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Jost function for coupled partial waves of the Reid soft-core potential
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It is pointed out that the usual expression of the scattering amplitude of the Jost matrix can be used

to the states coupled by the potential with 1/r singularity, as well as less singular couplings. The
expression is useful for practical numerical calculations.

When the wave function of a scattering problem
can be expressed in the form of a Fredholm inte-
gral equation, the Jost matrix method yields the
most general and complete solution. "' The de-
nominator of the scattering amplitude, which is
called the Jost function, is the Fredholm deter-
minant. For the coupled states, if the coupling
potential is well-behaved, the numerator and the
denominator of the amplitude are obtained by the
usual prescription. However, as pointed out by
Newton, '~ if the coupling potential has 1/r singu-
larity as in the Reid soft core potential (RSC), '
the Jost matrix element [see, Eq. (17)] diverges
since it contains overlap integrals of a regular so-
lution of one orbital angular momentum l and an
irregular solution of the higher one l'=l+2, A
remedy to this difficulty for a regular solution
has been proposed by Newton. '~ The aim of the
present paper is to present a practical method of
overcoming this difficulty by treating the 1/r cou-
pling and less singular couplings on the same
basis with a slight modification of the formula.
This is done by inspecting the singular behavior
near the origin of the irregular solutions. The
present method provides a practical way of nu-
merically solving the wave functions for coupled
(and, of course, uncoupled) partial waves on the
basis of the Jost matrix.

For completeness, first let us recapitulate the
Jost matrix theory in a manner which has been
presented before. ' We use the following functions
for the l th partial wave;

u, (p) =p, (p), v, (p) =- pn, (p),
w, (p) = v, (p)+iu, (p),

and G and V the matrices

(G, 0)
0

y (2 /@2) ( ll lr ~

where

G, = —(1/k)w, (kr, )u(kr, ) .

Then, the regular solution of the Schrodinger
equation for the coupled partial waves reads

ly&=lu&+Gvlq& .
In terms of the wave matrix 0 defined by

lv&= lulu& ,

(5)

Eg. (5) and the scattering amplitude read

0
l u) = (1 + G VQ) l u ) (1: the unit matrix) (7)

and

&ul Tlu&=&ul flu& .

—v, (kr)u, (kr')] 8(r'- r) .

The matrices
l v) and lw) are defined in a similar

manner as in Eg. (2). Then, the Green's function
G is decomposed as

Using the step function 8(x) (=1 for x& 0, =0 for
x& 0), we introduce another Green's function

1
g, = ——[u, (kr)v, (kr')

where j,(p) and n, (p) are the spherical Bessel and
Neumann functions. To keep symmetry of the
formula, we normalize the initial wave as u, (kr)/
v k . Let

l g& and lu) stand for the matrices

&= (1/v k) ' (2)
4s'f)

G= —[w&&ul+g .
If we use a real matrix ~ defined by

Eq. (7) is expressed as

nlu&= ~(lu& —lw&&ul Tlu)) .

(10)

(12)
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Noting that the function v, (p) behaves near the
origin as

haves near the origin as

$, =g A„r" ' '+lnr QC„r" '
n=p

we define the matrices A and C by +(lnr)' Q E„r"""+(lnr)' Q G„r""",
n=p n=p

t (2! —1)!!
(14)

+ (»r)' p &„r"""+(lnr)'p H„r"""

When gV~I zo& (or gV~!u&) of Eq. (11)behaves
near the origin as I v&, we multiply fl on both
sides of Eq. (12), and take the limit r-0. Then,
we obtain the formula

«mfl~l&(ul Tlu)=»mal&lu) . (15)

This is the usual expression of the scattering am-
plitude. '

On the other hand, we define the J matrix (the
Jost matrix) by

(16)

and operate Vfrom the left of Eq. (12). Then, the
T matrix elements are expressed in terms of the
J -matrix elements as

(20)

The remaining three linearly independent sets of
solutions are obtained from Eqs. (19) and (20);
To obtain another set of irregular solutions, we
put all A.„and B„equal to zero, and reduce one
power of lnr. A regular solution is obtained by
further putting all C„and D„equal to zero and
reducing one power of lnr. Another regular solu-
tion is simply given by the series with G„and H„
without lnr factor. For each set, IIO alone is free,
other coefficients being determined by recurrence
relations, except for E„D,&„, and B»„which
can be set equal to zero. Hence, if we modify
the matrix 8 of Eq. (14) to

(21)
(1+&u!Z!u ))&ul flu&=&ulZ!u& . (17) (ln )'"'

)
A direct proof of equivalence of Eqs. (15) and (17)
may be

limA~lso&= lime(l+gV~)!so&
O

=C(1+&ul V~lzo&), (18)

where we have assumed the same singularity prop-
erty near the origin for gV~!w& and

I v&. Equa-
tion (18) shows that this assumption is equivalent
to the assumption of the existence of (ul J la&.

In the case of RSC, the matrix element (ulZI se&

is infinite. Also gV~!w& (or g V+
I u&) of Eq. (11)

does not behave near the origin as I v&. Indeed,
we find that one set of the irregular solutions of
coupled partial waves l and l'=I+2 for RSC be-

we can also use Eq. (15) as the formula of the
scattering amplitude for RSC.

Equation (15) is very useful in practice: To cal-
culate Ac!a& (or A&lu&), we take 1!zo& (or 1lu))
as the starting function at a large distance from
the origin, and simply proceed with inward inte-
gration. Near the origin, the wave function so ob-
tained is smoothly joined to a linear combination
of the four sets of solutions.

As an example, the T matrix for the '8, +'D,
states for RSC at 0= 0.538 fm ' (E„b =24 MeV) is
given below. The calculation is done on an NEAC
2200-700 with the Runge-Kutta method using the
x mesh 0(0.001)0.012(0.01)0.112(0.05)1.112(0.1)
2.112(0.2)8.112, where x is the distance in units

of pion Compton wavelength:

0.142 63+ 0.978 17i, -0.006 16 —0.031 21i7= S 'Imp= I
—0.006 16 —0.031 22i, 0.049 64 —0.003 49i

(22)
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where

9'= limR~~ ~)
r 0

t 1.381 376 467 68x 10 +1.557 839 544 05x 107i,

I -1.03080003706x10' —1.16247896460x10'i,

-1.13430413681xl0' —5.17119360060x10'i I

8.464 316465 89x10'+ 3.858 808 0&9 99x 10'i

(23)

These values give the nuclear bar phase shifts 60
=1.4259, 6, = —0.0493, and the mixing parameter
p, = 0.0636 in agreement with Reid. ' Notice the
very severe cancellation that occurs in getting T
from 1'. This is due to rather singular nature of
the solution near the origin. Other uncoupled and

coupled partial waves are also treated by this
method, and are found to yield phase shifts and
mixing parameters in agreement with Reid, ' e.g.

6('P, ) =0.0377, 6('F, ) = 0.0016, p, = -0.0262 for
E~,b =24 MeV with the above mesh. Bound states
can also be obtained by setting the determinant of
lim„oR&~w) equal to zero. We have found the
deuteron binding energy at

~
E

~

= 2.231 MeV for
RSC. In conclusion, we see thus the Jost matrix
method is not only formally complete but also nu-
merically practicable for a realistic potential such
as BSC.
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