
PHYSICAL REVIEW C 110, 014004 (2024)

Trineutron resonances in the SS-HORSE extension of the no-core shell model
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The SS-HORSE–NCSM method is generalized to the case of democratic decay into an odd number of
fragments. This method is applied to the search for resonances in three-neutron system (trineutron) using ab initio
no-core shell model calculations with realistic nucleon-nucleon (NN) potentials. The 3/2− and 1/2− strongly
overlapping resonances are predicted when softened NN interactions are used and are preferred over the case
where bare NN interactions of the chiral effective field theory are used with no resonance obtained.
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I. INTRODUCTION

In this paper, we develop and apply an ab initio method of
calculating the democratic decay of light nuclei into an odd
number of fragments within the no-core shell model (NCSM)
[1]. Such an approach is of a current interest for the studies
of neutron-excess light nuclei and, in particular, Borromean
neutron-excess nuclei near and beyond the neutron drip line.

We apply this method to the search for resonant states in
the three-neutron system (trineutron). There is an increas-
ing interest in theoretical and experimental investigations
of multineutron systems following the experimental obser-
vation of the tetraneutron resonance [2,3]. By studying the
multineutron systems we can sensitively probe the interac-
tion between neutrons for details that are not available from
neutron-neutron scattering experiments.

The first experimental investigations of the three-neutron
system were published in the 1960s. In particular, the bound
trineutron search failed in the studies of the 3H(n, p)3n reac-
tion in Ref. [4]. A comprehensive description of the history
of trineutron experimental searches can be found in reviews
of Refs. [5,6]. The main conclusion of all experiments is
the exclusion of the bound trineutron. At the same time, the
existence of a resonant trineutron state is not ruled out.

References [5,6] present also the history of theoretical
investigations of the three-neutron system. Among those
we note the recent studies based on realistic NN interac-
tions [7–10]. The resonant trineutron has not been found

in Refs. [7,9]. The binding energy of three neutrons con-
fined by an external potential (trap) has been extrapolated
in Ref. [8] to the case of the vanishing trap to estimate
the trineutron resonance energy (without any estimation for
the resonance width). The obtained resonance energy of
Er = 1.11(21) MeV is close to the result of Ref. [10] where
the trineutron resonance is predicted by the calculations in
the ab initio no-core Gamow shell model at the energy of
Er = 1.29 MeV with the width of � = 0.91 MeV.

In this work we will extend our SS-HORSE–NCSM
approach [11–17] that generalizes the NCSM to the descrip-
tion of continuum spectrum states. The advantage of the
SS-HORSE–NCSM is that the scattering phase shifts are
computed by simple analytical expressions at the NCSM
eigenenergies and there is no need in additional numeri-
cal challenges for no-core systems as compared to other
continuum generalizations of NCSM like the NCSM with
continuum (NCSMC) [18] or the no-core Gamow shell model
[10,19]. Next the S matrix is parametrized and the resonant
energies and widths are obtained by a numerical location
of the S-matrix poles. Recently this method has been suc-
cessfully applied to the description of resonant states in 5He
[11], 5Li [15], 7He [20], and 9Li [21] with JISP16 [22] and
Daejeon16 [23] realistic NN interactions in the channels of
elastic scattering of protons in the case of 5Li or neutrons in all
other nuclei by the remaining nuclear fragment in the ground
and sometimes in excited states. This method has been also
generalized to the case of four-body democratic decays and
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applied to the description of resonances in the tetraneutron
[16,17] and in the 7He nucleus in the channel of four-body
decay into 4He and three neutrons [20]. In short, we have pre-
viously applied the SS-HORSE–NCSM approach up to now
only to the decay channels with an even number of fragments.

On the other hand, the SS-HORSE–NCSM has been
applied to the hypernuclear system �nn in Ref. [24], a
three-body decay, for the first time. The distinction from
Refs. [11–17] is that Ref. [24] did not search for the S-matrix
poles but extracted the resonance parameters from the slope
of the phase shifts of the true three-body (3 → 3) scattering.

In this paper we generalize the technique of locating the
S-matrix poles proposed in Refs. [11–17] to the case of demo-
cratic decay into an odd number of fragments. We construct
a family of parametrizations of the 3 → 3 scattering S matrix
in a minimal approximation to enable the possibility of the
S-matrix pole search.

