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We discuss two approaches which, by applying the screening method, permit one to include the long range
proton-proton (pp) Coulomb force in proton-deuteron (pd) momentum-space scattering calculations. In the
first one, based on the Alt-Grassberger-Sandhas (AGS) equation, presented in Phys. Rev. C 71, 054005 (2005)
and 72, 054004 (2005), one needs to renormalize elastic scattering amplitude before calculating observables. In
the second treatment, proposed by us in Eur. Phys. J. A 41, 369 (2009), 41, 385 (2009), and arXiv:2310.03433
[nucl.th], this renormalization is avoided. For the proton induced deuteron breakup reaction both approaches
require renormalization of the corresponding transition amplitudes. We derive the basic equations underlying
both methods under the assumption that all contributing partial wave states are included and explain why
in our approach renormalization of the elastic scattering amplitude is superfluous. We show that in order to
take into account in the screening limit all partial waves it is required that four additional terms, based on
the three-dimensional and partial-wave projected pp Coulomb ¢ matrices, identical for both approaches, must
appear in transition amplitudes. We investigate the importance of these terms for elastic pd scattering below the

breakup threshold.
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I. INTRODUCTION

The need for the present investigation arose when two
preprints [1] and [2], both dealing with the problem of how
to include the long range proton-proton (pp) Coulomb force
in momentum space pd scattering calculations through a
screened Coulomb interaction, were posted. The arguments
presented in [2] show that in the well established approach of
Refs. [3,4] the interplay of the pp Coulomb potential and the
deuteron bound state pole in the neutron-proton (np) f matrix
makes renormalization of the elastic scattering transition am-
plitude necessary prior to calculating observables. Contrary
to that, in our approach presented in [1,5,6], one avoids such
renormalization. In the following we explain similarities and
differences of both treatments and provide justification why
the renormalization in our method for elastic scattering is
unnecessary. We also discuss a very important problem, indis-
pensable in any treatment of the long-range Coulomb force:
how to take into account, in addition to partial waves utilised
when solving corresponding three-nucleon (3N) scattering
equations, all higher partial wave states.

II. FORMALISM

Let us start with the well-established approach of
Refs. [3,4] based on the Alt-Grassberger-Sandhas (AGS)
equation for the pd transition operator U [7,8]:

U|®) = PG, '|®) + P1GoU | D), ey
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where P is defined in terms of transposition operators, P =
P, Py3 + Pi3Pa3, Gy is the free 3N propagator, and | > is
the initial state composed of a deuteron and a momentum
eigenstate of the proton. The ¢ matrix ¢ is a solution of the
two-body Lippmann-Schwinger (LS) equation, with the inter-
action which contains in case of the pp system in addition
to the nuclear part also the Coulomb pp force (assumed to
be screened and parametrized by some parameter R). If the
state U|® > is known, the elastic pd scattering amplitude
< ®'|U|® > with |®' > being the final pd state, can be
obtained by quadratures in the standard manner.

In our approach we use the breakup operator 7 defined as

T =tGyU. )

It fulfills the 3N Faddeev equation which, when nucleons
interact with pairwise forces only, is given by [8,9]

T|® > =tP|d > + tPGyT|® > . 3)

The above form of the Faddeev equation ensures that the T
operator reflects directly the properties of the ¢ matrix. Here,
the elastic scattering amplitude is calculated from solutions of
Eq. (3) by [8.9]

(®'|U|®) = (?'|PG,'|®) + ('|PT|®), 4)

and the transition amplitude for breakup < ®y|Up|D > is
expressed in terms of T'|®) by [8,9]

(Po|Up| @) = (Do|(1 + P)T|®), ®

where |9y >= |pgmimymzviv,v3 > is the state of three
free outgoing nucleons. In the approach based on the AGS

©2024 American Physical Society
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equation the transition amplitude for breakup is given also by
Eq. (5) but with T replaced by U.

