
PHYSICAL REVIEW C VOLUM E 11, NUMB ER 3 MARCH 1975

Induced Coulomb corrections to the Q = = Q' P decay
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We calculate the induced Coulomb correction as well as the usual Coulomb correction,
to order QZRWp to the first forbidden 0 0+ P decay and demonstrate that the induced
correction, through the pseudoscalar form factor term, is dominant among all the
Coulomb corrections.

I. INTRODUCTION

In a recent paper' we discussed the importance,
in precision analysis of P-decay spectra, of Cou-
lomb corrections through the induced terms (here-
after referred to as the induced Coulomb correc-
tion) such as the weak magnetism and induced
pseudoscalar terms. It was demonstrated using an
example of ~B P decay that there is a Coulomb
correction through the weak magnetism term of
order (o,Z/m~R) in addition to the usual correc-
tion of order (o.Z)(RW, )(W,/2m~) expected from
simple consideration of the various factors in-
volved, where R is the nuclear radius, 8", the
maximum energy available in P decay, and m~ is
the proton mass. The usual Coulomb correction'
for the finite size of the nuclei through dominant
vector or axial-vector terms is of order (o.Z)(RW, ).
Since we have RW, -(mg) ', the induced Coulomb
correction is of the same order of magnitude as
the usual finite size correction. Recently Hol-
stein' generalized the calculation to include arbi-
trary allowed transitions and the induced tensor
term.

The induced Coulomb corrections are small, in
general, as are the usual Coulomb corrections in
allowed transitions. However, their effect can be
significantly enhanced when the dominant allowed
contributions are accidentally suppressed.

In order to emphasize the importance of this ef-
fect, we present in this paper an analytical expres-
sion for the shape factor for the 0 —O' P decay
which is the first forbidden one. In this decay,
when the transition hadron matrix element is ex-
pressed in terms of the nuclear weak form fac-
tors, as usually done in the elementary particle
treatment of nuclei, the contribution of the induced
pseudoscalar term is significantly enhanced rela-
tive to that of the usual impulse approximation.
In fact, the induced pseudoscalar term becomes

comparable in magnitude to the leading axial-vec-
tor term, and hence, the induced Coulomb correc-
tion is dramatically enhanced. We demonstrate
here that in the 0 —0' transition, the induced
Coulomb correction is indeed a dominant Coulomb
correction.

II. 0 O' TRANSITION

The most general hadron matrix elements for
the 0 0 transition are, from general invariance
principle,

&f(p, ) I
v'„"(o)

I f(p,.)&
=o,

&f(Pg) IA'."(o) If(p&)) =f, (q')Q + 2 f (q')q;-(~M)2M

q =(P, -Pi). , Q =(P;+P&),

where M is the nuclear mass [M= -', (M,. +M&)],
gM=M, -M&-—W„andf, (q') and f (q') are, re-
spectively, the nuclear axial-vector and the in-
duced pseudoscalar form factors. In Eq. (1),
V'„"(x)and A'„"(x)a.re, respectively, the vector
and axial-vector hadron weak currents. The nor-
malization of the f (q') term is simply for conve-
nience.

Since the 0 —0' transitions are first-forbidden
ones, f, (0) cannot be of order unity. In fact, from
the observed ft values for the 0 —0' transitions
(e.g ' 'Ce '"Pr "'Ho "'Tl, '"Pb), we find

If, (0) I—= 10 '-10 '. From comparison of Eq. (1)
with the corresponding impulse approximation ex-
pression, we find'

f, (q') = a~6.& 'g~W. &
o.-)+--

where g~ = 1.24+ 0.01 is the nucleon axial-vector
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(o&—= (yf I g o'"
a=1

(3)

It is clear from Eq. (2) that f, (0) is of order (y,)
-O(m„/m~), consistent with the above estimate.
From Eq. (2) we have

f (q') m, ' 1

f, (q ) Wo 1+A'

where

coupling constant and we have used the definition From the numerical values of Eq. (6) and of W,
we have x=0.01-0.03.' It appears, after all, that
the contribution of the f (q').term is only a few
percent of the leading f, (q') term. ' However, as
will be seen later, the induced Coulomb correc-
tion through f (q') becomes significant. In the fol-
lowing the shape factor will be given in terms of
the parameter x defined in Eq. (7).

