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The angular distributions of ' 0 elastically scattered from enriched targets of even-mass nickel isotopes

have been measured for Z~~o ——36 to 56 MeV. A four parameter optical model is used to describe the

data and the parameter ambiguities are discussed in detail. A potential folding calculation provides an

equally good representation of the data and yields a set of equivalent optical model parameters which

are within the parameter ambiguity relationships discussed. The ' 0 + nucleon real potential necessary

to describe the data through the folding procedure is less than one-half the value derived from
' 0 + nucleon scattering measurements.

NUCLEAR REACTIONS " 60 ~ 6'64Ni("0 '60), measured OP, E), E =36 to 56
MeV. Four parameter optical model and folded optical model descriptions.

I. INTRODUCTION

Although the first heavy ion reaction experiments
were performed well over a decade ago, the sim-
plest of these, elastic scattering, is still of prin-
cipal importance not only as an intermediate step
towards the understanding of more complicated
interactions between complex nuclei, such as those
involving nucleon transfer, but also because it
provides an opportunity to investigate the applica-
bility of both macroscopic and microscopic inter-
action models for a relatively simple reaction.
The present work is an investigation of the energy
dependence and the parameter ambiguities en-
countered in application of the four parameter op-
tical model to the elastic scattering of "0from
the even mass number stable nickel isotopes. The
formulation and calculation of a single folding de-
scription of the "0+"Ni scattering is also pre-
sented in which the optical model description of
"0+ nucleon scattering is used in an integration
over the target mass density.

Compared to the amount of experimental and
calculational information available for the interac-
tion of light ions (A & 4) with intermediate mass
nuclides, there is still relatively little information
available on the interaction between heavy ions
and nuclei with mass greater than -30. Qne of
the first reports of heavy ion scattering, by Mc-
Intyre, Baker, and Watts, ' included the scattering
of "0from a natural nickel target at 158 MeV but
no quantitative analysis was performed.

In much of the more recently reported elastic
scattering data a four parameter optical model
has been found to satisfactorily describe angular
distributions and yield curves. There is, however,
a considerable question about the reliability of the
ratio of imaginary well depth to real well depth
(W/U) as derived from these analyses. In the

work of Orloff and Daehnick, ' on the elastic scat-
tering of ' 0 by "Ti, "Ca, and "Al at bombarding
energies of 40 to 48 MeV, the deduced values of
real potential well depth, U, differed somewhat
with each incident energy, but the extracted values
for the imaginary well depth, W, exhibited quite
an erratic energy dependence. The ratio W/U was
found to vary between 5 and 50/p in a nonsystematic
way. Other results combined' ' have also shown
the values of W/U to range from less than 10' to
greater than 50%.

In an effort to establish the energy dependence
of the real and imaginary well depths, angular
distributions for the elastic scattering of ' 0
by"'" '~ Ni were measured at bombarding ener-
gies from 36 MeV to as highas 56 MeV in 2 MeV steps.
The energy dependence of the well depths and the
question as to whether large or small absorption
is more appropriate are considered in Sec. IIIA.
Some possible causes for the deduced variability
of the ratio W/U are also discussed in this section.
In Sec. IIIB the ambiguities in the optical model
parameters are examined and the apparent con-
stancy of extracted values for the Coulomb barrier
height and radius are shown to be but a moderate
extension of the standard Igo ambiguities. '

Although the conventional optical model has pro-
vided adequate parameterization of cross sections
of the elastic scattering of "0from various nuclei,
this is in a sense fortuitous. In the optical model
the scattering of two nuclei is considered to be a
model equivalent to the scattering of a point nu-
cleus from a potential well. The application of
the model historically progressed from describing
neutron cross sections to describing the scatter-
ing of protons, a particles, and other light nuclei.
Now it has even been applied to parametrize the
elastic scattering of a projectile as massive as an
oxygen nucleus. In light of recent advances in the
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use of folded potentials to describe n-particle
scattering, ' the "O scattering question should also
be considered from a more microscopic point of
view.