The AGS, Eq. (1), as well as the Faddeev, Eq. (3), equa-
tions are solved in the momentum-space partial-wave basis

|pga >:
1 1
lpga >= Ipq(IS)j<k§>1(j1)J(t§)T >, (6)

where one can differentiate between the partial wave states
|pgoe > with total 2N angular momentum j below some value
Jmax: J < Jmax, 10 Which the nuclear, Vy, as well as the pp
screened Coulomb interaction, VCR (in isospin f = 1 states
only), act, and the states |pgB > with j > jnax, for which
only the screened Coulomb force V. is present in the pp sub-
system. Incorporation of the |pgf > states is indispensable
due to the long-range nature of the pp Coulomb force and the
necessity to perform finally the screening limit R — oo. In
the following we derive for both approaches the equations in a
subspace restricted to |pga > states only, which, however, in-
corporate all contributions from the complementary subspace
of |pgpB > states. The states |pg > and |pgf > form together
a complete system of states (in the following we use shorthand

notation ) _, fpzdpqqu|pqa)(pqoz| = |a){a|):

/p2dpq2dq > Ipged(pgel + Y 1paB){pal
@ 5

= la)(a| + [B)(Bl =L, (N

where I is the identity operator.

Let us start with our approach. Projecting Eq. (3) for
T|® > on the |pqo > and |pgB > states one gets the follow-
ing system of coupled integral equations [1]:

(pqa|T|®) = (pqaltk, P|®) + (pgaltR. PGola') (o |T|®)
+{pgaltf, PGo|B ) (B |T|®), 8)
(paBIT|®) = (pgBItRPI®) + (pgBItR PGola') (o IT|®), (9)

where 7%, and X are r matrices generated by the inter-
actions Vy + VR and VE, respectively. The omitted term
(pgBItRPGy|B')(B'|T|®) on the right-hand side of Eq. (9)
is generated by (pgB|tRPGy|B')(B'|tF. A direct calculation
shows that it vanishes, independently of the value of the total
isospin T'.

Inserting < pgB|T|P > from Eq. (9) into Eq. (8) and using
Eq. (7) one gets

(pqat|T|®) = (pgaltf, .P|®) + (pgaltf, PGt P D)
— (pqaltf, PGole') (o [tF P|®)
+ (pqatff, PGola') (/| T|®)
+ (pqalty . PGot®* PGola') (/| T | D)

— {pgalty  PGola) (@It PGola”) (| T | ®).
10)

This is a set of coupled integral equations in the space of
the |a) states, which exactly incorporates the contributions of
the pp Coulomb interaction from all partial wave states up

to infinity. It is clear that there is a price to pay for taking
into account all states |pgB >: the necessity to work with
the three-dimensional Coulomb ¢ matrix, 53¢, obtained by
solving the three-dimensional LS equation [10].

Presently it is practically impossible to solve Eq. (10) in its
completeness. The reasons are a drastic amount of computer
resources and of computer time required to calculate the sec-
ond and the fifth terms with the three-dimensional Coulomb ¢
matrix. Luckily enough, one can rather easily eliminate them
at the expense of increasing the basis of |«) states. Namely,
extending the set |«) by adding channels with higher angu-
lar momenta, in which only the pp Coulomb interaction is
present, permits one to completely neglect the four terms in
Eq. (10) due to their mutual cancellation: the second with the
third and the fifth with the sixth term. The set (10) is then
reduced to

(pqa|T|®) = (pqalty, P|P) + (pqalty, PGole') (/| T|®),
11

which is a basic equation in our approach (in [1] called a
simplified one). It has identical structure as so frequently used
3N Faddeev equation for neutron-deuteron (nd) scattering [9].

