, which are taken as the boson
cores for the odd-odd 96–102Nb nuclei. In addition, in Ref. [35]
the L̂ · L̂ term was included in the IBM-2 Hamiltonian for the
even-even Zr nuclei, but was not for the even-even Mo nuclei.
In a number of microscopic [46,48,49] and phenomenological
[44] IBM-2 calculations carried out to date, however, it has
been shown that a simplified form of the Hamiltonian con-
sisting of the n̂d , and Q̂ν · Q̂π terms describes the low-energy
quadrupole collective states of most of the medium-heavy and
heavy nuclei. Thus, in the following we regard the parameters
εd , κ , χν , and χπ the most relevant parameters among the
IBM-2 Hamiltonian (1), and investigate dependencies of the
results on these parameters, concerning the bosonic interac-
tions. Tables I and II summarize, respectively, the IBM-2
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TABLE I. The IBM-2 parameters for the parent nuclei 96–102Zr
used in Ref. [35], which have been obtained from mapping the RHB
SCMF onto the IBM-2 deformation energy surfaces. Note that the
like-boson quadrupole-quadrupole interaction strengths are assumed
to take the values κν,i = κπ,i = κi/2.

Nucleus εd,i (MeV) κi (MeV) χν,i χπ,i κ ′
i (MeV)

96Zr 0.34 −0.18 −0.35 0.24 0.051
98Zr 0.28 −0.15 −0.54 0.11 0.032
100Zr 0.036 −0.094 −0.45 0.20 0.0020
102Zr 0.081 −0.081 −0.52 0.49 0.0037

parameters for the even-even 96–102Zr and odd-odd 96–102Nb
nuclei. They were determined microscopically by mapping
the RHB PES onto the corresponding IBM-2 one in Ref. [35].
To avoid confusion, we express from now on those IBM-2
parameters used for the parent Zr nuclei by putting a subscript
“i”, representing the initial state, and those for the daughter
Nb nuclei with a subscript “ f ”, so as to represent the final
state.

Six parameters in the IBFFM-2 Hamiltonian, 	ν , 
ν , Aν ,
	π , 
π , and Aπ , which are the coefficients of the boson-
fermion interactions, are here treated as free parameters, and
the variations of the results with these parameters are inves-
tigated. The quasiparticle energies ε̃ jρ in ĤF, and occupation
probabilities v2

jρ , which appear in V̂BF and GT operator, are
kept constant so as to be the same values as those used in
the previous study of Ref. [35]. The parameters vd, and vt in
the residual interaction V̂νπ are additional variable parameters.
Those vd and vt values employed in Ref. [35] are summarized
in Table III.

III. IMPACTS ON THE β-DECAY PROPERTIES

A. log10 f t values

Figures 1–5 show the calculated log10 f t values for the β−
decay of the 0+

1 ground state of the even-even 96–102Zr nuclei
into the lowest four 1+ states of the odd-odd 96–102Nb nuclei
as functions of the following model parameters: the IBM-2
parameters in the parent Zr nuclei (Fig. 1), the parameters for
the even-even boson cores (Fig. 2), strength parameters for the
interactions between the odd neutron and boson core (Fig. 3)
and between the odd proton and boson core (Fig. 4), and
strength parameters vd and vt for the residual neutron-proton
interaction (Fig. 5) for the odd-odd daughter nuclei Nb.

TABLE II. The boson-core parameters for the odd-odd daughter
nuclei 96–102Nb used in Ref. [35]. Note that the strength parameters
κπ,i = κπ, f = 0 MeV and κ ′

f = 0 MeV.

Nucleus εd, f (MeV) κ f (MeV) χν, f χπ, f

96Nb 0.69 −0.44 −0.65 0.45
98Nb 0.95 −0.41 −0.57 0.08
100Nb 0.58 −0.35 −0.50 0.45
102Nb 0.52 −0.27 −0.43 0.36

TABLE III. Adopted strength parameters (in MeV units) for the
boson-fermion interactions, and fermion-fermion interactions in the
IBFFM-2 Hamiltonian describing the odd-odd 96–102Nb nuclei. The
fixed value, vd = −0.08 MeV, is employed for the δ term. The spin-
spin interaction strength, vss = 0.1 MeV is used specifically for 96Nb.

