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Eikonal calculations for high-energy electron-nucleus scattering
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The complete electron-nucleus cross section, containing both longitudinal and transverse interactions,
has been obtained for elastic as well as inelastic scattering using the eikonal wave functions of Yennie
et al. This approach is based on the distorted-wave Born approximation, and retains only the leading
term in an asymptotic expansion (in inverse powers of momentum transfer times nuclear radius) of the
eikonal integrals. The method should be valid at electron energies above 2-300 MeV, and should
constitute an improvement over the phase-shift method when the latter becomes inaccurate above 4-500
MeV, A simple collective nuclear model for magnetic transitions is also given, which contains the
rotational collective flow of nuclear charge.

NUCLEAg, REACTIONS Electron scattering Al. V In, Pb Bi
calculated elastic, inelastic magnetic form factors using eikonal method.

I. INTRODUCTION

Electron-nucleus scattering experiments have
provided much useful information concerning nu-
clear structure. '

The electron-nucleus interaction is well under-
stood. The electromagnetic field of the incident
electron interacts with the charge and current of
the target nucleus. This interaction is weak and

is given by quantum electrodynamics.
At large momentum transfer the contributions

from the higher-order nuclear charge and current
multipoles can be enhanced. Also at large scat-
tering angles the contribution from the transverse
multipoles can be increased relative to that from
the charge multiyoles. ' ~

Elastic magnetic electron scattering has proven
useful for studying the nuclear ground-state cur-
rent and magnetization distributions. Measure-
ments of the magnetic multipole form factors of
7A1, "V, and ' 'Bi, and corresponding calculations

have shown that scattering from very high magnetic
moments may prominently contribute and even pre-
dominate over Coulomb scattering at scattering
angles much less than 180'.' ' '

For an accurate analysis of such data, the plane-
wave Born approximation (or PWBA), which as-
sumes that both the initial and final electrons are
plane waves, is inadequate even for a nucleus as
].ight as "Al.'

h. reality, the electron wave function is signifi-
cantly distorted by the electromagnetic field of
the nucleus. The purpose of this work is to com-
pute the electron-nucleus scattering cross section

with electron wave functions that take this "Cou-
lomb distortion" effect into account.

We will corisider only a one-photon exchange
process, i.e. , treat the nuclear transition to low-
est order in Zo.'. However, the incident and out-
going electron waves will be treated as distorted
plane waves. This approach is known as first-
order distorted-wave Born approximation (or
DWBA). '

Most approaches to the problem of Coulomb dis-
tortion can be classified as either partial-wave
analyses or WKB methods. The latter apply only
in the high-energy regime, where k,R»1 (k, is
the incident electron momentum, 8 is the electro-
magnetic nuclear radius).

In the phase-shift analysis of either elastic or
inelastic scattering from an extended nucleus, the
radial electron wave functions are found by numer-
ically integrating a pair of coupled differential
equations representing the Dirac equation for an
electron in a centrally symmetric static potential.
A potential resulting only from the monopole part
of the nuclear ground-state charge density is chos-
en, since higher multiyole potentials will couple
the partial waves and result in a very large system
of coupled differential equations. This restriction
favors a choice of target nuclei near closed shells.

When high incident electron energies are con-
sidered (Z, &300 MeV), many partial waves (more
than 30) will contribute. The resulting numerical
calculations are quite lengthy. Due to sensitive
cancellation effects in the partial-wave series they
must be performed very accurately. These and
other difficulties have been discussed by Drech-
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sel. ' In more recent work by Gargaro and On-
ley, "'"Glossmann and Toepffer, ' Heisenberg
and Sick,"and Wright and Prewitt, ' improved
methods for computing the integrals of the radial
wave functions have been worked out.

As an alternative to the method of partial waves,
which should replace the latter at high energies,
several methods closely related to the cl.assical
eikonal method of geometrical optics" have been
developed. It; was reasoned that in the high-energy
(or short-wavelength) limit, where quantities such
as the potential energy, the modulus of the wave
function, and the local wave number are slowly
varying over one wavelength, the electron can be
approximated by a plane wave of modified ampli-
tude and phase.

The three main approaches are due to (1) Schiff,"
Saxon, "'"and Tiemann"; (2) Glauber" and Bak-
er"; and (3) Yennie, Boos, and Ravenhall. "

Yennie et al. devised an eikonal approximation
for computing accurate electron wave functions in
the vicinity of the nucleus, and applied it to a com-
putation of Coulomb scattering cross sections.
This method is equally applicable to elastic or in-
elastic processes. It has been specialized for the
case of nuclear charge densities which are either
Fermi or can be expressed as a series of deriva-
tj.ves of the Fermi density.

In the present work, we have applied this high-
energy approximation to the complete electron-
nucleus interaction (including the transverse in-
teraction) for the usual one-photon exchange pro-
cess.

In order to check on the accuracy of our ap-
proach, we use two recent computer codes that
have been developed for carrying out partial-
wave analyses of electron-nucleus scattering.
(1) HztNEL, which computes the inelastic electric
(without spin-flip) scattering cross section"; and

(2) MAGEL, which computes the elastic magnetic
scattering cross section. ' '

The eikonal scattering cross sections which we
will derive are found to have a region of validity
which is a function of the incident electron energy

scattering angle 6, and the multipolarity of
the nuclear moment (ground state or transition)
of interest.