The structure of the paper is the following. We discuss the
3 → 3 scattering, the structure of the respective S matrix and
the generalization of the SS-HORSE–NCSM approach to the
case of the democratic decay into an odd number of fragments
using minimal approximations in Sec. II. We apply the devel-
oped method to the search of resonances in the three-neutron
system based on the NCSM calculations with various realistic
NN interactions in Sec. III. The conclusions are presented in
Sec. IV.

II. SS-HORSE–NCSM METHOD FOR DEMOCRATIC
DECAY INTO ODD NUMBER OF FRAGMENTS

We make use of the version of the J-matrix formalism
[25,26] in scattering theory utilizing the harmonic oscillator
basis, which is also known as HORSE [27], for the general-
ization of the NCSM to the case of the continuum spectrum.
The essence of the HORSE formalism is the division of the
many-body Hilbert space into a finite-dimensional oscillator
subspace where both the potential energy of the interac-
tions between particles and their kinetic energy are taken
into account (P space) and the remaining infinite-dimensional
subspace where only the kinetic energy is retained and the
interaction is neglected (Q space). The P space convention-
ally includes all many-body states with oscillator excitation
quanta, which do not exceed some certain number Nmax. This
definition is well matched with the NCSM where Nmax is used
to restrict the model space.

We use a generalization of the HORSE formalism to the
case of the true many-body (A → A) scattering developed in
Ref. [28] to describe states in the many-body continuum. The
version of HORSE for A → A scattering utilizes the ideas
of the method of hyperspherical harmonics (HH) (see, e.g.,
Refs. [29,30]), which was widely used in studies of various
atomic and nuclear systems, in particular, of the trineutron
[31–35].

In the case of continuum states, the HH method is an
adequate tool for the description of the so-called democratic
decays of an A-body system when no subgroup of the A
particles has a bound state. This condition appears to be
satisfied for the trineutron or tetraneutron. The wave function

dependence on the democratic hyperradius,

ρ =
√√√√ A∑

i=1

(ri − R)2, (1)

is of a primary importance within the HH approach. Here ri

are the individual neutron coordinates and R is the center-
of-mass coordinate. The remaining degrees of freedom are
described by hyperspherical functions depending on some
set of 3A − 4 angles �i on the (3A − 3)-dimensional sphere
coupled with neutron spins and a function describing the
center-of-mass motion. Both the hyperspherical and the hy-
perradial functions are characterized by the hypermomentum
K and some other quantum numbers α distinguishing different
states with the same hypermomentum, which are of no interest
for us in this research. For the states of a definite total angu-
lar momentum J and parity, K = Kmin, Kmin + 2, . . ., where
generally Kmin � 0 is integer, and Kmin = 1 in the case of
trineutron natural (negative) parity states with J = 3/2 or 1/2.

In the HH approach, the Schrödinger equation takes the
form of a set of coupled equations, which is equivalent to a
set of equations describing a multichannel scattering with the
same threshold in all channels. Each of the equations includes
a centrifugal term L(L + 1)/ρ2, where the effective orbital
momentum [28]

L = K + 3A − 6

2
. (2)

We note that the NCSM calculations performed in the P
space utilize a complete set of HH with K � Nmax + Nmin.
However, in the Q space, which is associated with the long-
range behavior of the wave functions, the HH with K > Kmin

are suppressed by the high centrifugal barrier. Therefore, we
utilize the democratic decay minimal approximation that im-
plies retaining only one HH with K = Kmin in the Q space.
So, the wave function is characterized by a single phase shift
δ of A → A scattering. This phase shift can be calculated
using NCSM eigenenergies Ed obtained with given values of
Nmax and the NCSM oscillator basis parameter h̄ωd within the
SS-HORSE–NCSM approach as [16]

tan δ(Ed ) = − SNmax+Nmin+2,L(Ed )

CNmax+Nmin+2,L(Ed )
, (3)

where Nmin is the minimal number of oscillator quanta allowed
by the Pauli principle, SnL(E ) and CnL(E ) are regular and
irregular solutions for a free motion in the HORSE formal-
ism, which explicit analytical expressions can be found in
Ref. [28]. Note, SnL(E ) and CnL(E ) depend on the oscillator
parameter h̄ω.

The accuracy of the approximation retaining the single
lowest HH in the Q space was confirmed in the studies of
three-body democratic decays in Refs. [36–39]. We also used
the minimal approximation for the democratic decay in inves-
tigations of the four-neutron system [16,17].