Nucleus 	ν 	π 
ν 
π Aν Aπ vt

96Nb 0.30 0.30 0.40 0.90 −0.00 −0.50 0
98Nb 1.50 0.10 0.80 0.00 −1.20 −0.00 0.280
100Nb 1.50 0.30 0.50 0.20 −1.40 −0.80 0.500
102Nb 1.50 0.10 0.90 3.80 −0.90 −2.00 0.500

One can see from Fig. 1 that the log10 f t (0+
1 → 1+

1,2) val-
ues do not depend much on all the IBM-2 parameters in the
parent Zr nuclei. The calculated values log10 f t (0+

1 → 1+
1 ) ≈

3.5 do not differ from the ones obtained from the mapped
IBM-2 parameter (represented by the vertical dotted line in
each panel), and are also much below the observed log10 f t
values [50] (horizontal dashed lines): 4.154, 4.6, and 4.71
for the 98Zr(0+

1 ) → 98Nb(1+
1 ), 100Zr(0+

1 ) → 100Nb(1+
1 ), and

102Zr(0+
1 ) → 102Nb(1+

1 ) decays, respectively. Note that the
log10 f t data are not available for the 96Zr(0+

1 ) → 96Nb(1+
1 )

decay. The log10 f t (0+
1 → 1+

3,4) values seem to be more sen-
sitive to the IBM-2 parameters for the parent nuclei.

One should notice that, at some specific values of the IBM-
2 parameters, the calculated log10 f t’s are extremely large, as
observed, for instance, in the 96Zr(0+

1 ) → 96Nb(1+
3 ) β− decay

at εd,i ≈ 0.1 MeV. The spike-like pattern or discontinuity in
log10 f t could be explained by the fact that, with a particular
combination of the parameters, matrix elements for different
components in the GT operator happen to cancel each other
to such an extent that the resultant MGT matrix element nearly
vanishes, hence the extremely large log10 f t value is obtained.
The cancellation of this sort seems to occur rather acciden-
tally mainly for the β− decays to higher lying non-yrast 1+
states. These are, all in all, local behaviors typically found at
higher 1+ excitation energies, but do not appear in most of
the log10 f t (0+

1 → 1+
1 ) systematic. In addition, as we show

in Sec. III B, they also do not make any sizable contribution
to the entire GT strength distributions and their running sums
involving a number of 1+ states of the odd-odd Nb nuclei.
Therefore we consider the spike-like patterns of log10 f t’s
at higher 1+ states to be rather unimportant in the present
analysis, especially since we intend to optimize parameters
by using the log10 f t data for the lowest-energy, 1+

1 state.
In comparison to the behaviors of the log10 f t values as

functions of the IBM-2 parameters for the parent even-even
nuclei, one may notice in Fig. 2 that the calculated log10 f t
values are rather sensitive to the boson-core Hamiltonian
parameters for the odd-odd Nb nuclei. What is particularly
worth noting is the fact that the log10 f t values for the
98,100,102Zr(0+

1 ) → 98,100,102Nb(1+
1 ) decays substantially

increase with the parameter κ f , in the range κ f � −0.2 MeV.
A similar log10 f t systematic is present for the 96Zr(0+

1 ) →
96Nb(1+

1 ) decay as well for the region of even smaller
|κ| values, κ f � −0.1. Similarly, the AZr(0+

1 ) → ANb(1+
1 )

decay log10 f t values with A = 98 and 100 increase with the
parameter κi used for the parent Zr nuclei (see Fig. 1). The
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FIG. 1. Variations of the calculated log10 f t values for the β− decays of the 0+
1 ground states of the even-even 96–104Zr nuclei into the lowest

four 1+ states of the odd-odd 96–102Nb nuclei as functions of the IBM-2 parameters for the parent Zr nuclei. The vertical dotted line in each
panel indicates the value of the parameter obtained from the RHB-to-IBM mapping procedure. Available experimental log10 f t values are also
indicated by horizontal dashed lines with the same colors used for the corresponding calculated values.

increase, however, occurs rather in a narrow region of κi, i.e.,
κi � −0.01 MeV, which is almost vanishing, and so does
not make much sense for a realistic calculation. One could
also extract optimal values for the parameter κ f , which result
in agreement with the experimental log10 f t (0+

1 → 1+
1 ),

when available. For those AZr(0+
1 ) → ANb(1+

1 ) decays with
A = 98, 100, and 102, the κ f values of approximately −0.180,
−0.150, and −0.260 MeV give a good description of the

corresponding log10 f t data. The above values correspond
to the reduction in magnitude of ≈55% of those adopted
in the mapped IBM-2 calculations [35]. The calculated
log10 f t values do not show a significant dependence on the
parameters χν, f and χπ, f , an exception being perhaps the
102Zr(0+

1 ) → 102Nb(1+
1 ) decay.