In general 6 must be large enough so that qA» l
(q being the momentum transfer), i.e. , e&1/k, B.
This means that if electrons of energy &, ~ 200
MeV are scattered off medium and heavy nuclei,
we must have 6)& 30'. Below such a critical angle

(which increases with multipolarity), the eikonal
cross sections are found to deteriorate abruptly.
The latter were obtained following a sequence of
asymptotic expansions in inverse powers of qR.
The Coulomb (C), transverse electric (TE), and

transverse magnetic (TM) scattering amplitudes
are found as single integrals over the nuclear radi-
al coordinate.

The exact limits of validity for the eikonal ap-
proach cannot be cleanly stated. The PWBA cross
section, calculated' wi:h a modified q, can often
be used as a check in the region of diffraction
maxima. However, the accuracy of the eikonal
method does increase with increasing energy,
while the opposite holds for phase-shift analysis.

II. EIKONAL %AVE FUNCTIONS

The eikonal approximation is motivated by some
general features of electron-nucleus scattering at
high incident electron energies, as follows:

(1) The part of the differential scattering cross
section useful for investigating nuclear structure
occurs at large scattering angles, many times the
classical scattering angle. This large-angle scat-
tering comes from a high momentum-transfer col-
lision which happens in the vicinity of the nucleus.

(2) The incident electron suffers many small
collisions as it encounters the smooth long-range
tail of the Coulomb potential due to an extended
nucleus. The electron's initial and final wave func-
tions are gradually distorted as it approaches the
target. Near the nucleus the Coulomb potential is
still smooth and the potential energy is small com-
pared to the electron's total energy, so that the
electron's wave function may be represented as a
plane wave of modified amplitude and wave num-
ber.

It is assumed that the change in local wave num-
ber is small over one wavelength; if k, is the in-
cident electron's momentum, and V(r) the spher-
ically symmetrical Coulomb potential it traverses,
then 8V/sr «k, '. For a nucleus of charge Z and
radial extension of order 8, this implies y/(k, R)'
«1, where y=Ze'.

After solving the Dirac equation for an electron
in a spherically symmetric external electrostatic
potential, the lowest-order eikonal electron wave
function is obtained as follows":

with

uzi(k, ) =(k'/k)([1+a(k,'r)' —a(k,'xr)'+3b(k, ' r) —10c(k,' r)(k,'xr)']

w(o r)[—', ak'(k', r)+bk' —2ck'(k', &&r)']) vz ~(k, ) (2)
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and

S'~(k, ) =S(0)+k,' r --,'ak', r[3k"r' —2(k,' r)']
—b(r xk', )'+ c(r xk', )'. (3)

where (8, )f)) denote the direction of the electron
momentum k, and

k' = k[1 —V(0)/8, ],
V(r) =-4my r

r 00

r"p(r')dr'+ r'p(r')dr',

with p(r) the nuclear charge density.
The parameter a is defined by the assumption

that near the origin (center of the nucleus),

V(r) = V(0) +—
2ak "r'+

Further,

b = ()Ty/k'2) I p(r)dr
0

and

The superscript (+) denotes an incident plane wave

plus outgoing spherical wave; subscripts 8 or L
refer to right-handed or left-handed electrons.
Furthermore,

cos2 8 —sin2 He'@

pole order. Nuclear recoil will be neglected.
We further assume that the ground-state charge

density is sphericall. y symmetric (as done in the
preceding section) and that the excited state charge
density is not significantly different from that of the
ground state. This latter assumption allows us
to use initial and final electron wave functions
)j)'-'~ g=~ containing the same set of distortion pa-kz' pp
rameters k', a, b, and c.

For the derivation of the electron-nucleus inter-
action matrix element one can rigorously start
from quantum field theory as done by Reynolds. "
It is equivalent to start from a classical retarded
electron-nucleus interaction as has been explicitly
shown. "'" We will take the latter approach.

The complete electron-nucleus interaction is
determined by three quantities which describe the
electromagnetic properties of the nucleus: (1)
the nuclear charge density ep(r) normalized ac-
cording to f p(r)dr =&; (2) the nuclear (convection)
current density eJ, (r); and (3) the nuclear (spin)
magnetization density e p, ,(r). The latter two may
be combined into a total current, J(r) = $, (r) +V
x p, (r).

The process of an electron passing through the
nuclear electromagnetic field can then be described
by an interaction Hamiltonian density function H,
=Hc +Hr where the longitudinal (or Coulomb) part
1s

c = -())'y/Bk") r '(sp/sr)dr . H~=e pr4 r d'x

Another type of scattering wave function with
superscript (-) also arises, containing incident
spherical plus outgoing plane wave. By reversing
the sign of S, the plus-type solutions are converted
to the minus type with final momentum the negative
of k, .

To obtain the minus-type scattering wave func-
tion from the plus type in Eq. (1) we must change
the signs of 5 and c since )j)„=-= )|) '1

t I

and the transverse part is

8 r ——-e [$,(r) A(r) + P, ,(r) V x A(r)]d r .