To calculate in our approach the elastic scattering transition
amplitude one needs in Eq. (4) the second term (pg|T|D)
composed of low («) and high (8) partial wave contributions
for T'|® >. Using the completeness relation (7) one gets

(PG IT|®) = (pq |’ ) (/| T|®) + (pG |15 P|D)
— (G la') (@' [1RP|®) + (57 115 PGola')

X (&|T1®) — (pq '} e[t PGola") (& |T | D).
12)

To account correctly for contributions from |8) states again
four terms are required, two of which contain the three-
dimensional Coulomb ¢ matrix. The first one, (pg |t§3dP|d>),
corresponds to the amplitude of the Rutherford point-deuteron
pd scattering and the second one, (3G|t®¢PGola’) (o' |T | D),
is a modification of the first one by nucleon-nucleon (NN)
interactions.

Now we derive analogous relations in the approach based
on the AGS equation. Projecting Eq. (1) on the |pga > and
|pgB > states and using shorthand notation

2 2 /2 / ad / 3 2
> | Pdpadap®dp|paa) |\ p. P E — g

x Go(pga| = |a)t*Gole|,
one gets the following system of coupled integral equations:
(pqa|U|®) = (pga|PG;'|®) + (pga|Playif% Gole' |U| D)
+ (pqa|PIB"1E" Go(B'IU|®), (13)

(pgBIU|®) = (pgBIPG; ' |®) + (pgBIPla' )Ry Gola!|U|®)
+ (pgBIP|B)tEF (B'|P|D)

+ (pgBIP|B") R Go(B'|Plo )R Go (o' |U | D).
(14)
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Inserting < pgB|U|® > from Eq. (14) into Eq. (13) and
using Eq. (7) one gets finally

(pqa|U|®) = (pqat|PGy ' |®) + (pga|Pla)RY Go e/ |U | ®)
—(pqa| Pl )15 (' |P|®) + (pqar| PtR* P| D)
—(pqa| Pl )12 Go (o [Pla" )R Go (e |U | D)

+{pqa| Pt GyPla" 1R Gyt U |®).  (15)

C

This is a set of coupled integral equations in the space spanned
by the |«) states, analogous to Eq. (10) in our approach.
Again, extending the set |o) by adding a finite number of
channels with higher angular momenta leads to cancellations
between last four terms and set (15) is reduced to the follow-
ing basic equation for approach based on AGS equation [3,4]:

(pqa|U|®) = (pqa| PGy | D) + (pqa|Pla/ )R .Gy (e |U | ®).
(16)

To calculate the elastic scattering transition amplitude
(®'|U|®) one needs (pg|U|P) composed of low (o) and
high (B) partial wave contributions for U |® >. Employing the
completeness relation (7) and Eq. (15) one gets

(G |U|®) = (pG |PGy " |®) + (pG [Pl Y% . Gole' |U | ®)
—(pg |Pla )15 (o |P|®) + (pG [Pt P|®)
— (PG |Plo )15 Gola'|Plo" )i Go e |U | @)
+(pG [Pt GoPla )15 . Golo" U @) (17)

Using relation (2) between U and T one finds that indeed
amplitudes and thus also observables are the same in both
treatments.

It should be emphasized that only by extending the set
of |a) states is it possible to neglect in Eqs. (10) and (15)
the terms which contain the three-dimensional Coulomb ¢
matrices, and to reduce the problem in both approaches to
numerically well treatable Eqgs. (11) and (16). The indica-
tion that cancellations takes place is given by convergence
of predictions with respect to the total angular momentum in
the two-nucleon (2N) subsystem jy.x, Which defines the set
of o) states. It will be denoted in the following by j jmax
with j; being the largest angular momentum in which the 2N
interaction acts [1].

It is evident that a correct treatment of the Coulomb force
in both approaches requires inclusion of four additional terms
in the elastic (and also breakup) transition amplitudes [the last
four terms in Eqgs. (12) and (17)].