The A → A S matrix is related to the phase shift δ,

S(k) = e2iδ(E ). (4)

To study the S matrix analytical properties, it is more conve-
nient to analyze it as a function of the momentum k instead of
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the energy E ,

E = h̄2k2

2M
, (5)

where M is total mass of the system.
In the case of even A, L is integer, and the A → A S

matrix analytical properties are similar to those of two-body
scattering. In particular [40,41],

S(−k) = S−1(k) (6)

and

S∗(k) = 1

S(k∗)
, (7)

which are crucial for the S-matrix parametrization. The pa-
rameterized S matrix can be analytically continued to the
complex k plane for the search of its poles associated with
resonant and bound states. This technique has been used to
estimate the energy and width of the resonant state in the
tetraneutron [16,17].

Analytical properties of the A → A S matrix become more
complicated in case of an odd A due to a half-integer value of
the effective angular momentum L as follows from Eq. (2).
The S-matrix properties in the case of arbitrary noninteger
angular momentum are discussed in Ref. [41]. In this case
Eq. (6) is generalized to

S(keiπ ) = e2π iLS−1(k) + 1 − e2π iL, (8)

which holds for any complex value of k. As a result, for a
half-integer L we have

S(keiπ ) = −S−1(k) + 2. (9)

Note that Eq. (7) is valid for any real value of angular momen-
tum. We attribute properties (7) and (9) to the A → AS matrix
in the case of an odd A.

The S matrix has multiple sheets and its properties are
complicated in the case of a noninteger angular momentum.
The S matrix can be expressed as [42]

S(k) = Z (k) − ik2L+1eiπ (2L+1)

Z (k) − ik2L+1
, (10)

where Z (k) has the following property:

Z (keiπ ) = Z (k). (11)

Equation (10) cannot be used directly in the case of a
half-integer L: according to Ref. [42], in this case we have an
uncertainty of the 0/0 type that should be resolved using the
L’Hôpital’s theorem considering L as a continuous variable
and investigate the limit L → K + (3A − 6)/2 to obtain

S(k) = 1 + 2πk2L+1

Y (k) − 2ik2L+1 ln(k/q0)
, (12)

where Y (k) = ∂Z (k)
∂L |L=K+(3A−6)/2 and q0 is a real-valued mo-

mentum needed to make dimensionless the argument of ln in
the denominator. We note that our final results for the S-matrix
poles are independent of q0. Using Eqs. (4) and (12), it is easy

to deduce

tan δ = πk2L+1

2k2L+1 ln(k/q0) + i[Y (k) + πk2L+1]
. (13)

The phase shift is a real-valued function for real k > 0.
Therefore it is convenient to introduce a real-valued at real
k function

X (k) = i[Y (k) + πk2L+1]. (14)

It is easy to show that Y (keiπ ) = Y (k), that leads to the fol-
lowing symmetry property of the function X (k):

X (keiπ ) = X (k). (15)

The A → A S matrix and phase shift are expressed in terms of
X (k) as

S(k) = X (k) + 2k2L+1 ln(k/q0) + iπk2L+1

X (k) + 2k2L+1 ln(k/q0) − iπk2L+1
, (16)

tan δ = πk2L+1

2k2L+1 ln(k/q0) + X (k)
. (17)

The expression (16) satisfies the properties of Eqs. (7) and (9).
Due to Eq. (15), the function X (k) can be parameterized as

a series expansion in even powers of k,

X (k) =
W∑

i=0

wik
2i. (18)

We note that the value of q0 is arbitrary. Redefining q0 results
in a redefinition of parameters wi (i = 0, . . . ,W ) in Eq. (18)
such that the S matrix defined by Eq. (16) remains unchanged.

The parametrization (18) provides for an estimation of the
phase-shift behavior in the limit k → 0. For example, for the

three-body problem (A = 3), supposing that X (k)
k→0−−→ w0,

we obtain from Eq. (17):

tan δ ∼ δ ∼ k2K+4 ∼ k2L+1 ∼ EK+2. (19)

This behavior is in line with the analysis presented in Ref. [29]
justifying the parameterization (18).

Following the ideas of the SS-HORSE–NCSM approach
[11–17], we can obtain the parameters wi of the expansion
(18) by calculating a set of the A → A phase shifts δ(Ed ) using
Eq. (3) at the NCSM eigenenergies Ed obtained with a chosen
Nmax and a set of the h̄ωd values, and next parameterize this
set of δ(Ed ) by means of Eqs. (17) and (18) (see the next
section for more details). To calculate energies and widths
of resonances, we locate the S-matrix poles by searching for
zeros of the denominator in the right-hand side of Eq. (16),
which is equivalent to solving numerically in the complex k
plane [−π < arg(k) < π ] equation

X (k) + 2k2L+1 ln(k/q0) − iπk2L+1 = 0 (20)

using the technique suggested in Ref. [15] or the Newton-
Raphson method (see, e.g., Ref. [43]).