Before we proceed to calculate the shape factor,
we give a rough estimate of the magnitude of the
induced Coulomb correction.

From the minimal coupling replacement in the
electromagnetic interaction

(4)

The ratio (y,)/(iv ~ r) can be estimated using the
well- known Ahrens- Feenberg approximation. ' It
is given by'

8„-8„+ie8
we have

q -q +eQ

(6)

(9)

(y,) = +—,XnZ for P decay,io'x'
where X takes the values of 1-2 depending on de-
tails on the nuclear models used. Since some evi-
dence exists in favor of the value X= 2,' we shall
use, in the following, X =2 for definiteness. Thus,
the parameter A in Eq. (4) is given by

where 8 is the vector potential. This implies
that whenever we have q„in the matrix element,
we replace it by q veQ„which then gives the in-
duced Coulomb correction. The vector potential
produced by the nucleus of a uniformly charged
sphere of the radius R is given by"

(Io)

3HZ
A='W, R (6) Taking, for simplicity, r =R, we find, from Eqs.

(9) and (10)
For example, A-=1, 48, 12, and 19, respectively,
for "N* "O '"Ce- '"Pr '"Pr- '"Nd and
166H 166E s

From Eq. (6) it is clear that the ratio [f (q')/
f, (q')] is considerably larger than unity since W,
is of order of MeV for P decay. The ratio of the
two contributions, f (q') and f, (q'), in the transi-
tion matrix element is then

(2MW, /m„')m, f (0) W, m, f (0)
2Mf, (0) m, ' f', (0)

=(=-.) '.
:x.

QZ
qp qp +

R p

which gives rise to, when combined with Eqs. (1)
and (7), the induced Coulomb correction of order

f (0)=(2M)f, (0)( ). (12)

Since the factor, 2Mf, (0), is the leading contribu-
tion to the transition matrix element, as can be
seen from Eq. (1), this correction is significant
even when x is small.

Next we proceed to calculate the electron shape
factor. The Coulomb-corrected amplitude for the
process i-f+e +(f, (calculated through a perturba-

tive expansion to order aZ) is given by"

'
z7(p ) ~„(q) d ~yo

"' ' .~ (q ) y"(1 y )v
p —pe —zc (13)

In Eq. (13),

g.(q) = (f (p ) I
v'."(0)+g'."(0)Ii(p;))

(q,).=-(u ~.)., (q.).=(i -u.)., (14)

where (P,)„and(P, )„arethe lepton four-momen-
ta, P the intermediate electron four-momentum,
and G cos8, =10 '/m~'. Also, F„.„(q')is the elastic
charge form factor of the final nucleus, normalized
to unity.
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The electron energy spectrum is then"

dI =,', ', d(cose) 2J]+1
SP111S

(15)

where 8 is the angle between p, and p„J,is the spin of the initial nucleus, and E„F,, are the electron and

neutrino energies. From Eq. (13), we have

2' g.(q)g,*(q)2 Tr[(y P, +m.)r"( -r0b" P,~')+ ~ Re
J

d'&-. (-."" -'.
SPll1S

&&g„(q,)g,"(q)2»[(m, +~ P.)r.(m, +~ P)r (I ~0b" P.~') .

Introducing the usual Fermi function F,(Z, E,),
the shape factor, S'(Z, E,) (un-normalized), is de-
fined by

dI' =, ' S'(Z, E,)P, E,(W, —E,)'F,(Z, E,)dE, .