In the folded potential approach, the interaction
between two complex nuclei is assumed to be de-
termined by a sum of two-body nucleon-nucleon
potentials, or a sum of effective nucleon-projectile
potentials. The summation over nucleons is ap-
proximated as an integration over the matter dis-
tribution of the pertinent nucleus. The algebra of
folded potentials is considered in Sec. III C, the
various parameters arising in the folded potential
description are explained, and the results of an
application to the ' O+' Ni scattering are dis-
cussed.

a relatively short period of time due to a high
count rate, were mounted off center with respect
to the small circular collimators. These detec-
tors were then rotated periodically to expose an
undamaged portion of the silicon crystal.

Typical energy spectra are displayed in Fig. 1.
Energy resolution ranged from 250 to 500 keV.
In many cases, it was found necessary to use a
Gaussian line shape peak fitting routine to extract
the inelastic yieM when it was small and super-
imposed upon the approximately exponential low-
energy tail of the much larger elastic yield. The
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H. EXPERDf ENTAL PROCEDURE

A negatively charged 0 or OH beam from a
Heinicke radial extraction ion source' was injected
at 80 keV into the Florida State University model
S-FN tandem Van de Graaff accelerator for pro-
duction of oxygen beams in the energy rangee 36
to 56 MeV. The beam impinged upon isotopically
enriched nickel metal targets of 30 to 80 p, g/cm'
thickness which were vacuum deposited into thin
carbon backings.

An array of 8 to 16 Si surface barrier detectors
of 100 p, m depletion depth mounted at 10 intervals
in a precision scattering chamber was used to

easure the elastic and inelastic scattering angu-
lar distributions. No particle identification tec-
niques were necessary. In order to prolong de-
tector usefulness, those forward angle detectors
which experienced localized radiation damage in b
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FIG. 1. Comparative spectra for 0+
¹ at several16 58

laboratory energies and angles with the amount of col-
lected charge indicated at each energy. Peaks corre-
sponding to states of Ni are labeled by spin and parity.
The number of counts in the peak channel is shown.

FIG. 2. Measured elastic scattering cross sections
for ¹(0 60)58¹iat several bombarding energies.
The solid lines are calculated cross sections for the
geometry parameter values of F0=1.22 fm and a = 0.50
fm, as explained in the text. The real and imaginary
welt depths at each energy are illustrated in Fig. 6.
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error bars shown in the angular distributions, -

Figs. 2 through 5, represent cumulative relative
errors from background subtraction, line shape
fitting, and statistical effects. A report of the in-
elastic cross sections and an accompanying anal-
ysis is the subject of a subsequent publication. ' Rc.

c
v. (r) =z,z,e'

1

r
(2)

III. ANALYSIS OF ELASTIC SCATTERING

A. Optical model analysis with fixed geometric parameters

The elastic scattering angular distributions mea-
sured at several bombarding energies between 36
and 56 MeV are shown in Figs. 2 through 5. The
solid curves in these figures are the results of a
four parameter optical model calculation using a
modified version of the computer program JIB."
The potential used in the calculation has the form:

v„(r)= (v+-iw)(1+e") "+v-, (r),
where

x=(r -R)/a

The nuclear radius is written in terms of the
radius parameter, r„as8 =r, (A~~'+AJ',"). The
calculated results are insensitive to the Coulomb
radius and therefore throughout we have set g~ =—A'.