III. TRINEUTRON

The above method is applied to the search of resonances
in the three-neutron system. We use various realistic NN

014004-3



I. A. MAZUR et al. PHYSICAL REVIEW C 110, 014004 (2024)

FIG. 1. Top: NCSM results for the trineutron 3/2− ground-state
energy obtained with Daejeon16 NN interaction with various Nmax

plotted as functions of h̄ω. Bottom: 3 → 3 phase shifts at the NCSM
eigenenergies obtained using Eq. (3).

interactions, the same as employed in our analysis of the
tetraneutron [16,17]. We utilize the MFDn code [44,45] to
perform the NCSM calculations with Nmax ranging from 4–20
and h̄ω spanning from 2–50 MeV.

The results for the 3/2− ground-state energy obtained with
the Daejeon16 [23] interaction are shown in the top panel of
Fig. 1. The 3 → 3 phase shifts at the NCSM eigenenergies
obtained using Eq. (3) are presented in the bottom panel. It is
seen that the phase shifts tend to the same smooth resonance-
like curve as Nmax is increasing demonstrating a convergence
of the 3 → 3 phase-shift calculations.

We parametrize the function X (k) for each individual value
of Nmax � 16 used in the NCSM calculations of the trineutron
ground-state energies. For a given Nmax, we use a set of pa-
rameters wi defining X (k) to find the energies Ed by solving
the equation

− SNmax+3,L(Ed )

CNmax+3,L(Ed )
= πκ6

d

2κ6
d ln(κd/q0) + X (κd )

, (21)

TABLE I. Convergence ofenergy Er and width � of the trineu-
tron 3/2− resonant state obtained with NN interaction Daejeon16
with increasing Nmax. ξ is the r.m.s. deviation defined by Eq. (23).

Nmax 16 18 20 16 18 20
W 4 4 4 5 5 5

Er , MeV 0.560 0.508 0.483 0.607 0.537 0.481
�, MeV 1.458 1.152 0.924 1.524 1.176 0.963
ξ , keV 3.3 3.9 2.5 2.7 2.0 1.8

for each value of h̄ωd used in the respective NCSM calcula-
tions. Here κd =

√
2MEd

h̄ and L = Kmin + 3
2 = 5

2 . To find the
optimal values of wi, we minimize the function


 =
√√√√ 1

D

D∑
d=1

[
(Ed − Ed )2

(
h̄ωM

h̄ωd

)2
]
, (22)

where D is the number of the NCSM energies Ed obtained
with the same Nmax and the same h̄ωd as each of the respective
energies Ed , h̄ωM = maxd=1,...,D h̄ωd , and (h̄ωM/h̄ωd ) is the
weight increasing the importance of states with smaller h̄ωd

corresponding to energies closer to the resonance region.
The quality of the fits can be estimated by the r.m.s.

deviation

ξ =
√√√√ 1

D

D∑
d=1

(Ed − Ed )2. (23)

In our case we get approximately the same r.m.s. deviations
ξ obtained with five (W = 4) or six (W = 5) parameters wi

in Eq. (18), which are, however, significantly smaller than
the r.m.s. deviations obtained with four parameters (W = 3).
Energies and widths obtained by locating the S-matrix poles
using Eq. (20) and the NCSM results from calculations with
Nmax = 16, 18, 20 and parametrizations with W = 4 and 5
together with the respective ξ values are presented in Table I.

Fits of the 3 → 3 phase shifts in the 3/2− state with six pa-
rameters wi in Eq. (18) (W = 5) are presented by solid curves
in Fig. 2. The 3 → 3 phase shifts at the NCSM eigenenergies
obtained by Eq. (3) and used for the fitting are shown by
symbols in Fig. 2. The trineutron resonance energy and width
obtained by locating the S-matrix pole based on the NCSM
calculation with Nmax = 20 and fit with W = 5 are adopted
as the final result presented in the Table II together with their
uncertainties estimated as deviations of results obtained with
Nmax = 18, 20 and W = 4, 5 from the final result.