(17)

and (16) are assumed to be of the form

f.(0)
fk(q ) ] I 2 01

(18)

The integrals which appear in Eq. (16) are evaluat-
ed in Appendix A. The form factors in Eqs. (1)

Using the integrals given in Appendix A and omit-
ting terms of order (m, /M) and (W, /M) as well as

of order (P, R)', we obtain, from Eqs. (15) and (16)

' PE(W —0,)' f B,(Box B)f,'(0')

x
~

1 ——'x(q') + ', x'(q') +, ', 2E, 1 ——' x(q2) 1',+ — ' x(0)Y, + ', x(0)x(q') Y,m, pe

2

+—[Y„+x(O)x(q')Y, ]+ 1-™x(q') Y„+—'x(0)Y, —~ x(0)x(q')Y,2 %'~ —E, E~

x—1 — ' x(B*) x(0)X, +—' " x(0)1' -I l

1 e 2 1 pe'pv
m, E, m, Z,Z,

(19)

where x(0) —=x which was previously defined in Eq. (7) and

( 2) W0m, f (q)
m, ' f, (q')

(20)

In Eq. (19), the quantities Y,0, Y,+, Y,+, and Y,+ are defined in Appendix B.
Next, integrating over cos 0 with the help of the integrals given in Appendix B and retaining terms up to

order P,R, we find

e &e &e e

~ 2pxIj I~ +2xI~ I
L e e e

+ (I„+x'r,)+ — 1 —x—' I„+x—'I, — ', x'I,

1 m.
+—x I4+-x- 'I4- + xI,

me
' ~e me

(21)
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where I,+, I,+, I,+, I,+, I,+, and I~ are defined in Appendix B. The shape factor (normalized) is then given
by, from Eqs. (17) and (21),'

~ 2

S(Z, E,) =1+x' —2x '+ c(Z -E, c,++x'c, —x(c,++c, )—' —(c,++x'c, )—'+3(WO —E,)
e e e

rn m, p, '+ (W, —E.)'
X Ci —XC- —X(ci—C-) —X C+ —X—C3 3 3 3 Z ' me 8 e

+ X C6+- X C6- —3 XC5+ + QZ 1 —X (22)

where c,+ (i =1,2, . . . , 8) are given in Appendix B
and are all of order R.

The first oz term (given in brackets) is the usu-
al finite-size Coulomb correction from both f, (q')
and f (q') and the last is the induced Coulomb cor-
rection due to the minimal coupling replacement
mentioned earlier. It should also be pointed out
that the above expression for the shape factor [Eq.
(22)], being only linear in o.z, is valid, strictly
speaking, only for light and medium nuclei such
as the case of "N —"Q. However, even in the
case of nz= 2, the (az)' terms are usually small;
in particular the shape of the spectrum is not al-
tered significantly by the (o.z)' terms and Eq. (22)
is perhaps adequate for a qualitative analysis of
the shape factor for heavier nuclei.

We remind here again that in Eq. (22) terms of
order (m, /M), (mQ)', . . . are neglected. The re-
sult in Eq. (22) with o.z =0 then agrees with the
result given in Ref. 14.

In order to investigate the relative magnitude of
the two Coulomb corrections, we assume for sim-
plicity

where

(28)

with

2

g=- —--x TV +-x + —m x~0 8 2 1 ~0 451
0 6 m 36 e

P=-4 —-x +-x—11 2 19 0
6 9 j

e

C =--m —-nz x —-x W +-m TV0xj3 2 37 2 2 1 2 2 19
2 8 12 e 6 0 18 e 0

19 x0=———
9 m, '

(27)

(28)

It is clear that the usual Coulomb correction
[oz(I) term] is of order ozRW„whereas the in-
duced Coulomb correction [nz(II)] is of order
nzx/m+. Thus, the ratio [nz(II)/az(I)] is