In the initial parametrization the real and imagi-
nary well depths, U and W, were allowed to vary
while the radius and diffuseness parameters, ro
and a, were held fixed until the value of y2, de-
fined as

2

X =z„2 ~ exp calc

~+exp i&=1

had a minimum value. The fixed radius parame-
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FIG. 3. Measured elastic scattering cross sections for 6 Ni( 60, 80)6 Ni at several bombarding energies. (See cap-
tion, Fig. 2.)
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ter was chosen as r, = 1.22 fm. A fixed diffuseness
value of a =0.5 fm appears to result in the best re-
production of the experimental cross sections when
the data from all targets, A2 = 58 to 64, are con-
sidered. A smaller value of a =0.4 fm for "Ni
did result in a reduction in the value of y' of about
10%; however, such a value is entirely too small
for the other target nuclei. Typical values of g
divided by the number of degrees of freedom were
2 to 5.

The energy dependence of the extracted real and
imaginary potentials is shown in Fig. 6. The un-
certainties, ~U shown by the error bars in Fig. 6,
assigned to the potential U are determined from
the criterion, "y'(U+ &U, W) =y';„(U,WI+1. A

similar criterion is used to determine the uncer-
tainty in W. The large value of the ratio, W/U

-30/q, indicates that the '60+Ni scattering system
is highly absorptive at these energies. A similar
result was obtained by Obst, McShan, and Davis'

for the elastic scattering of ' 0 by ' Fe, ' ' Ge,
and "Zr for similar bombarding energies.

Although the values shown in Fig. 6 were ob-
tained for r, =1.22 fm and a =0.50 fm very com-
parable descriptions of the data can be obtained
at E» = 48 MeV by fixing ro = 1.22 fm U and W at
93 and 34 MeV, respectively, and allowing the
dUfuseness to assume the values 0.500, 0.513,
0.519, and 0.532 fm for the different mass targets,
A. ~ =58, 60, 62, and 64, respectively. It is found
that these diffuseness values also tend to eliminate
the energy dependence in U.

There are two aspects of the quantity and quality
of the elastic scattering data which critically af-
fect the ratio W/U. The results cited from the
following- examples are thought to have general ap-
plicability for the "O+Ni scattering systems;
however, no complete survey of the effects was
carried out. Both of the effects were noted with
geometric parameters of a=0.50 fm and r, =1.25
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FIG. 4. Measured elastic scattering cross sections for Ni( 60, O)6 Ni at several bombarding energies. (See cap-
tion, Fig. 2.)
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fm, rather than 1.22 fm used above.
The first involves the absolute cross section

measurement. For "0+"Ni at 8„,=42 MeV a
set of potentials of minimum X' is U =60 MeV,
W =15 MeV. A 3% difference in the absolute scat-
tering cross section would have yielded the values,
U =61 MeV, W =20 MeV, making W/U critically
dependent upon normalization.

The second effect concerns the quantity and
quality of scattering data at back angles. For the
"9+"Ni scattering at 48 MeV, potential values of
U =60 MeV, S'=25 MeV are obtained when all of
the 48 MeV angular distribution data of Fig. 2 are
used in the X' minimization. If, however, the
data are truncated at 120' the resulting potentials
are U =60 MeV, 5 =10 MeV. In this latter case
where a reproduction of the low yield back angle
scattering is not required the fit is actually better
in the region of 50 to 80, near the grazing angle.
It is this region where an optical model description

is most critical if the parameters are to be used
in a distorted-wave Born-approximation (DWBA)
calculation for a transfer reaction and this may be
a partial explanation of why descriptions of scat-
tering data display a preference for high absorp-
tions, whereas the DWBA descriptions of trans-
fer data display a preference for small values of
S'.

B. Ambiguities in the optical model parameters

With the geometric parameters fixed, as dis-
cussed in the previous section, there are no mini-
ma in the map of y'(U, W) other than the ones re-
ported, that is, there are no discrete ambiguities.
A variety of continuous ambiguities are noted,
however, when a true four parameter (U, W, r„a)
optical model is used. These ambiguities are con-
tained in the distant approximation to the Woods-
Saxon potential x»R. The real part of the optical
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imaginary potential depth (w)