Here (A, iC) represents the classical electromag-
netic field due to the electron. Passing to the
quantum-mechanical limit we can expand the nu-
clear charge and current operators in spherical
multipoles:

III. ELECTRON-NUCLEUS SCATTERING CROSS SECTIONS

We now wish to compute the electron-nucleus
scattering cross section with one-photon exchange,
using distorted electron wave functions. Our dis-
cussion will be general enough to hold for both
elastic and inelastic scattering of arbitrary multi-

and

Em

J'"(r) = g J„(r)Y„*.(r").
S r'm

The one-photon-exchange electron-nucleus scat-

tering amplitude is now given by'

(&rMrlH; )&M) = j g (&M, , I lsM)rflrr'dr) d'r Plr r')'
LL'N
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where J,M, (Jz~f) are the initial (final) nuclear
spins, with Q~ (r, y') =j~ (~r, )h~~"(uw, ), where r,
=min(r, r') etc. All of the nuclear dynamics are
contained in the nuclear transition densities p~ (r),
J~~z (r), being the reduced matrix elements of pzR
and 4« „, respectively.

The electron densities p, (r') and j,(r') can be
expressed in terms of plane waves (PWBA), phase-
shifted plane waves (DWBA), or by some high-en-
ergy approximation —in our case the eikonal meth-
od.

We consider that the initial electron beam is
unpolarized, and the polarization of the electron
beam in its final state is undetected. It follows
that

(3) f dr' is done similarly as was f dp, '. Succes-
sive use of integration by parts yields an asymp-.
totic series in inverse powers of (q'R) and only the
first nonzero term is retained.

The remaining integral over the nuclear radial
coordinate r is then evaluated on a digital com-
puter. Since we desire to preserve some generali-
ty as far as the analytical forms of the nuclear
charge and current densities are concerned, we do
not adopt the contour integral techniques employed
in Refs. 22-26. Our final expression for the Cou-
lomb amplitude is

H =4m e 6 XdrPL
0

da 1
dQ 2 2

2 1 2

~2 g g g RL])[
mlm2

(5)

with

P (r, e)G~(r, ~)

[i q'C(r, e)]' (6)

where (Z,J]f, ]SF,' ~[J,i]d&) =P„,(Ll~~) (J;f]d{,L~l~g~y)

XIIL„, with 7.=C, TE, TM, E2 being the final elec-
tron energy, and J,. = (2J,. +1)' ', etc.

In the sum over T, Coulomb (C) and transverse
electric (TE) terms, for a given multipolarity L,
will in general interfere unlike in a PWBA analy-
sis. For nuclear states of well-defined parity,
the electric and TM (transverse magnetic) terms,
being of opposite parity, will not interfere.

We will now utilize the eikonal electron wave
functions to obtain the Coulomb and transverse
amplitudes. The scattering amplitude in E(I. (5)
may be evaluated as follows: First, the integral
over r' is performed. Next:
(1) Calling p, '=cos8', fdp, ' is carried out by re-
peated use of integration by parts. An asymptotic
series in inverse powers of q'R (q' = q[1 —&(0)/&]]
is thereby developed. Only the first term in this
series is retained.
(2) f dQ' is approximated analytically by neglect-
ing small terms.

P (r e) =(b'/b)'cos —,'Ge'l' "" "']l o.(y e)

appearing in E(I. (6) after integration over (t)' and

having been evaluated at p,
' = &, as is the following

(using K' =k', +k,'):

4 (r, e) = 2S(0) —@a[', q'0" ——q"(12]r'
1

y ~s 2+2 + . C~s 4+4

c((r, e) = 1 + 3mb q'r +a(q" —2k")r' —,' ecq'K"2r', —

I 8"P p,
G~(r, e) = g (—1)"[iq'r&(y, e)] ' '

0

E(r, e) =1+B(r, e) + —', R(r, e),

B(r, e) = a(,'b" —,'q-")r—'—+ebq'r—,'ecq'K"r', —
3

R(r, e) = zaK' r —e-bK' , + ec(2k' ——2q' )—,,

and
1

C(r, e) = e —ae (-,0' ——,q' ) —,+2 3 ]]2 l g2 ~X+ 2CX K
g

The transverse electric and magnetic amplitudes are given as

(,e
(H~'R) RR

= —(2~) L b by

x E J x'dyed~~ (x) Q e[(t)'c(x, x)] *x'o "'.~~ 'o()

+Ms(xylo)

L'= Lb 1 6= %1

-i[fL'X~ (r, e)(L'0, 11 ~L1)+= Z~ „(r,e)((L'+l)(L'0, 11 j L1) +[—L'(zL' 1)]+' (L'1, 10
~ L1))

+z, , , (x, x){o ( o, )(Izo() —[ ', z'(z'+()1'*(z (, )o]o()])-

Oo

(HTM) = (2]])z)'z —— 5„,, yzdyJ'z~z(r) g e[iq'C(r, e)] e'' "+ "' (1+i[fsinz &)

0 e=kl
21/2

X 2 ' '~LXL r& e — LZL+1 r e + L+1 Z
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for the case of right-handed (subscript R) elec-
trons remaining right handed, e.g. , with

X~ (r, e) = n(r, e)G~ (r, e),

Zz (r, c) = rN(r, e)G~ (r, e),

N(r, B) = Back"rein —', 8+bk' —2ck"r'cos' —,'8.

It is found that in our high-energy limit, electron
spin-flip does not occur, as a consequence of the
high-energy representation used, in which the
only Dirac matrices (1 and o.) occuring in the in-
teraction, Eq. (4), are both diagonal. From this
fact, and from symmetry considerations, one has

1,&: 1)RR ( j„T1)LL &

(&i™~i)~s = (K'..i)iB

These symmetries enable us to now write the
electric and magnetic differential scattering cross
sections corresponding to the Lth multipole order
as

—k 2 HLCORB 2+2 HLTFiRR 2

t

amounts and a model-independent evaluation of the
correction factor f, (q, &) is difficult to obtain. '
Thus for the incident electron energies and scat-
tering angles of interest in this work (&, &200
MeV, 8&30'), experiments should be compared di-
rectly with nuclear model calculations where dis-
torted electron waves are used.