It was shown in [2] (see also [3,4] and references therein)
that in the treatment based on AGS equation (16) the elas-
tic scattering transition amplitude acquires, in the screening
limit R — oo, an infinitely oscillating phase factor and must
be renormalized before calculating observables. As a con-
sequence, each term in Eq. (17) containing U|®) has to be
renormalized. The origin for that phase factor is the interplay
of the pp Coulomb potential and the deuteron pole in the np
¢t matrix leading to coinciding singularities in the AGS equa-
tion [2]. Analogous mechanism leads to the same diverging
phase factor in the half- and on-shell pp ¢-matrix solutions of

0.6 [4,=0.2536 fm' ~,,,=0.059 fin”! q,;=0.2739 fin’" — 0.6
| Ey=3.0 MeV T B35 Mev ]
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£ [ T ] &
o - £ . (=9
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FIG. 1. Regions of the Jacobi momenta g and p values in (¢ — p)
plane which contribute to the breakup reaction [(red) solid line at
E = 3.5 MeV, showing ellipse "’n—z + ﬁqz = %q‘znax = ﬁqé + E4)

and elastic scattering (< ®'|PT|® > term] (gray highlighted region)
at the incoming nucleon laboratory energy £ = 3.0 and 3.5 MeV.

the LS equation when taking the screening limit [11]. In this
case the oscillating phase originates from the interplay of the
pp Coulomb potential and the pole of the free propagator in
the LS equation. In the case of the off-shell pp ¢ matrix this
mechanism is deactivated and no phase factor emerges.

In our approach we solve instead of the AGS the 3N
Faddeev equation (11) for the (pq|T|®) with off-shell p-g
values (see below), from which later elastic scattering tran-
sition amplitude is calculated using Eq. (4). The structure
of the 3N Faddeev equation guarantees that their solutions
inherit properties from the two-nucleon ¢ matrices. On the
one hand this permits us to rewrite them in a form where
the deuteron pole is extracted from (pga|T |P) amplitudes for
all @ = ay channels which contain 3S,->D, quantum numbers
(see Eq. (187) in [9]). Being off-shell we avoid the source of
the oscillating phase factor described in [2] and thus also the
necessity of renormalization of the elastic scattering ampli-
tude. On the other hand transfer of properties from ¢ matrix to
T amplitude provides an additional argument that such renor-
malization is redundant. Namely, the properties of ¢ matrices
generated by the screened Coulomb force alone (in the case
of partial wave decomposed ¢ matrices also those generated
by a combination of Coulomb and nuclear parts) as well as
their screening limits were studied theoretically in the past
in numerous papers [11-19] and later some of these proper-
ties were confirmed numerically in [10]. The most important
finding was that such off-shell # matrices have a well-defined
screening limit while the half- and on-shell ones acquire in
this limit an infinitely oscillating phase factor. At the same
time, the elastic pd scattering amplitude gets contributions of
(pqa|T | ®) states only from the off-shell region of the Jacobi
momenta magnitudes ¢ and p in (¢ — p) plane: 2 + %qz #*

m
g2 = ?nq(z) + E;, where m is the nucleon mass, E, is the

am9max = a5,

(4negative) fieuteron binding energy, and g is the magnitude
of the relative pd momentum. That off-shell region of ¢ — p
values does not overlap with the ellipse from which half-on-
shell contributions to the breakup reaction come. In Fig. 1
we exemplify that off-shell part and the separation of the
breakup and elastic scattering regions in the (¢ — p) plane for
the energy of a pd system E = 3.5 MeV, which is slightly
above the breakup threshold and for which both reactions are
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possible, and at E = 3.0 MeV, which is below the breakup
threshold and for which only elastic scattering is allowed. The
fact that elastic pd scattering requires only off-shell solutions
of the Faddeev equations and that the off-shell two-nucleon ¢
matrices have a well-defined screening limit is the reason why
in our method no renormalization of elastic scattering ampli-
tudes is needed. Contrary to that, the breakup half-on-shell
amplitudes acquire the oscillating phase factor originating
from half-shell ¢ matrices which are used in Eq. (11) to-
gether with the off-shell solutions (pga|T|®) to calculate
them [1].