Re(VoM(r)j= —Ue " ' e " ' +V,(r).
It is apparent that for a fixed value of the diffuse-
ness a, any combination of U and R which satisfies
the relationship U exp(A/a) = C„,a constant, will
produce an equivalent real part of the optical po-
tential when the distant part of the optical model
potential is primary in producing the scattering
effects. This U, z„aambiguity was first eluci-
dated by Igo' for n-particle scattering. The Igo
ambiguity is clearly evident in the results of opti-
cal model calculations for the "0+"Ni scattering
at 48 MeV with a =0.50 fm as shown in Fig. 7. Not
only does the Igo ambiguity describe the behavior
of U vs r, over three orders of magnitude in U,
but also the variations in Ware well described for
r, ~ 1.25 fm, resulting in the ratio W/U having a
constant value. For the generation of optical mod-
el descriptions of the "O+Ni elastic scattering
data, the values found for the Igo constants, C„
and C„,evaluated for a =0.50 fm, are listed in
Table I.

As a slight extension of the three parameter Igo
ambiguity in U, x„anda, it has been noted~'
that the sensitive region of the potential can be de-
scribed by two nearly unique quantities; the barrier
height V~, the maximum of the total real optical
potential, and the barrier radius, R&, the radius
at which this maximum occurs. The uniqueness of
V~ is illustrated throughout the Igo ambiguity for
a=0.50 fm in Fig. 7. The values of barrier height
and radius extracted for the four Ni isotopes are
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well depths for which g is a minimum for different
values of so. The corresponding vat. ue of the Coulomb
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is a = 0.50 fm. The solid lines are to guide the eye.

FIG. 6. The values of real and imaginary potential well depths, U and ~, respectively, as functions of laboratory
energy for the elastic scattering of 60 from 8 Ni, Ni, and Ni.
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TABLE I. For Ni( 0, 60), the Igo constants, as
defined in the text, which best reproduce the elastic
scattering cross section for Ni( 0, 0) Ni at a bom-
barding energy of 48 MeV. The diffuseness value is
a=0.50 fm.
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shown in Fig. 8. The barrier radius values are
described in terms of target and projectile mass
numbers in the figure by either of two straight
lines. (An earlier illustration of a similar mass
dependence of R~ is incorrectly designated in Ref.
4, page 223.)

The connection between the Igo ambiguity and
the uniqueness of V~ and R~ is noted by writing,

U
Vs =Re(VoM(R )}= —

1 i(R R)~ ~

+V,(R ),

and since Rs is considerably greater than R, (R~
-R+4a), we have the approximate relation,

R -R~
Va = —U exp — + V, (Rs) .

The foregoing expression not only includes the
Igo ambiguity but also indicates that any set of
values of real potential U and diffuseness a which
satisfies the restriction,
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FIG. 8. The Coulomb barrier height V~ and the
Coulomb barrier radius R~ as determined from optical
model parametrization of 58&60, 62&6 Nj( 60 160) The
uncertainties in the parameters V~ and R~ are the
standard deviations as calcul. ated from the spread about
the mean of the individual values for each bombarding
energy.

action V» as

V(r) = p~(r~)VgN(lr+rJ —rrl)pr(rr)drpdrr,
~T ~P

where r is the vector between the two centers of
mass, r~ is the position vector of a nucleon in the
target relative to the center of mass of the target,
and rP is defined similarly to rT. The two matter
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a constant for fixed R, will constitute an equiva-
lent set, provided that knowledge of V~ andR~ is
sufficient to determine the real part of the poten-
tial. The fulfillment of this requirement has al-
ready been demonstrated in Figs. 7 and 8. The re-
sulting continuous ambiguity in parameters U and
a is illustrated in Fig. 9 where indeed the value
of ln(U) is a linear function of (1/a) with C~ = 1.88,
while the barrier height V~ remains constant. For
the establishment of the value of C~, the values of
R and R& are 7.80 and 9.75 fm, respectively.
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C. A folded potential calculation