We notice in Fig. 3 that the predicted log10 f t (0+
1 →

1+
1 ) values as a function of 	ν (the dynamical quadrupole
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FIG. 2. Same as Fig. 1, but as functions of the boson-core parameters for the odd-odd daughter Nb nuclei.

interaction strength between the odd neutron and even-even
boson core) are stable for most of the nuclei. A stronger pa-
rameter dependence of the f t values is seen in their evolution
with the exchange interaction strength 
ν for the AZr(0+

1 ) →
ANb(1+

1 ) decay with A = 98, 100, and 102. It is worth noting
that the exchange interaction reflects the fact that the bosons
are made of pairs of fermions, and this type of the interaction
has been shown to play an important role in reproducing
low-energy levels of odd nuclei. It appears from the system-
atic shown in Fig. 3 that the exchange interaction also has

an impact on the calculation of the β-decay log10 f t values
for A = 98, 100, and 102, as well as the low-lying states.
The monopole interaction strength Aν does not seem to have
an influence on the log10 f t calculations. It is more or less
expected from the fact that this interaction only has an effect
of either compressing or stretching a whole energy spectrum,
and hence plays a less important role than the dynamical and
exchange interactions. An exception is an irregular, spike-like,
behavior of log10 f t (0+

1 → 1+
1 ) at Aν ≈ −2 MeV and ≈1.75

MeV in the case of the 102Zr → 102Nb decay.
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FIG. 3. Same as Fig. 1, but as functions of the interaction strengths between the odd neutron and even-even boson core for the odd-odd Nb
nuclei.

It appears from Fig. 4 that the log10 f t values are less
sensitive to 	π (the strength parameters for the interaction
between the odd proton and even-even boson core), as the
log10 f t (0+

1 → 1+
1 ) value is almost constant against the vari-

ations of the 	π , 
π , and Aπ parameters for most of the
considered decay processes AZr → ANb with A = 96, 98, and
100. One notices a certain dependence of the 102Zr(0+

1 ) →
102Nb(1+

1 ) log10 f t value on 
π , as it smoothly increases with

π � 1 MeV.

In Fig. 5, we observe a strong dependence of the
96Zr(0+

1 ) → 96Nb(1+
n ) (n = 1–4) decay log10 f t values on the

parameter vd, a residual neutron-proton interaction strength
of surface-δ type, seen most spectacularly in the sharp
rise of the log10 f t (0+

1 → 1+
1 ) value near vd = 0.2 MeV.

For the 98,100Zr(0+
1 ) → 98,100Nb(1+

n ) decays, in contrast, the
corresponding log10 f t values exhibit a much weaker depen-
dence on vd. The 102Zr(0+

1 ) → 102Nb(1+
1,2) decay log10 f t

values show a decreasing pattern as functions of vd, but the
change is smooth and monotonic, as compared to the case
of the 96Zr(0+

1 ) → 96Nb(1+
1,2) decay log10 f t values. Such a

specialty for the 96Zr(0+
1 ) → 96Nb(1+

n ) decays is perhaps due

to the fact that among the odd-odd Nb nuclei studied here only
96Nb has the ground state with spin and parity Iπ = 6+, while
the others have Iπ = 1+; to reproduce the 6+ ground state,
in Ref. [35] a different form of the residual neutron-proton
interactions was considered for 96Nb, so that vt = 0 MeV and
a spin-spin interaction of the form −σν · σπ/

√
3 was specifi-

cally included for this nucleus (see Ref. [35] and the caption
to Table III). As is clear from Fig. 5, the predicted log10 f t val-
ues, particular for the AZr(0+

1 ) → ANb(1+
1,2) decays of all the

masses A = 96–102, consistently exhibit a strong dependence
on vt , in such a way that they rise sharply, as vt decreases for
vt < 0. For the 98,100Zr(0+

1 ) → 98,100Nb(1+
1 ) decays, the value

vt ≈ −0.1(< 0) MeV appears to lead to a good agreement
with the experimental data, log10 f t ≈ 4.154 and 4.6, respec-
tively. Concerning the 102Zr(0+

1 ) → 102Nb(1+
1 ) decay, as it is

seen from Fig. 5 the derived vt = 0.5 MeV in the mapped
IBM-2 framework already gives a reasonable agreement with
the experimental value of log10 f t = 4.71.