1a=—5,=—b =qR j q =-~ (28) c(.Z(II) x I m, '
~Z(1) m~(W, R) X"' m, w,

(29)

c, =6gR, c, =--,'qR, c, = --, qR, c4 =qR1

C5 12gR j C6 4 gR C7 12'gR Cg 4 'gR

The shape factor Eq. (22) is then reduced to

S(Z, E,) =1+x' —2x—'+ nZ(I)+ o.Z(II), (25)

The approximate equalities amount to saying that
the charge radius of the final nucleus is roughly
the same as the transition radii characterizing the
form factors f,(q') and of course that the transi-
tion radii for f,(q') are roughly the same (in fact,
the impulse approximation supports this). The fac-
tor q = I/v'10 follows from the relation R' = ,'(r')—

For this simplified case, we have, from Eqs.
(B7) and (B18) in Appendix B:

where we have used R = (I/m„)A"'. Since x=0.01
-0.03, the above ratio is considerably larger than
unity. For example, the ratio is, respectively,
19, 17, 4, and 5 for "N*-"O, "'Ce-"'Pr, '"Pr

Nd, and "'Ho-" Er. Therefore, the induced
Coulomb correction is dominant numerically. How-
ever, since x«1, it does not modify the erI~rgy
dependence to any appreciable extent [see Eq. (28)],
while the rate is significantly changed.

Finally, a comparison of the shape factor given
by Eq. (22) or Eqs. (25)-(28) with the observed
shape factors for heavy nuclei' shows a clear qual-
itative difference between theory and experiment.
The theoretical shape factors are always mono-
tonic functions of the energy E„whereas most of
the observed ones show minima and/or maxima
inside the energy range. This implies that either
neglected (o.z)' terms are unexpectedly large or
the data need be reexamined.
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APPENDIX A

Evaluation of all the integrals which appear in
Eq. (15) is based on the following general formula:

where 6 '=p, '+F02 and a '=v'. The integral J can
then be easily expressed in terms of B(p, v, , p, ) in
(Al) as follows:

e(vv, v, v)=—J e' er(vv' vj, ')(v' vj ')$' —v' — )v]v'
J= (p'+W, ') tB(u, o, P, ) —B(u, v, P.)]. (AV)

where

,2 2 i~a )'+(~'- &)"=v (P —u) ln (Al)

On the other hand, J„andJ„,can be obtained from
J by successively applying to it the operator

0„=--(p'+W,') JI „,—p, „.(A8)
p, '2+ W02 8P„„

n = [q'+ (g + v)'][p, '+ (p, —iX)'][p, '+ (v —iX)'],

~= -i~I&'+(~ + v)'1+ v(p.'+ I
'- &') + V (I.'+ v'- &') .

(A2)

The integrals in Eq. (15) may be divided into the
following three types of the integrals:

In fact, one has the relations

J„=Q„J,
J„,= Q„Q,J= Q„J,= Q,J„. (A9)

In Eq. (15), we also have the following combination:

J=— d'P p, p„p„, J,=—Q (J„„)-P, 'J = d'Pf(P, P„P,)(P' —P, '),

J„=— d'pf(p, p„p„)p„,r =1, 2, 3, (A4) (A10)

J„,—= J d'pf(p, p„p,)p„p„r,s =1, 2, 3,

with

(A5)
which can also be obtained directly from the B's:

J,= -lim A. '(p, '+ W, ')[B(p, 0, A) —B(p, , v, X)]

f(p, p. , p. )

= [(1 —5'q, ')(1+a'q, ')j,'(p' —p, ' —ie)] '

= (~'+ W') v'l. (I '+~,')(v'+~. ')~,'(P'- P.'- i~)] ',
(A6)

. , p, '+ W,' (p —iq) (p. + v +i q)

q (p, +iq)(p. + v —iq)
(Al 1)

Vfe now give the low-energy expansion of the real
part of the above integrals (P, stands for either
electron or neutrino momentum and R is of order

1/p, , 1/v):