In an attempt to more accurately account for the
finite size of the projectile, and to try to avoid the
parameter ambiguities of the conventional optical
model the use of a folded potential was investi-
gated. In the folded potential approach, "" the po-
tential interaction between a projectile and a tar-
get is written in terms of a nucleon-nucleon inter-

IO I I I I I

I 75 2.00 225 2.50 2.75
I/a (fm ')

FIG, 9. The real potential w ell depth which best
describes the Ni( 60, 60)5 Ni angular distribution at a
bombarding energy of 48 MeV, as a function of diffuse-
ness with F0=1.22 fm. The corresponding values of the
Coulomb barrier height are also shown.
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distributions for the target and projectile, pT and

pp, are assumed to be independent. Since the in-
tegrals involve spatial overlap of the two distribu-
tions, the Pauli exclusion principle is being ne-
glected. This neglect will overestimate the nu-
cleus-nucleus potential in the interior; however,
as shown in the previous sections, the interior
region is unimportant for elastic scattering of
"0+¹iat these energies.

An approximation to the above equation is ob-
tained by considering the nucleon-projectile opti-
cal model potential V», folded through the target
nucleus. This one step folding procedure is then
effected by an integration over target coordinates
and the projectile-nucleus potential""'~ and is
written as

V(r) = VNp(lr —rrl )p2'(rT)drr
T

open channels not explicitly accounted for in the

optical model, the most simple parametrization
of the imaginary potential is sufficient. The Cou-
lomb potential term used is still that of the simple
uniform charge distribution form of Eq. (2) with

R, =R as before.
In the evaluation of the real part of the projectile

+ target nucleus potential from Eq. (3), the geo-
metric parameter values for the nucleon+ projec-
tile potential are taken as r» =1.25 fm and a»

J
I I

i
I I t I I

58N. (160 l60) 58N,

E)ab 48 MeV

IO
0

This single fold form is much easier to evaluate
numerically and can be used to determine if use
of the folding potential is strongly justified.

The two functions in the integrand, V~p and

pr(rr), are expanded in a Legendre series" in
such a manner that the L=0 term of V(r) repre-
sents the folding of the familiar Woods-Saxon form
for V»(r') with a Woods-Saxon density distribu-
tion. The details of the procedure for application
of the L=2 part to a folding calculation for the in-
elastic scattering will be presented at a later
date. ' For the elastic scattering we merely write,

VNp(r ) I1+exp[(r ' —R„~)/a„~]
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Whenever the above folded potential form is
used as the real nuclear part of the optical model
potential in this work, the imaginary part of the
potential is still parametrized in the conventional
Woods-Saxon form of Eq. 1. It is felt that since
the imaginary potential is strictly a phenomeno-
logical potential used to take into consideration
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FIG. 10. A folded potential and the resulting calculated
cross section compared to a conventional potential and

corresponding cross section for 8Ni('60, ' 0) SNi.
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=0.64 fm in accordance with the values which de-
scribe P+' 0 elastic scattering. The target nu-
cleus matter distribution parameters r ~ = 1.06 fm
and a = 0.57 fm, are those determined by electron
scattering. " The imaginary potential and Coulomb
radius in the folded calculation are assigned the
same values as used in the conventional calcula-
tion to facilitate a comparison. In the folded po-
tential calculation the internucleus effective nu-
cleon+ projectile real well depth U„„is allowed
to vary until y' is minimized.

A cross section calculation for which the folding
procedure has been used is compared to data and
to a conventional calculation in Fig. 10(a), for the
scattering system "0+"Ni at a bombarding ener-
gy of 48 MeV. The geometric and potential param-
eters for the conventional calculation are those
given in Sec. IIIA and Fig. 6. The value of U»
for which y' attained a minimum value in the folded
calculation is U» =19.5 MeV.