Of most interest to us are medium and heavy
nuclei where Coulomb distortion effects play a
large role. Due to the energy resolution limits of
existing linear electron accelerators, the energy
levels that have been most extensively studied in
electron scattering are well-separated single-
particle levels in light nuclei, and collective levels
in medium to heavy nuclei.

We will apply (1) the single-particle shell modeP'
to elastic magnetic scattering, and (2) a generali-
zation of the Tassie" collective/phenomenological
model to transverse inelastic scattering. In the
first case we will be treating nuclei with closed
shells plus or minus one valence particle, and in
both cases nuclei with spherically symmetric
ground-state charge densities.

In Eg. (4) it is convenient to define a spin cur-
rent operator as

and
(10)

J (r) = V && p", (r) (13)

with

J"B(r)= JP(r) + J;B(r), (14)

To explicitly evaluate the cross sections, two
further steps are necessary. First, we must uti-
lize models for the nuclear charge and current den-
sities p~~(r), Jz~~„(r), and J~~B(r) Secondly, . a
stable numerical algorithm is needed which will
accurately integrate the oscillating functions found
in the scattering amplitudes.

IV. NUCLEAR MODELS

and to express the moments of J;~(r) in terms of
the moments of p'J'(r) which in turn can be calcu-
lated from some physical model:

&&~i.s, +&(r) = -f -
d

-- p~s~i. s.(r
z, & r

L ' d 2+2
dr

Magnetic scattering at high values of q, as we

will discuss in the next section, can be used to
probe the spatial distribution of the magnetic mo-
ments, and in particular the effects of adding neu-
trons in the outermost shells where presumably
magnetic effects predominantly originate.

Of considerable interest for decoupling the effect
of Coulomb distortion is the ratio

and

(L+1) ' d L —1
+

L dr ps', s. i(r)

. (L+ 1)' d L+1
J'acr&(r) = f , .-- d

+ p ~~i,r. (r) .r

(do/df)&) DwBA

~c(&& ) =
( ydf), )BWB~ (12)

In transverse scattering at high values of the mo-
mentum transfer, the orbital and spin currents
contribute to the cross section in a priori unknown

For the single-particle shell model, in calculating
the nuclear matrix elements of J,"'(r) and J (r) for
nuclei with closed shells plus or minus one par-
ticle, we need only compute the single-odd-particle
matrix elements. The outcome is that for oscilla-
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tor shells with n =1:

(E I.+1 E

I b 2l+ I +2 —2r 21+3 ~ —,
' 1

1«L IE
+ (L+1}~'[0'(2E—L+1) —2r'](2L —1) —,

'
—,
' 1

(0 0 0
(18)

with nucleon magnetic moment p. and mass ~, and

!

(E L E+1)

E I I+1 (E+1 1 E

i0 00

(E L E —1

0 0 0

&0 00

b being the oscillator parameter, and R„, the ra-
dial wave function.

Inelastic electron scattering at low values of q
from electric low-lying vibrational levels in spher-
ical nuclei (60&A &150 and 190&A & 220) has been
fairly well described by a shape oscillation model
devised by Tassie. ' '' lt provides explicit con-
structions for the transition charge density p~~ (&)
and the transition convection current density
J,'z~ z „(&). At the high values of g which interest
us, the nuclear spin magnetization should play an
important role. ' It is, however, not yet clear
whether the transition spin currents are uniformly
distributed over the nuclear volume, very local-
ized, or characterized by some superposition of
uniform and localized magnetization. ' "

As is well known, ' the transition densities given
by the Tassie model are:

p~~ (r}= D~ Jz x(~/R)~

-'dpi'(r)/dr,

(20)

Jt~~ ~,(r) = —i(uD~JqL '~'Lr(r/R)~ 'pG(r),

(21)
and

Mottelson's rotational model) the velocity field

v(r)=g P, E'~'Er' ' y,", , (r"),

which using Cartesian coordinates, can easily be
seen to represent for l =1, m=0, a back and forth
flow [shown in Fig. 1(a)], and for 1 =2, m =0, an
elliptical volume-preserving motion [ shown in

Fig. 1(b)], is both irrotational and incompressible.
Z,~ ~(r), the component of the convection current
density which is responsible for magnetic transi-
tions (representing an annular current), is zero.

Z,g~, (r}-=0,

(22)

(23)

where =E& -E& is the nuclear excitation energy,
p (&) the spherically symmetric nuclear ground
state charge density, and D, is a strength param-
eter to be determined empirically.

In the Tassie model (as well as in Bohr and
FIG. 1. Flow of nuc1. ear charge in the Tassie mode1. :

(a) i'=1, (b) l=2.
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To permit magnetic transitions, we relax the
constraint of irrotationality on v(r) so that V

xv(r)40 and motion with vortices is possible. We
assume, further, the existence of a transition con-
vection current which reaches out over the entire
nucleus instead of peaking near the nuclear surface.
With p~(r) being a spherically symmetric current
density close in shape to the ground-state charge
density po(r), the rotational component of the con-
vection current is assumed to be given by a (vol-
ume-preserving) "roton" model

circulation shown in Fig. 2(a), and for l =2, m

=0 to the twisting pattern of circulation of Fig.
2(b).