So far we have seen that the log10 f t (0+
1 → 1+

1 ) values
for the considered AZr → ANb β− decays with A = 96–102
all show a particularly strong dependence on the parameters
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FIG. 4. Same as Fig. 1, but as functions of the interaction strengths between the odd proton and even-even boson core for the odd-odd Nb
nuclei.

κ f and vt . We thus analyze the behaviors of the AZr(0+
1 ) →

ANb(1+
1 ) decay log10 f t values when we change κ f and vt

simultaneously. The results are presented in Fig. 6, where
the calculated log10 f t (0+

1 → 1+
1 ) values are depicted in con-

tour plots. In the figure, the 96Zr(0+
1 ) → 96Nb(1+

1 ) decay
log10 f t looks almost constant against κ f , since only in the
vicinity of κ f = 0 MeV is a slight increase observed for
vt > 0 and some weak dependence on κ f within the range
−0.6 � κ f � −0.1 MeV. When it is seen as a function of
vt , there appears a sharp decrease when it changes sign
from vt < 0 to vt > 0. The β− decays of the 98,100,102Zr
nuclei are more interesting here, since there are experimen-
tal log10 f t (0+

1 → 1+
1 ) data available. As compared to the

96Zr(0+
1 ) → 96Nb(1+

1 ) decay log10 f t value, those for the
98,100,102Zr(0+

1 ) → 98,100,102Nb(1+
1 ) decays show a notable de-

pendence on both the κ f and vt parameters. The predicted
log10 f t (0+

1 → 1+
1 ) values obtained from the RHB mapped-

IBM-2 calculation [35], are shown as the crossing point of the
vertical and horizontal dotted lines in each panel of Fig. 6,
representing, respectively, those κ f and vt parameters em-
ployed in that calculation. We notice that they are rather far

from the observed log10 f t values, 4.154, 4.6, and 4.71 for
the 98,100,102Zr(0+

1 ) → 98,100,102Nb(1+
1 ) decays, respectively.

Based on the (κ f , vt ) surfaces in Fig. 6, we can extract optimal
sets of the κ f and vt values to improve description of the
log10 f t data available for the 98,100,102Zr β− decays. For
the AZr(0+

1 ) → ANb(1+
1 ) decays with A = 98, 100, and 102,

one could choose κ f = −0.180, −0.150, and −0.260 MeV,
respectively. Given these κ f values, the log10 f t (0+

1 → 1+
1 )

appears to be rather insensitive to vt in the (κ f , vt ) surface,
so it would be just enough to employ the same vt values as
those used in the mapped IBM-2 calculations, i.e., vt = 0.28,
0.5, and 0.5 MeV for the 98Zr, 100Zr, and 102Zr β− decays,
respectively (cf. Table III).

B. GT strength distributions

Figure 7 displays absolute squares of the calculated GT
transition matrix elements, |MGT(0+

1 → 1+
n )|2, for the β− de-

cays of the even-even 96–102Zr into odd-odd 98–102Nb nuclei
as functions of the excitation energies Ex(1+

n ) of all the 1+
states of the odd-odd daughter (Nb) nuclei, obtained from the
IBFFM-2 Hamiltonian in the considered model space. The
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FIG. 5. Same as Fig. 1, but as functions of the strengths parameters for the residual neutron-proton interactions considered for the odd-odd
Nb nuclei.

calculated results employing different values of the strength
parameter κ f for the odd-odd Nb nuclei are compared: the de-
rived value from the RHB-to-IBM mapping in Ref. [35] (left
column), and the optimal value extracted in the present work,
that gives an agreement with the measured log10 f t (0+

1 → 1+
1 )

(middle column). Also included on the right column of Fig. 7

FIG. 6. Contour plots of the calculated β−-decay log10 f t (0+
1 →

1+
1 ) values for the even-even 96–102Zr in terms of the parameters κ f

and vt used for the odd-odd Nb nuclei. The vertical and horizontal
dotted lines in each panel indicate those κ f and vt values employed
in the mapped IBM-2 calculation of Ref. [35].

are the results obtained with the κ f values that give rise
the “spike” pattern we observe in Fig. 2 in the calculated
log10 f t values for non-yrast 1+ states. Specifically, at the val-
ues κ f = −0.780, −0.210, and −0.380 MeV, the calculated
log10 f t (0+

1 → 1+
4 ), log10 f t (0+

1 → 1+
3 ), and log10 f t (0+

1 →
1+

4 ) values for the β− decays of 98,100,102Zr, respectively, are
extremely large (see Fig. 2).