As Fig. 10(a) shows, the cross section calculated
with the folded potential is virtually identical to
the results of the conventional optical model. The
rise of the experimental cross section above the
Rutherford cross section between 60 and 70 is re-
produced slightly better and some improvement
occurs in predicting the magnitude and slope of the
experimental cross section between 140 and 180 .
X' for the folded potential calculation is 15/p lower
than that for the conventional case. A similar
folded potential calculation for '60+ "Ni at 42 MeV
lab energy resulted in y' slightly greater than that
for a conventional potential calculation. At this lab
energy also, the best value of the nucleon+ pro-
jectile potential is U» =19.5 MeV.

A matter for concern might be the fact that the
nucleon-projectile well depth of 19.5 MeV results
in the best description of the data, while proton
+"0 real well depth of approximately 50 MeV best
describes proton scattering from ' 0. If the
value of U» is fixed at 50 MeV with r» =1.25 fm
and a»=0.64 fm, the cross section looks similar
to those of Fig. 10(a) but is shifted about 10' to-
ward smaller angles. The rise above the Ruther-
ford cross section in this case occurs near 55'.
Changing the imaginary potential parameter values
has little or no effect upon the location of the rise
above the Hutherford cross section. A reasonable
fit to the data can be obtained when U» = 50 MeV,
x„~= 1.1 fm, and a„~= 0.50 fm. This value of
x» is another value frequently used to describe
nucleon+ "0 scattering, but the diffuseness value
is smaller than usual values. "

The folded and conventional potentials which lead
to the cross sections are compared in Fig. 10(b).
The two potentials, which have been used to pro-
duce nearly equivalent cross sections, have the

same value at the radius x =9.90 fm. This feature
is a part of the continuous three parameter Igo
ambiguity in U, x„anda, as discussed in Sec.
III 8 and has also been noted for 'He and o.-particle
scattering. " The folded potential of Fig. 10(b) can
be simulated by a Woods-Saxon potential with the
same slope and magnitude near the radius of 9.90
fm by the use of the parameter values: U =22
MeV, F0=1.22 fm, and a=0.78 fm. These values
yield an Igo constant of C~ =1.81, which is in good
agreement with the value given in Fig. 9, further
demonstrating that the effect of this folded poten-
tial can be described within the extended Igo am-
biguity.

IV. CONCLUSIONS

As has been observed by other authors, ' ' the
four parameter optical model provides an adequate
phenomenological description of the "0+Ni elastic
scattering data in the energy region E, /Ve =1
to 1.5, where V~ is the Coulomb barrier height.
There are no discrete ambiguities in values of the
four optical parameters U, 5; a, ands„and the
continuous ambiguities are of the Igo type. ' Also,
as reported earlier, ' fairly unique values' are
obtained for the Coulomb barrier height and radius,
as discussed in the text. %'e have shown this
uniqueness to be in the framework of an extended

Igo ambiguity.
The standard Igo ambiguity, when used for the

imaginary potential as wel. l as the real potential,
indicates that the ratio of real to imaginary poten-
tial well depths should be a constant for equivalent
sets of optical model parameters within the ambi-
guity. We have demonstrated this effect over a two
order of magnitude change in U. For a particular
scattering system the uniqueness of any extracted
value of the ratio, WjU, is in considerable ques-
tion, however, as we have demonstrated its depen-
dence on the quantity and quality of the data.

When a single folding procedure is used to gen-
erate the real part of the optica1. potential for dif-
ferent nickel isotopes, and when it is applied to
data measured at different bombarding energies,
no over-all improvement in the description of the
data is achieved. Since this is true and in addition
the number of parameters is nearly the same as
in the conventional optical model description, the
folding model description cannot at this point be
considered as superior to the conventional one.
The nucleon+ projectile real potential depth within
the target nucleus which is needed to describe
'60+ "Ni scattering data via a folding procedure
is less than half the value needed to describe the
free nucleon+ "0 scattering data. It is clear that
additional theoretical wo",. ~ on the microscopic pro-
cesses involved in heavy ion scattering is needed.
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