The above current leads to the density

~ being the roton frequency.
For completeness, the archetypal case of a com-

pressible rotational fluid with a velocity field

Z,"'(r) =iZ,«p, (r) g (p, „/p, , )(r/R)'Yp, (r),

with P,„the momentum and p, , the mass of the

roton, and where the strength of a nuclear transi-
tion can be adjusted to the experimental value by
means of the parameter S,«. Pictorially, using
Cartesian coordinates, the flow of this current is
seen to correspond for / =1, m=0 to the uniform

v(r) = g p,„r'"Yp*, „(r)

is illustrated in Fig. 2(c) for l =0, m =0, where it
is seen to constitute a breathing mode. For /~1,
the flow is difficult to illustrate.

To obtain a spin magnetization density supple-
menting the rotational current of Eq. (24), we

postulate two simple models based on analogy with

classical electrodynamics. "
MODEL I. The orbital motion of a charged par-

ticle gives rise to a magnetic moment p, ,= (—,')r
&J, , and we assume that

p, , (r}=Cy. , (r)

for some constant C. From Eq. (24) we have

g,'(r) =2iZ,«p„(r)

x g C, ( p, „ p/. , )( r/R)'rx Y„*(r ,}

(bj

where p„(r) is the magnetization density and C, is
a constant. If p~(r) comes from the unpaired nu-
cleons in an outer shell, it will be peaked near the
nuclear surface. Equation (16) can be used to cal-
culate the spin current density:

Bl ~L( ) ~~f Cl«( l/ i I) ( / )

x[(1,+2)p„(r)+rdp„(r)/dr] . (25)

MODEL 11. Assume that the spin magnetization
operator is given by the ansatz

u ." (r) = Q p, (r) l A i f i (r}YP&*., (r)

FIG. 2. Flow of nuclear charge in our incompressible
rotational model: {a) l=l, {b) l=2; also in a compres-
sible rotational model: {c) l = 0 {breathing mode).

a( ) '- ( )1 (26)

Assume further that p, ,"=DLLT.„with some constant
D. We have J,=Vx p.„and thus:

V. (r)=D'V T.(r)=DJ. (r) .
The corresponding spin current density is

J~~'~~(r) = -JzZ,«D~( ~~/2p ~)'~'(r/R)~ p„(r) .

(27)
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The presence of dp„(x)/« in Eq. (25) and its ab-
sence in Eq. (27) indicate that spin current in
model I is much more concentrated near the nu-
clear surface.

In the same spirit, we can employ models I and
II to obtain the transverse electric spin current
density, this time starting with the irrotational
convection current of the Tassie model.

MODEL L Let

~.'( )=-'p. ( ) p (-,E, , ~/I'")

x r(r/R }'-2 r x ~,*,(y ), (28)

(29)

8',~~ ~,(r}=[i~~/2LL' ']E~D~(L+I)Jz r'(r/R)~ '

x l (L'/&)p. (&)+&p. (&)I«) (80)

The same procedure can be applied to model II;
the results will not be explicitly stated here.

V. RESULTS AND DISCUSSIONS

p, (&) being another spin density function and E, a
constant, while &, is the collective roton "co-
ordinate" variable. The corresponding spin cur-
rent densities are

J',~~ ~„(r}= (i &~/2L)E~D~(L +1)'~' J
q

xr'(r/R)~ 'dp, (r)/dr

Comparatively little experimental data at high
incident electron energies have been available for
either inelastic scattering or elastic magnetic
scattering from medium and heavy nuclei. Ac-
cording to Friar" the latest electron Linacs prom-
ise to allow measurements of cross sections at
the 1% level or better for values of q' up to 15 fm '.

From parity and time-reversal arguments' we
know that only the even Coulomb multipoles and odd

magnetic multipoles contribute in the case of elas-
tic scattering. In the extreme single-particle shell
model (SPSM) the magnetic moment of a nucleus
with a single valence nucleon is equal to that of the
valence particle, due to pairing of nucleon spins.
Donnelly and Walecka' have pointed out that orbitals
with the highest 3 values in an oscillator shell
should be well described by the SPSM.

A nucleus with ground-state spin J can have
magnetic moments M1, M3, . . .ML, where L
=2~. From an examination of the 6-~ symbol in

Eq. (19) we see that the orbital current density
Z,«(r) vanishes if L =Pj and& =1+2. Thus both
for this case and also, of course, for the case of
neutron orbitals only the spin. current density J,»
(r ) will contribute to the electron scattering cross
section.

Since neutrons contribute little to charge scat-

10 6

In this section we apply the eikonal method to an
analysis of elastic and inelastic electron scattering
from a variety of nuclei for high incident electron
energies (E, ~200 MeV).

Based on the formalism developed in previous
sections, we have written a computer code which
permits the analysis of both elastic and inelastic
scattering. The main computational difficulty
encountered in developing this code was the choice
of a numerical quadrature algorithm for integrating
the oscillatory functions which appear in our final
expressions for the scattering amplitudes, Eqs.
(6)-(8). It was found that a modified Romberg
method"' "worked reasonably well.