Note that the mapped IBM-2 results for the MGT distribu-
tions were already presented in Fig. 9 of Ref. [35]. In that
reference, the maximal number of iterations in the numerical
diagonalization of the IBFFM-2 Hamiltonian using the Lanc-
zos method were set to be 20000, 200 000, and 200, for 98Nb,
100Nb, and 102Nb nuclei, respectively. In the present study,
the iterations are carried out 200 000 times for all the Nb
nuclei considered to achieve a better convergence. There is
no noticeable difference between the previous result using the
smaller number of the iterations, and the present one in the
systematic of the GT transition distributions. An exception is
the behaviors of the GT strengths for the high 1+ excitation
energies, which, however, only make negligible contributions
to the gross feature of the MGT distributions and their running
sums.

It is seen from Fig. 7 that, in general, the GT transitions to
low-lying 1+ states below Ex(1+) ≈ 1 MeV make the dom-
inant contribution to the MGT strengths. The calculated MGT

values also seem to be sensitive to the κ f value, in such a way
that, as |κ f | decreases, the GT strengths look more densely
populated in the lower energy region of Ex(1+), and are also
more fragmented. For the 98Zr(0+

1 ) → 98Nb(1+) decay, the
corresponding MGT distribution pattern with κ f = −0.780
MeV more or less resembles the one obtained with κ f =
−0.405 MeV, since in both cases the total MGT sum would
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FIG. 7. Absolute squares of the calculated GT transition matrix elements, |MGT|2, for the 98,100,102Zr(0+
1 ) → 98,100,102Nb(1+) transitions as

functions of the excitation energies Ex (1+
n ) of all the 1+ states, obtained from the IBFFM-2 that employs the κ f values (shown in MeV units)

that have been determined from the RHB-to-IBM mapping procedure [35] (left column), and that are obtained in the present study so as to
give a reasonable agreement with the experimental log10 f t (0+

1 → 1+
1 ) value (middle column). On the right column shown are the results using

those κ f value that correspond to a “spike” pattern in the calculated log10 f t value. See the main text for details.

be mainly accounted for by the GT transition to the lowest
energy 1+ state. The overall patterns of the GT strengths for
the 100Zr(0+

1 ) → 100Nb(1+) decay are qualitatively similar
between the calculations employing the three different values
of κ f , in that mainly two peaks appear below Ex(1+) ≈ 1
MeV, and near or above Ex(1+) ≈ 1 MeV. Regarding the
102Zr(0+

1 ) → 102Nb(1+) β− decay, the systematic behaviors
of the MGT distributions with different κ f values are similar to
each other, as well.

In Fig. 8 we show running sums of the GT transition
strengths

∑
n |MGT(0+

1 → 1+
n )|2 for the 98,100,102Zr(0+

1 ) →
98,100,102Nb(1+)β− decays with respect to Ex(1+), calculated
with three different values of the parameter κ f . For all the
transitions shown in the figure, one can observe a system-
atic trend that, for larger |κ f | the GT running sum is mostly

accounted for by the transitions to lowest-lying 1+ states. This
is also confirmed from the |MGT|2 systematic in Fig. 7. For the
98Zr(0+

1 ) → 98Nb(1+) decay,
∑

n |MGT|2 with κ f = −0.405
and −0.780 MeV are shown to be converged already near the
lowest energy, 1+

1 state. In the case of κ f = −0.180 MeV, on
the other hand, contributions from the lowest 1+ states are
negligible. The sum rises at Ex(1+) ≈ 1 MeV, and converges
to

∑
n |MGT|2 ≈ 3 at Ex(1+) ≈ 4 MeV. The calculated GT

sums with the three different κ f ’s seem to converge con-
sistently to

∑
n |MGT|2 ≈ 3, meaning that the GT sum does

not depend much on the parameter κ f for the 98Zr(0+
1 ) →

98Nb(1+) decay.
This finding appears to be rather at variance with the re-

sults for the 100,102Zr(0+
1 ) → 100,102Nb(1+) decays. In these

cases, as we decrease |κ f |, the running sum
∑

n |MGT|2
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FIG. 8. Running sums, |MGT|2, as functions of the excitation energies Ex (1+
n ) for all the 1+ states of the odd-odd 98,100,102Nb nuclei, that are

obtained from the IBFFM-2 Hamiltonian, using the optimal κ f parameter (shown in MeV units) with which the experimental log10 f t (0+
1 →

1+
1 ) value is reproduced (solid curves) and the one determined by the mapping procedure [35] (dashed lines). The results in the case of the κ f

value that gives the spike-like pattern in the calculated log10 f t values are also depicted as dashed-dotted curves.

converges at low Ex(1+) energies, and the converged value
becomes smaller, e.g.,

∑
n |MGT|2 ≈ 4.5, 3.7, and 2.8 for the

100Zr(0+
1 ) → 100Nb(1+) decay with κ f = −0.350, −0.210,

and −0.150 MeV, respectively. The variation of κ f is, there-
fore, shown to affect much the

∑
n |MGT|2 sums, as regards

the 100,102Zr(0+
1 ) → 100,102Nb(1+) decays.