ReB(g, v, p, ) = w'
p v(p. +v) p(p. +v) p. 'v' 3v'(p+v)' ' 3p, 'v(p, + v)' '

3(p, +v)'

(A12)

ReB(p, , 0, p, ) =, — 1 ——,+—, — ' 1 — ", ' + ——', +O(p, 'B')
p, P~ 2 jl. p, p, p. 3

(A13)

We wish to point out that Eq. (A13) cannot be derived from Eg. (A12) since the latter has meaning only for
p, , v&0. From Eg. (AV) we get

p, i2 V 9 4 V 3 V v(&+v)

(A14)
and from Eq. (A9)

(Al 5)

'+W' ' 2p, v ah hReJ = ' v'p 6 + — '' '' +O(p R)3(4+v)Pe 2 Pe
(A16)
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From Eg. (A11) we have

2+5' 2

(p+v, )P, 3 (g + v)' p, ,p,
(A17)

APPENDIX B

In this appendix we give the expansion of the in-
tegrals of the form

(cos8) Reg(~') d'd - ' '" '. b4 (P —P —i~)
(B1)

F, =ReJ pe'pv p

Y, = Rep, ~ (J —Jp, ) b = p, q„
F3= Rep, ~ J A; =p, p,
F4= ReJ4 @ =P'-P. ' (O'-P. ')(P. P.) (B2)

The low-energy expansions of F„P„Y„andF4
are given by

up to linear terms in (P,R). In this equation g and
g' represent any one of the form factors f, as de-
fined in Fq. (19) for 0 -0 transitions, and b is
one of the following terms:

Pe 'Pttt Pe %2t Ptt 'Pt P Pe t (P Pe )(Pe 'Pl/)

which are the only relevant three-dimensional
scalars that survive when summed over spin in-
dices.

Consequently the integration over the interme-
diate electron momentum p generates four typical
integrals

1 d(cos8)» Y„,0=1,2, 3, 4,
1

2 ] b 2q2
(B8)

and expand them up to terms linear in (p,R). For
k=1, 2, 3 we have

1 d(cos8)» Y,,= — d(cos8)Y, ~+Oj'P, 'R')1 1
2 b 2q2

I,, +O(P, '-R'), (B9)

2
(B10)

For k=4 we have only integrals with Y4; in fact
these terms come from the space part of the axial-
vector current

rt 1
d(cos 8)» Y, =—I,&+O(P, 'R'), (B11)

2 J b 2q2 4 4

1
2

(B12)

(b, or b ) enters their definition; for example

'c, e =4(a'+ab, +b,')/(a+b, ) .

Analogously for subscripts attached to Ps.
According to (B1) and (B2) we must now consider

the integrals of the type

712 m 1
Y = ————c P +O(P 'R')

p
(B3) The explicit expressions of I's are

Y, = w'p, ~ [—c,p, +3c,p„+O(P, 'R')), (B4)

——c, —c, p, +3c,p„+O(p,'R')
pe

P —mp

(B5)

~ 1 ~2 gf 2

Y, =n'P, —c, —+c, ' +Op, 'R'), (B6)
LpeC4 pe pe

where

c, =4(a'+ab +b')/(a+b),

c, = ——,'(2a'+4a'b +2ab'+b')/(a +b)',

c, = -&(2a+b)b'/(a+b)',

c, = —,'(a+b),

c7 = &b'(3a'+ 3ab +b')/(a +b)',

c, =b'(2a+b)/(a+b)'.

(B7)

The c's carry + subscripts depending on which b

m2 v 1I = ————cp
p

I, = -m'p, (cp,),

I,= 3n'P„(cP„),

2~2p c P V

with

2

C y=C7 +
5 7

2

C f C8 +
C4

We finally define

I 7 —hmI
A~0

7T3

1 2p

C4-Pe Pe Pe

(B13)

(B14)

(B15)

(B17)

(B18)

(B19)
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