Elastic Coulomb scattering, especially from
'"Pb, 'OCa, and its isotopes, has been thoroughly
measured in recent years (for references up to
1971, see Uberall'). Analysis of the data has re-
vealed that at momentum transfers of q -3 fm ',
the smooth phenomenological charge distributions
(modified Fermi or modified Gaussian) found sat-
isfactory at lower values of q are no longer ade-
quate.

Although we will work at large values of q', for
the sake of simplicity we will use only the modified
Fermi; and modified Gaussian charge densities.

10-8

N
E

Cg

io-9

io-«

""so 70 80 90

L9 (deg)

FIG. 3. Coulomb and higher magnetic moment elastic
electron scattering cross sections from AI based on a
single-particle model. Solid lines: eikonal. method;
dashed lines: phase-shift analysis.
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TABLE I. Elastic M3 cross section for Al at 500
MeV incident electron energy.

TABLE II. Elastic AI5 cross section for 2~A1 at 500
MeV incident electron energy.

(deg)

Eikonal
results
do/dO

(fm2/sr)
Phase-shift results

b

50
52
54
56
58

2.14x 10-~
3.61
4.25
4.14
3.58

1.32x10 ' 1.28
2.96 3.12
4.37 4.58
4.75 4.76
4.07 3.94

1.28
3.13
4.58
4.76
3.94

60
62
64
66
68

70
72
'74

76
78

80
82
84
86
88
90

2.85
2.15
1.55
1.09
7.42 x 10 ~0

4.96
3.24
2.07
1.27
7.52x ] 0 ~~

4.21
2.20
1.05
4.51x 10-~2

1.66
5.12x 10 ~3

3.00
2.11
1.52
1.14
8.27 x ].0-10

5.42
3.13
1.68
9.2'7x10 ~~

5.56

3.56
2.20
1.19

59x 10-12

2.50
1.23

2.91
2.12
1,58
1.17
8.2p x 10-«

5.22
3.05
1,'71

9.71x 10 i&

5.73

3.47
2.06
1.15
5.8p x 10-~2

2.73
1.29

2.91
2.12
1.58
1.17
8.20x 10-"

5.22
3.05
1,71
9.71x 10
5.74

3.48
2, 07
1.15
5.79
2.72
1.29

Phase-shift results (Ref. 7); 35 partial waves; in-
tegration step size 0.02 fm inside the 0.03 fm outside the
interaction radius (taken as 11.26 fm).

b Phase-shift results; 40 partial waves; step size
0.02/0. 03 fm.

Phase-shift results; 40 partial waves; step size
0.03/0. 05 fm.

tering, it is elastic magnetic scattering that may
be used for investigating neutron distributions in
the nuclear ground state.

We now consider a number of different nuclei
having higher magnetic multipole moments.

27 A&(&+)
13 2

The single-particle configuration is taken as
(1d, g, ) '~, a proton hole in 248Si, and M1, MS, and
M5multipoles are possible. Since j =l+-,' (the so-
called "stretch case"), only the spin magnetization
will contribute to the M5 cross section. The har-
monic oscillator parameter b and the Fermi charge
density parameters c and t have been taken from
a recent phase-shift analysis. ' They are b =1.8 fm,
c = 2.82 fm, and t = 2.43 fm.

In Fig. 3, we present our results for the CO,
MS, and M5 scattering cross sections (in units of
fm'/sr) For purp. oses of comparison (using the
computer code described in Ref. 7}we have also

(deg)

50
52
54
56
58

60
62
64
66
68

70
72
74
76
78

80
82
84
86
88
90

Eikonal results
da'/dQ (fm /sr)

3.46x10 '
2.37
1.59
1,04
6.65x10 '

4.19
2.59
1,59
9.58x 10 ~

5.72

3 37
1.96
1.11
6.17x 10
3.31

1.70
8.27 x ].0-ii
3.77
1.60

x 10-12

2 ~ 31

Phase-shift
results ~

3.16x 10
2.22
1.52
1.01
6.55x 1p

4.15
2.57
1.56
9.34x 10 ~

5.48

3.15
1.78
9.83x 10
5.37
2.90

1.55
8.22x].p «
4.29
2.21
1.12
5.66x10 ~2

' Phase-shift results (Ref. 7); 35 partial waves, in-
tegration step size 0.02 fm inside and 0.03 fm outside the
interaction radius (taken as 11.26 fm).

computed the corresponding phase-shift cross
sections using the same nuclear model. In the
figure, the phase-shift calculations performed at
an incident electron energy of 500 MeV use 35
partial waves. Numerical values of the M3 and
M5 cross sections are given in Tables I and II,
showing also the dependence on the number of
phase shifts and the integration step size chosen.
(Note that the undulations in the MS phase-shift
curve persist as the number of phase shifts is
increased from 35 to 40, indicating that they may
not be caused by a lack of convergence of the phase-
shift series. }

The measured points in Fig. 3 are taken from
Ref. 3. There appears to be close agreement be-
tween the eikonal (solid lines} and phase-shift CO

and M5 cross sections (dashed lines). A frequent
feature of the eikonal results (noted previously in
charge scattering cross sections") is the fact that
the eikonal diffraction minima are deeper (closer
to the PWBA zeros) than those from the phase-
shift results.

Both methods of calculation show that the mag-
netic scattering cross section may actually exceed
the charge monopole cross section at angles much
less than 180' (e.g. near 8 =60'). From these and
other results it will become clear that given the
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right choice of incident energy, angular regions
can be found where the magnetic cross section is
measurable.