IV. IMPACTS ON THE ENERGY SPECTRA

We now turn to discuss the parameter dependence of the
results on the low-lying states of each nucleus involved,
specifically focusing on the energy levels of the odd-odd Nb
nuclei. Given the fact that among all the model parameters
involved in the log10 f t calculations, the strength parameters
κ f and vt most affect the log10 f t (0+

1 → 1+
1 ) predictions (cf.

Figs. 2 and 5), we analyze in particular the behaviors of
low-spin yrast states of the odd-odd Nb nuclei when these
parameters are varied simultaneously. We show in Fig. 9 con-
tour plots of the calculated 1+

1 , 2+
1 , 3+

1 , 4+
1 , 5+

1 , and 6+
1 states

of the odd-odd 96–102Nb nuclei in terms of the parameters κ f

and vt . In each plot, those (κ f , vt ) values giving the excitation
energies that agree with the available experimental data are
connected by the dashed lines.

As mentioned earlier, the measured ground state of 96Nb
has the spin and parity Iπ = 6+ [50]. One sees in Fig. 9
that the 5+

1 and 6+
1 excitation energies of 96Nb are sensitive

to κ f within the range κ f � −0.2, and to vt with its value
being near vt = 0 MeV. Optimal (κ f , vt ) values that are to
reproduce the correct 6+ ground-state spin should also be
extracted somewhere from these parameter ranges.

As is shown in Fig. 6, overall behaviors of the excitation
energies within the (κ f , vt ) plane look similar between 98Nb
and 100Nb, which are, however, rather different from the one
for the 102Nb nucleus. The calculated energies for the heavier
Nb nuclei, 98–102Nb, appear to depend on these parameters
more strongly than in the case of 96Nb, e.g., for the 5+

1 and
6+

1 states. The ground state for 98,100,102Nb is experimentally
suggested to be the 1+ state. As one sees from the behaviors
of the dashed curves in Fig. 9, vt should take a positive value
so that the measured ground-state spin should be reproduced

correctly. Given a positive vt value, then typical κ f values that
reproduce the excitation energies of the states other than 1+

1
may be, perhaps, within the range −0.3 � κ f � −0.2 MeV, in
which the energies significantly depend on κ f . It is, however,
not very obvious to find a best set of the (κ f , vt ) values that
reproduces all the excitation energies, as well as the observed
log10 f t (0+

1 → 1+
1 ) values satisfactorily. Other model param-

eters, e.g., those for the spin-spin-δ and spin-spin interactions
for the residual neutron-proton correlations, may need to be
taken into account as other adjustable parameters. Such an
analysis would invoke further complications, and is beyond
the scope of the present study.

To shed light upon the search for optimal sets of the
(κ f , vt ) parameters, we now consider as constraints the
log10 f t (0+

1 → 1+
1 ) data, and the ground-state spin of 1+ for

the odd-odd 98,100,102Nb nuclei. Figure 10 indicates regions of
those values of the parameters κ f and vt , shown as shaded ar-
eas, that give the 1+

1 state to be the ground state of the odd-odd
final nuclei for the 0+

1 → 1+
1 GT transitions of the 98Zr, 100Zr,

and 102Zr nuclei. Also indicated in Fig. 10 are those (κ f , vt )
values, which are connected by solid curves, that repro-
duce the observed log10 f t value for each of the AZr(0+

1 ) →
ANb(1+

1 ) β− decays. Optimal sets of the (κ f , vt ) values would
be those at which the log10 f t curve passes through the shaded
area in the figure. They could be 0.1 � vt � 0.5 MeV and
−0.15 � κ f � −0.25 MeV for 98Nb, and vt � 0.2 MeV and
κ f � −0.15 MeV for 100Nb. As for 102Nb, there are basically
two regions in which the crossing of the log10 f t curve across
the shaded area is visible: one with 0 � vt � 0.15 MeV and
−0.5 � κ f � −0.4 MeV, and the other with vt � 0.25 MeV
and κ f � −0.25 MeV. The aforementioned κ f values, i.e.,
κ f = −0.180, −0.150, and −0.260 MeV, and vt = 0.28, 0.50,
and 0.50 MeV for 98,100,102Nb, respectively, leading to a good
agreement with the log10 f t (0+