III. RESULTS AND DISCUSSION

In order to compare results of two approaches and check
that indeed our method does not need the renormalization,
we applied our approach at a low proton energy below the
breakup threshold, where effects of the pp Coulomb force as
well as contributions of different terms to the elastic scattering
amplitude are expected to be sizable and where also results
of the Pisa group and of the AGS approach are available at
E =3.0 MeV [20-22]. In this energy region the Coulomb
force problem in pd elastic scattering was for the first time
exactly solved with realistic nuclear forces by the Pisa group
who applied the pair correlated hyperspherical harmonic basis
method [20,21]. Their results formed a solid base to cross-
check the precision of the AGS method [22] and to establish
it as a correct approach for including the pp Coulomb force
in momentum space calculations. In Fig. 2 we show our
predictions obtained with the AV18 NN potential [23], which
was also used in [20-22], and j;3 jmax7 |) basis at 3.0 MeV
and compare them to existing elastic scattering data for the
cross section and the analyzing powers. The red short dashed
line shows results obtained with only the first three terms in
the elastic scattering transition amplitude (12), which is the
approximation used also in Ref. [3]. The red solid lines are
predictions for neutron-deuteron scattering. It is clear that in
this region of energies the Coulomb force effects indeed are
large and dominant at all angles as evidenced by comparing
the red solid and short dashed lines. It is astonishing how
good the overall description of tensor analyzing power data
is in spite of their small magnitudes of &1%. The vector
analyzing powers A, and iTj; are underestimated by theory
as is very well known in the literature under the name “low
energy analyzing power puzzle”.

In Fig. 2 we show also by dotted blue lines results with
the last term in Eq. (12) included. It is evident that the term
—(pgla’) (' |tRPGola”) (@”|T |®) is significant at low ener-
gies and that it deteriorates a good description of data obtained
with the first three terms. In [1] it was shown that at ener-
gies above ~10 MeV the contribution of that term to elastic
scattering observables is negligible and at 10 MeV it starts to
influence some spin observables. It is thus unavoidable below
the breakup threshold to investigate how significant are effects
of inclusion of the fourth term (5G|t®¢PGyla’) (/| T|®) in
the elastic scattering transition amplitude. Since the fifth term
has a negative sign and contains partial wave contributions
to the Coulomb ¢ matrix whose full three-dimensional form is
contained in the fourth term, one would expect that they would
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- — —0.05
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T 1A
kS
2 ]
g ]
2
©
o -
10° 0
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i, . —0.02
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0 @ | -0.04
0.03 5
: 4
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0.02 § 17
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—-0.02
0
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FIG. 2. Comparison of data and predictions for the pd scattering
do

Cross section ‘&> proton vector Ay, deuteron vector i7;, and deuteron
tensor Ty, T21, T, analyzing powers. They are shown as functions
of a c.m. proton scattering angle ®.,, and were calculated at the
incoming proton laboratory energy E = 3.0 MeV with the approach
based on Faddeev equation (11) and transition amplitude (12). The
exponentially screened Coulomb force (R = 40 fm, n = 4) and the
AV 18 potential [23] restricted to the j < 3 partial waves have been
applied. To solve Faddeev equation the set j3jm.x7 Of |o) states
was used. The red short dashed lines show the results when only
the first three terms in Eq. (12) are taken into account. The blue
dotted lines are predictions when also the fifth term in Eq. (12)
(—(pgle’) (e |tRPGola”) (" |T|®)) is included. The pure Coulomb
term (®’'|Pt.P|®) was determined using the screening limit expres-
sion for the off-shell three-dimensional Coulomb 7 matrix (Eq. (19)
in Ref. [1]). The indigo crosses show the results with all terms in
Eq. (12) included. The red solid lines are predictions for nd elastic
scattering and green circles represent the pd data from Ref. [26].

at least partially cancel each other and the inclusion of the
fourth term should restore at least partly the good description
of data.