&cry close to 6) =180', the charge cross section
always falls steeply to zero. If elastic cross sec-
tieas of the order of 10 '2 fm'/sr are measurable
today" then the magnetic cross section should, in
aey case, be frequently measurable near 180'.

$t should be noted that in every instance both
center-of -mass and finite-nucleon-size corrections
have been ignored. Since the partial-wave com-
yu4er code used' does not contain such corrections
we will omit them in our calculations whenever we
are making a direct comparison with phase-shift
results. Thus, unless it is explicitly stated to the
eeetrary, all SPSM calculations in this paper will
use uncorrected harmonic oscillator (HO) wave
functions. However, at very high values of q these
corrections are significant, as we will later dem-
onlstr ate.

51@(7-)
23 2

The single-particle model assigns a configura-
tion of (1f,y, )'~ to the valence particle in Vanadium.
Assuming the normal coupling of spins, we then
have a stretched configuration (1f,y, )~ with the
possibility of M1, M3, Ms, and MV multipole con-
tributions. We will use a harmonic oscillator
parameter' b = 2.01 fm, and for the ground-state

charge density a Fermi density with c =3.95 fm
and 1=2.24 fm.

The charge and M7 cross sections, as calculated
by the eikonal (solid curves) and phase-shift meth-
ods, along with measurements taken by Peterson
et al."are presented in Fig. 4 for E, =250 MeV.

From these figures we see (1) the close corre-
spondence between the eikonal and phase-shift re-
sults, and (2) the large size of the M7 cross sec-
tion relative to its charge counterpart in the neigh-
borhood of L9=90 .

The fact that the eikonal and phase-shift M7
cross sections in Fig. 4 are starting to separate
around 6) =90' will be discussed later.

209'& ( 9-)
83 2

This nucleus has a 1A', ~, proton outside the '"Pb
core. Since j =l-& in this case, both the orbital
and spin magnetizations will contribute to the M9
cross section. A measurement of Er'(q) for MQ

at one single point' has indicated the feasibility of
more thorough experimental investigation of bis-
muth's higher magnetic moments. Bertozzi" has
shown in PW'BA that using configuration mixing to
improve the bismuth ground-state wave function,
rather than using SPSM as in Ref. 3, lessens the
disagreement between theory and the single ex-
perimental point.

We have computed the charge monopole cross

10-6

10 4 —y

""(2 )
250 MeV

10 7

10-S

L
IA

N
-' 10-9
Cg

b

10-10

&0-8— 10-t1

io-9
60

I

80
I

100
I

120 140
10 12

120 140
8 (deg)

160 180

8 (deg)

FIG. 4. Same as Fig. 3, for a V target.
FIG. 5. Same as Fig. 3, for a ~Bi target. Dotted

lines: pl.ane-wave Born approximation.
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TABLE III. Elastic M7 cross section for Bi at 300
MeV incident electron energy.

TABLE IV. Elastic M9 cross section for Bi at 300
MeV incident electron energy.

(deg)

90
92
94
96
98

Eikonal results
do. /dQ (fm'/sr)

2.73x 10 '
1.61
9.14x ].0-'0
4.91
2.48

Phase-shift
results ~

2.57x10 '
1.53
8.66 x 10 &0

4.66
2.35

e
(deg)

90
92
94
96
98

Eikonal results
do/d& (fm2/sr)

6.24x 10
5.08
4.10
3,28
2,60

Phase-shift
results

5.47x 10 '
4.53
3.71
3.01
2.41

100
102
104
106
108

1,16
5.06x10 "
2.25
1.37
1.37

1,10
4.88x 10 ~~

2.26
1.46
1.49

100
102
104
106
108

2, 05
1.61
1.25
9.72x10 '
7.50

1.92
1.52
1.19
9.26x 10
7.18

110
112
114
116
118

1.67
2.00
2.22
2.32
2.31

1.80
2.10
2.31
2.38
2.35

110
112
114
116
118

5.78
4.44
3.40
2.60
1.99

5.55
4.27
3.28
2.52
1.93

120
122
124
126
128

2,20
2.04
1.85
1.64
1.44

2.22
2.05
1.84
1.63
1.43

120
122
124
126
128

1.53
1.17
9.01x10 ~0

6.95
5.38

1.48
1.14
8.76x10 "
6.76
5.24

130
132
134
136
138

1.25
1.08
9.23x1p "
7,89
6.74

1.24
1.06
9.11x10 "
7.78
6.65

130
132
134
136
138

4,18
3.26
2.56
2.02
1,61

4.07
3.18
2.50
1.98
1.57

140
142
144
146
148

5.75
4, 92
4.22
3.63
3.14

5.68
4.86
4.18
3.60
3.12

140
142
144
146
148

1.29
1,04
8.44x 10 i~

6.93
5.73

1.26
1.02
8.30x 10
6.82
5.65

150
152
154
156
158

2 ~ 73
2.38
2.10
1.86
1.66

2.72
2.38
2.10
1.86
1.67

150
152
154
156
158

4,79
4.05
3.45
2.97
2.59

4.73
3.99
3.41
2.94
2.56

160
162
164
166
168

1.50
1.36
1.25
1.16
1.08

1.51
1.37
1.26
1.17
1.10

160
162
164
166
168

2,28
2.03
1.83
1.67
1.54

2, 25
2, 00
1.81
1.64
1.52

170
172
174
176
178
180

1.02
9.74x 10 ~3

9.39
9.14
9.00
8.95

1.04
9.89x 1P
9.55
9.31
9.17

170
172
174
176
178
180

1.44
1.36
1.30
1.26
1.24
1.23

1.41
1.34
1.28
1.24
l.21

Phase-shift results (Ref. 7); 30 partial waves; in-
tegration step size 0.05 fm throughout.