1 → 1+
1 ) data, more or less fall

into these ranges.
Figure 11 shows the calculated low-energy levels for the

odd-odd 98,100,102Nb nuclei employing those parameters de-
rived from the RHB-to-IBM mapping in Ref. [35], and the
optimal κ f parameter that gives reasonable agreement with
the log10 f t (0+

1 → 1+
1 ) data for the AZr → ANb β− decay:

014303-11



M. HOMMA AND K. NOMURA PHYSICAL REVIEW C 110, 014303 (2024)

FIG. 9. Contour plots of the calculated excitation energies for the yrast 1+, 2+, 3+, 4+, 5+, and 6+ states of the daughter nuclei Nb shown
as functions of the parameters κ f and vt used for the odd-odd Nb nuclei. The dashed lines in each panel connect values corresponding to the
experimental excitation energies.
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FIG. 10. Regions of those κ f and vt parameters (shaded areas) that give the 1+
1 state to be the ground state for 98,100,102Nb. The solid curves

connect the (κ f , vt ) values with which the experimental log10 f t (0+
1 → 1+

1 ) values for the Zr → Nb β− decay [50] are reproduced.

κ f = −0.180, −0.150, and −0.260 MeV, for A = 98, 100,
and 102, respectively. All the other model parameters, includ-
ing vt , are the same as those used for the mapped IBM-2
calculations (see Table III). The corresponding experimental
energy spectrum [50] is also included. An overall effect of
using the optimal κ f strength parameter for 98,100Nb is to
compress the energy spectrum. For 98Nb, the energy levels
for the 4+

1 and 5+
1 states are lowered in the present IBFFM-2

calculation, and agree with the experimental data better than
the previous calculation in Ref. [35]. The 3+

1 energy level is
calculated to be very near the 1+

1 ground state in both versions
of the IBFFM-2. It is quite at variance with experiment, which
rather suggests this state to be found at the excitation energy of
737 keV. We note that for 98Nb spins for all the observed levels
included in Fig. 11, but for the 1+ one, have not been firmly
established experimentally. The energy spectrum for the 100Nb
obtained in the present work is even more compressed with
respect to the one in the previous study [35]. An improvement
over the previous mapped-IBM-2 calculation is only seen in
the energy level of the 2+

1 state, which agrees with data. The
spins and parities of those states other than the 1+ ground state
have not been established for 100Nb, either. For 102Nb, the en-
ergy spectra resulting from the mapped IBM-2 and the present
calculation look strikingly similar to each other. This reflects
the fact that the mapped IBM-2 calculation in Ref. [35] al-
ready reproduced satisfactorily the log10 f t (0+

1 → 1+
1 ) value

for the 102Zr → 102Nb decay, and the κ f parameter employed

there (κ f = −0.270 MeV) is close to that optimal value ex-
tracted in the present study. Determination of the spin and
parity of 102Nb has been under debate, and is only tentatively
assigned to be 4+ in the NNDC database. But since the lowest
energy state for which the spin and parity are identified is the
1+ state, we here regard the 1+ state as the ground state of
102Nb.

In Fig. 12, we make similar comparisons to those in Fig. 11
for the IBM-2 energy spectra for the even-even 98,100,102Mo
nuclei, since they are used as the even-even boson cores for
the odd-odd 98,100,102Nb nuclei, respectively. Just as in the
cases of the odd-odd Nb nuclei, a notable effect of using the
optimal κ f parameter in the present analysis is to compress the
whole energy spectrum with respect to the previous mapped
IBM-2 calculations for 98Mo and 100Mo. As for 102Mo, there is
essentially no difference between the two IBM-2 calculations,
since the employed κ f values are similar. In general, the new
calculations reproduce the experimental energy spectra better
than the previous ones for 98,100Mo.