The computation of the fourth term with the three-
dimensional Coulomb ¢ matrix, %, can be done according
to expressions (D.9), (D.6), and (D.8) of Ref. [5]. It requires
integrations over components of two vectors: over vector g in
(D.9), and over p’ or g4 in (D.6) or (D.8), respectively. Below
the breakup threshold only channels o # o, contribute to
(D.6). Since below the breakup threshold the decomposition
(D.7) is superfluous, (D.8) provides the full contribution from
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FIG. 3. The same as in Fig. 2 but for selected spin correlation
coefficients. For description of lines see Fig. 2.

a4 channels, obtained by replacing the second part of splitting
(D.7) with the left side of (D.7). The contributions from (D.6)
and (D.8) must be determined numerically and this is the most
time consuming part of the calculations.

In Fig. 2 the indigo crosses show the results obtained with
all the terms in Eq. (12) included. As expected the fourth and
fifth terms cancel each other to a large extent and a good
description of data for the cross section and tensor analyzing
powers is essentially regained.

Even more interesting than the overall good description
of data found in Fig. 2 is the good agreement for practically
all the shown observables, between our 3.0 MeV results and
predictions of both the Pisa group and the AGS approach,
as far as it can be judged from figures of Refs. [20,22].
This good agreement strongly supports the statement that
our approach and the AGS one have to provide the same
predictions for all observables and that in our approach
renormalization of the elastic scattering amplitude is indeed
superfluous.

The above comparison of predictions from different ap-
proaches was done on the level of observables. To get better
insight into the accuracy of our method when applied be-
low and above the deuteron breakup threshold a comparison
on the level of phase shifts, for which abundant predictions
are available in [20-22,24], or even a direct comparison
of the K matrices [25], would be desirable. Since this re-
quires additional programming we postpone it to a future
study.

To get an idea about the magnitude of the Coulomb force
effects for other elastic scattering observables we show in
Figs. 3-6 analogous predictions as in Fig. 2 but for selected
spin correlations (Fig. 3), proton to proton (Fig. 4), proton
to deuteron (Fig. 5), and deuteron to proton (Fig. 6) spin
transfer coefficients. The figures reveal a wide spectrum of

X J T rrr I T T 1T ‘ T L | L I T T TrrrT X
KON T e 1K, (N-N)
08 E=3 MeV 1 AN Jo.0002
L 1 . ]
04 s ol ]
r 4 % —0.0001
of 4 N
L (a) 1 i
045 = LN
0 —l I -l | 11111 ‘ | | 1 0'0000
T I L ‘ L J |7 z
KN p 1K, (N-N)
ot n 708
03 % + i
A . - -
L W i o4
W - 1
L \e iy ]
0.6 % - Jo
i (©) T ]
= + N -0.4
049 | I - | 1111 I.‘ Ll 11| —l L1111 | | - | 1111 I._
0 60 120 0 60 120

FIG. 4. The same as in Fig. 2 but for selected proton to proton
spin transfer coefficients. For description of lines see Fig. 2.

importance and magnitude of the Coulomb force effects,
dependent on the observable. For most of observables the
effects are large in a wide range of angles, for example
for spin correlations from Fig. 3 and some of spin transfers
[K;(N — N), K;*(N — D), K(D — N)]. For some large ef-
fects are restricted to forward region of angles below &x90°
[K}(N —N), KX(N —N), KX(N —N), K;(N — D), KX(N —
D), KX(N — D), KX(D — N), KX(D — N)]. There are some in-
teresting cases of observables which for the neutron-deuteron
scattering vanish and become nonzero for the proton-deuteron
interaction, as for example the nucleon to nucleon spin trans-
fer coefficient K (N — N) shown in Fig. 4. These nonzero
values are due to a large charge independence breaking of
pp and np interactions in isospin t = 1 states, caused by the