It is interesting that we obtain in the trineutron NCSM
calculations the 1/2− state very close to the lowest 3/2− state.
We perform the same analysis of the 1/2− trineutron reso-
nance. The 3 → 3 1/2− phase shifts are very close to those
in the 3/2− state and the obtained 1/2− resonance energy
and width are presented in Table II. It is seen that the 3/2−
and 1/2− resonance energies and widths are the same within
the uncertainty estimations and these resonances completely
overlap.
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FIG. 2. Fits of 3 → 3 phase shifts in the 3/2− trineutron state
obtained with NN interaction DAEJEON16 and W = 5 in the X (k)
expansion (18).

We employ the same technique to search for reso-
nances with other soft NN interactions, in particular, with
Idaho N 3LO [46] softened by the similarity renormalization
group (SRG) transformation [47,48] with the flow parameter
� = 2 fm−1 and JISP16 [22]. The respective results are also
presented in the Table II. Note, in these cases the 3/2− and
1/2− resonance also degenerate and strongly overlap.

We also have analyzed the trineutron resonance with bare
realistic NN interactions derived in chiral effective field the-
ory: Idaho N 3LO and LENPIC N 4LO semilocal coordinate
space interaction [49] with regulator R = 0.9 fm. In these
cases, the 3 → 3 phase shifts do not demonstrate a resonant
behavior. Due to the almost complete degeneracy of the 3/2−
and 1/2− states, these interactions also do not support the
1/2− resonance.

We obtained [17] a 4 → 4 S-matrix pole at negative imag-
inary momentum in the tetraneutron calculations with the
Idaho N 3LO interaction, which corresponds to a virtual state
at the energy of Ev = −15.2 keV. It is easy to prove that
the A → A S-matrix for an odd number of fragments A does
not allow S-matrix poles at the negative imaginary half-axis
of momentum. Therefore, a virtual state is prohibited in the
trineutron treated as a democratic decaying system.

TABLE II. Energies Er and widths � of trineutron resonant states
obtained with soft NN interactions Daejeon16 [23], JISP16 [22],
and SRG-evolved Idaho N 3LO [46]. Uncertainties are presented in
parentheses. All values are in MeV.

3/2− 1/2−

Interaction Er � Er �

Daejeon16 0.48(6) 0.96(21) 0.48(8) 0.96(17)
JISP16 0.35(8) 0.70(9) 0.35(11) 0.67(22)
N 3LO, SRG,� = 2 fm−1 0.34(8) 0.70(19) 0.35(9) 0.68(16)

IV. SUMMARY AND CONCLUSIONS

We suggest an extension of the SS-HORSE–NCSM
method to a democratic decay into odd number of fragments.
The first application of this method is the analysis of the
resonant trineutron state.

We conclude that the soft NN interactions that we inves-
tigated predict two low-lying nearly degenerate overlapping
trineutron resonances with spin parities 3/2− and 1/2−. On
the other hand, these resonances are not supported by bare
NN interactions of chiral effective field theory. We do not
include NNN interaction in our calculations, which has yet to
be designed for three-nucleon systems with isospin T = 3/2.

We argue that the Daejeon16 NN interaction is preferable
for the trineutron studies since it originates from the chiral
effective field theory and is fitted to stable light nuclei up to
16O by phase-equivalent off-shell variations, which effectively
mimic effects of NNN forces. The JISP16 NN interaction,
which was also fitted to light nuclei by off-shell variations,
leads to similar trineutron results as well as the SRG-evolved
Idaho N 3LO NN interaction.

We predict two overlapping trineutron resonances with
spin parities 3/2− and 1/2− with nearly exactly the same
energies Er and widths �: Er � 0.5 MeV and � � 1 MeV
obtained in calculations with the Daejeon16 and Er � 0.35
MeV and � � 0.7 MeV obtained in calculations with the
JISP16 and SRG-evolved N 3LO NN interactions.

Our results are in line with the conclusions of Refs. [8,10]
predicting the trineutron resonance at lower energy than the
tetraneutron resonance [16,17]. However, in our calculations
we obtain the trineutron resonance at lower energies as com-
pared to Er = 1.29 MeV in Ref. [10] and Er = 1.11(21) MeV
in Ref. [8]. Meanwhile, its width obtained with the Daejeon16
NN interaction is in agreement with � = 0.91 MeV proposed
in Ref. [10]. We note that Refs. [8,10] do not specify the spin
parity of the predicted trineutron resonance.

Note added in proof. Recently, a new unsuccessful experi-
mental attempt to find the trineutron and triproton resonances
in the reactions 3H(t, 3He)3n and 3He(3He, t )3p was pub-
lished in Ref. [50].
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