We note that, within the mapped IBM-2 framework, the
derived quadrupole-quadrupole strength parameter between
unlike bosons is shown to be generally so large in magnitude
that the resulting energy spectra, especially for those of the
non-yrast states, are predicted to be considerably higher than
the experimental ones. We might then attribute the too large
derived quadrupole-quadrupole boson interaction strength to
the properties of the EDF and/or the pairing properties

FIG. 11. Comparison of the low-energy spectra for the odd-odd 98,100,102Nb nuclei calculated with the parameters that give a reasonable
agreement with the experimental log10 f t (0+

1 → 1+
1 ) data to those obtained in Ref. [35], and to the experimental data [50].
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FIG. 12. Same as Fig. 11, but for the energy spectra for the even-even 98,100,102Mo nuclei.

employed in the SCMF calculations, upon which the map-
ping procedure is based. One immediate solution would be
to adjust some of the parameters in the EDF-SCMF model so
as to provide a reliable microscopic input to the IBM-2 that
leads to an improved description of the low-lying states and
β-decay properties simultaneously. By increasing the strength
of the pairing correlations, for instance, the SCMF calcula-
tions yield the PESs that are softer in deformation variables,
and the derived quadrupole-quadrupole strength in the IBM-2
Hamiltonian is expected to be smaller than otherwise, thus
leading to a better description of the measured low-lying states
as well as the β-decay properties.

It should be also noted that, for all these three Mo isotopes
near N = 60, the roles of shape coexistence and intruder
excitations are expected to be significant [43,51–54], which
is indeed reflected in the low-lying 0+

2 energy level found in
the vicinity of the 2+

1 one. The low-lying 0+
2 levels could not

be reproduced by the version of the IBM-2, that is adopted
here and in Ref. [35]. The low-lying 0+ states and shape
coexistence could be handled within the IBM, e.g., by incor-
porating effects of configuration mixing between normal and
intruder states [55], as was considered in previous mapped
IBM calculations [53,56].

V. SUMMARY AND CONCLUSIONS

We have analyzed the parameter dependence of the calcu-
lated β-decay properties, as well as the low-lying states, of
the neutron-rich Zr isotopes within the IBM-2 and IBFFM-2.
The present analysis is a continuation of the preceding IBM-2
study on the β-decay properties in this mass region, which
was based on the microscopic EDF framework. The present
study aims to identify which of the various model parameters
affect most the predictions on β decay and also play a key role
in improving the accuracy in reproducing the experimental
data. The calculated log10 f t values for the β− decays of the
neutron-rich even-even 96–102Zr into odd-odd 96–102Nb nuclei
here have been shown to exhibit consistently strong depen-
dencies on the model parameters that are associated with the
quadrupole-quadrupole interaction strength (κ f ), and with the
residual neutron-proton interaction of tensor type (vt), which

are involved in the IBFFM-2 Hamiltonian for describing the
odd-odd daughter Nb nuclei. Along with the log10 f t val-
ues, we have also investigated the parameter dependencies of
the calculated excitation energies for the low-spin and low-
lying states for the odd-odd Nb nuclei, and the GT strength
distributions.

The problem encountered in the previous mapped IBM-
2 calculations [35] was that the measured β−-decay
log10 f t (0+

1 → 1+
1 ) values for the 98Zr and 100Zr nuclei in

particular were underestimated by a factor of ≈1.5. The anal-
yses made in the present study have indicated that a major
cause of this discrepancy is the fact that the κ f parameter
obtained by the mapping procedure might have been too large
in magnitude. It has been indeed shown here that reductions
in magnitude of κ f by approximately a factor of 2 would
be required to improve the mapped-IBM-2 description of
log10 f t (0+

1 → 1+
1 ) values. The reduced |κ f | value leading to

a good agreement with the measured log10 f t (0+
1 → 1+

1 ) has
been, in turn, employed for calculating the low-lying states
of each nucleus, and it has been shown that the reduction of
|κ f | improves significantly the description of the low-lying
energy levels for the even-even 98,100Mo nuclei, which are
considered as the boson cores for the odd-odd 98,100Nb nuclei,
respectively.

The fact that the too large quadrupole-quadrupole inter-
action strength for the even-even nuclei was obtained in the
mapped IBM-2 could be partly attributed to the properties of
the EDF-SCMF calculations. Possible impacts of the parame-
ters involved in the EDF calculations, e.g., pairing strengths,
on the spectroscopic properties and fundamental nuclear pro-
cesses, such as the single-β and double-β decays, could be
investigated as a further step for a precise IBM description. In
addition, as the present analysis was focused specifically on
the Zr isotopes, it could be extended further to other nuclear
systems. We could also take into account additional parame-
ters in the IBM-2 and IBFFM-2 Hamiltonians that could have
influences on the log10 f t predictions, including the single-
particle energies, and occupation probabilities. Sensitivities of
the calculated quantities would be then analyzed in a larger
parameter space. The work along these lines is in progress,
and will be reported elsewhere.
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