T ]
X L =+ -
K, (N-D)[ i —0.03
sl T K, 0ND)
i = —0.02
021 £ ]
i 1 —o.01
ol F ht ]
o I IR < N B I )
Ht T
. 1) 4
K N-D)[ F¥ - 1 K AN-D)
z —'L -+ a z
0 ¥ - —04
= t <1 4
- il -
4 = -
02 3 - oo
L © q i
—0.4T|||\|‘|\I\I‘|||||_||*\|||\|\I\|\I\II_0
0 60 120 0 60 120

FIG. 5. The same as in Fig. 2 but for selected proton to deuteron
spin transfer coefficients. For description of lines see Fig. 2.
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FIG. 6. The same as in Fig. 2 but for selected deuteron to proton
spin transfer coefficients. For description of lines see Fig. 2.

Coulomb pp force. In our calculations we used the charge
dependent AV 18 potentials, taking np and pp NN interactions
of this model for the pd and nd systems. In all isospin r = 1
states both total isospins of the 3N system 7" = % and T = %
were taken into account. Vanishing of the Kj(n — n) for nd
scattering shows that the difference between np and pp NN
AV 18 potentials is too weak to induce nonzero values for this
observable.

The very interesting and most important effect seen in all
the figures is that practically in all cases (large) effects caused
by adding the fifth term to the elastic scattering transition
amplitude are appreciably removed when including simul-
taneously the fourth term. In consequence, it is, for many
observables, needless to account for these terms in elastic scat-
tering amplitude which drastically simplifies and accelerates
the determination of the Coulomb force effects.

When performing screening of the Coulomb potential, one
is interested in the minimal value of the screening radius
necessary to get converged predictions. The proper treatment
of the screened Coulomb potential requires for any particular
value of the screening radius R to accommodate all contribut-
ing partial waves, whose number grows with increasing R.
That in consequence compels one to work with the three-
dimensional Coulomb ¢ matrix and in turn gives rise to four
additional terms in the transition amplitude. Two of them
contain the three-dimensional Coulomb ¢ matrix and the other
two its partial wave decomposed counterpart [see Eqs. (12)
and (17)]. It is evident that these last two terms will contribute,
together with the leading one (pg|a’) (e’ |T|®), to the actual
pattern of convergence. To study that pattern we calculated
predictions for all (55) elastic scattering observables with five
values of R: 5, 10, 20, 30, and 40 fm and including in the
elastic scattering transition amplitude (12) in addition to first
two terms either the third one, —(pgGla’) (' [tRP|®), or the
third and the fifth, —(pgla’) (@' [tRPGola”) («”|T |®), ones. In
Figs. 7 and 8 we show for some selected observables the
pattern of convergence in R for the first and second cases (left

T

-0.02 0y / -0.02

0 60 120 0 60 120
O, . [deg] O . [dee]

FIG. 7. The convergence in screening radius R of predictions for
pd cross section and selected analyzing powers. In the left column,
(a), (c), and (e) are the results obtained when only the first three
terms in the elastic scattering amplitude of Eq. (12) were taken
into account. In the right, (b), (d), and (f) are predictions obtained
when in addition to the first three terms also the last fifth term
was included. The differently colored lines correspond to different
screening radii: blue dotted—R = 5 fm, green short dash-dotted—
R = 10 fm, maroon double-short-dash-dotted—R = 20 fm, magenta
long dashed—R = 30 fm, and red short dashed—R = 40 fm. The red
solid lines are predictions for nd elastic scattering.

and right column, respectively). It turned out that among 55
observables about 30 revealed worse convergence when only
the third term was included and there were observables for
which the contribution from the third term vanishes (some
such cases are shown in Figs. 7 and 8, with the exception of
the differential cross section and 7»,). In addition to deteri-
orated convergence some of these 30 observables exhibited
angular oscillations which grow with the increasing screening
radius R. They occur at forward angles and are exemplified
for A, in Figs. 2(b) and 7(c), for iTy; in Fig. 2(c), and for
K}y(D — N) in Fig. 8(e). For T, (see Fig. 7(e)), which gets
contributions from the third term, such oscillations do not
appear, nevertheless its convergence in R is poor and similar
to other spin observables shown in the left columns of Figs. 7
and 8. Including the fifth term not only removes oscillations
but significantly improves convergence for all the investigated
observables as demonstrated in the right columns of Figs. 7
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FIG. 8. The same as in Fig. 7 but for selected spin transfer
coefficients.

and 8. We found that at the energy of E = 3 MeV considered
in the present paper, the value of the screening radius R = 20
fm was actually sufficient to reach the convergence, what
agrees with statements about convergence given in [22].

It is evident that the fifth term is mostly responsible for
improving the convergence and for removing the angular
oscillations appearing in some observables calculated with
amplitude (12) restricted to the first three terms only. We
would like to emphasize again that the appearance of the four
additional terms in the transition amplitude (12) is compelled
by the requirement to incorporate into Faddeev equations con-
tributions from all |8 > states, which seems to be essential for
the proper treatment of the long-ranged pp Coulomb force.
The importance of this demand is brought clearly to light
only at low energies, particularly below the breakup threshold,
where large effects of the pp Coulomb force become empha-
sized. At these energies one needs, for some observables, both
pairs of terms to get the final predictions, contrary to energies
above ~10 MeV, where the contribution of the second pair to
elastic scattering becomes negligible [1].

One could wonder why in the approach of Ref. [3] whose
results at 3 MeV are shown in [22], one does not encounter
angular oscillations seen, e.g., for A, in Fig. 2(b) or for iTj;
in Fig. 2(c). Based on the results of the present study [see
Eq. (17)], one would expect that both methods should provide

the same final predictions as well as patterns of convergence
with the only difference being that in our approach the renor-
malization of the elastic scattering amplitude is superfluous.
Very probably, the reason for that seeming contradiction can
be traced back to specific details of performance of both
approaches. The most weighty difference seems to be an
additional screened Coulomb potential between the spectator
proton and the center of mass of the remaining neutron-proton
pair introduced in [3]. That is probably the reason why in this
approach the inclusion of all |8 > states was not considered
at any stage and instead incorporation of many partial waves
was compulsory when solving the AGS equation. Actually,
in the AGS approach pd observables are calculated using the
amplitude in the form U = T™ + limg_, oo [UR — g™ with
screening radius R and a screened Coulomb amplitude 75™
corresponding to the added Coulomb potential (renormaliza-
tion factors are suppressed for simplicity). In Ref. [3] it is
argued that the term [UR — T§™] is a short-range operator,
which can be calculated within a restricted space of lower
partial wave states |o). The agreement between the results of
the AGS approach and those of other methods suggests that it
is reasonable to expect a successful cancellation between U*
and Tg™ for the |B) states.

IV. SUMMARY

Summarizing, we have shown that the two discussed ap-
proaches which enable to include the long-range Coulomb
force in momentum-space pd scattering calculations by ap-
plying a screening method have to provide the same results
for all observables. In each method the cancellation be-
tween terms containing three-dimensional and partial wave
decomposed Coulomb ¢ matrices is decisive for establish-
ing workable equations, whose structure is identical to the
commonly used equations for neutron-deuteron scattering.
Solutions of these equations together with four additional
terms, two of which contain the three-dimensional Coulomb ¢
matrices, permit one to get the elastic scattering (and breakup)
transition amplitudes. At low energies, particularly below the
breakup threshold, the complete inclusion of |8) states, as
evidenced by two pairs of additional terms in the elastic
scattering amplitude, is required for the calculation of some
pd observables. In the approach based on the AGS equation
it is unavoidable to perform renormalization of the elastic
scattering amplitudes before calculating observables. In the
approach based on the Faddeev equation such renormalization
can be completely avoided.
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