~ Phase-shift results (Ref. 7); 30 partial waves; in-
tegration step size 0.05 fm throughout.
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er of 300 MeV weAt an incident electron energy o
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are in par-d M9 phase-shift cross sections aM7 an

res ondingticular y goo1 d agreement with the cor p
llthis is also indicated numerica yeikonal results; is is
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We have recomputed the eikonaal M7 and M9
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tion factor. e e eTh ffect of this correction is
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ould increase in
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Th eikonal approximation shou
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more len thy as the number of contributing
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7 that the eikonal transversewe see from Fig.
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form factor (calculated at E, =500 MeV and defined
in the same manner as its PWBA counterpart')
starts to sharply deteriorate at low p values. As
the multipolarity I is raised the region of validity
(in q) decreases. Evidently, the phase-shift cal-
culations are needed to cover the complete range
of q values.

It is interesting to note from Fig. 8 that the M9
positron cross section is one or several orders
of magnitude larger than the M9 electron cross
section.

In situations where one wishes to vary the inci-
dent energy of the electron, one must rerun a par-
tial-wave code for each incident energy value.
This is a time-consuming process. Most of the
computation time in a phase-shift analysis of elec-
tron scattering is taken up in performing the radial
integrations. '" Should the incident energy be
changed, the integrations have to be repeated ab
initio. The MS cross sections in Fig. S, calculated
at fixed q and 6I by the eikonal method where such
is not the case, illustrate a particular advantage of
this approach.

Let us define the magnetic form factor by

I E(q)l ' = (do/dQ)/0

with v~ the Mott cross section. Employing the
eikonal formalism and corrected HG nuclear wave
functions, we illustrate the (E„q) dependence of

representative DWBA magnetic form factors in

Fig. 10.
The M1 form factor is given for various values

, of E, as q ranges from 1.5 fm ' to 2.5 fm '. The
dependence of this form factor on the incident en-
ergy of the electron (which is absent in PWBA)
is striking. Redefining the magnetic form factor
so that the denominator in Eq. (31) includes the
kinematic quantity (—', +tan28/2), the M9 form
factor in Fig. 9 is evidently still dependent on the
incident electron energy.

208pb
82

Coulomb elastic electron scattering experiments"
on 'o'Pb have shown that a modified Gaussian
charge density with an oscillating function tacked
onto it can closely fit measured data up to 61 = 70'
at 502 MeV.

The 2.61 MeV 3 level has been extensively
studied. "'4'" Data up to q =3 fm ' indicate (1)
that at least for r~2 fm, p~~ (r) has oscillating
components, and (2) this level is highly collective.

In Fig. 11 we present the eikonal (solid line) and
phase-shift cross sections (unnormalized) for
electron scattering from this level at E, =502 MeV.
The ground-state charge density p~(r) is a modi-
fied Gaussian with parameters taken from Ref.
13, i.e., c =6.3032 fm, z =2.888 fm, and M) =0.338.
The transition charge density is given by the
Tassie model

p~~ (~) =r~ '(d/dh) pc(r; c, ,z„),

10-11—

q = 30 fm-1

where m is now set equal to zero, c„=6.25 fm,
and z „=2.93 fm. The partial-wave calculations
were performed with the electric partial-wave
code HEINEL. ' The position (in'q) and shape of

10-8

10-13

C4
E

~ 10 15
b

10

K0
V

W 10-10

500

400 450
ENERGY (MeV)

I

500

FIG. 9. Energy dependence of elastic M9 cross sec-
tion of 9Bi at fixed values of q or of 0.

y~.'600

400'ji',
'iG

500
600

1p-11
1.5 2.0 2.5 3.0 3.3

q (fm')

FIG. 10. Kikonal M1 and M9 "form factors" of Bi
and their energy dependence. The latter is a measure
of the Coulomb distortion since the corresponding Born
form factors are energy-independent.
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the eikonal diffraction curves are seen to match
the phase-shift results very well.

The reason for the rapid oscillations in the par-
tial-wave cross section for q&4. 5 fm ' is unclear.
Forty partial waves were used in the calculation.

'"In
49

Chertok and Johnson" have calculated mixing
ratios and deduced spins and parities associated
with levels in "'In for extremely low (threshold)
incident electron energies. They employed a
version of the Duke" partial-wave code which as-
sumed that the magnetic transition density was
purely orbital and given by

J,'~~ ~ (x)-x~ 'dpi'(r)/dr,

where p (r) is the (Fermi) ground-state charge
density. Since they were concerned with a model-
independent calculation —feasible at such low elec-
tron energies —this simple model was adequate.

In Fig. 12 we show the PWBA (dotted lines) and
eikonal cross sections at E, =500 MeV for scat-
tering from the 1.46 MeV level in "'In. The pa-
rameters of the Fermi ground-state charge den-
sity, c = 5.24 fm and t =2.3 fm are taken from Ref.
1. For illustrative purposes we have assumed
that this is a pure spin-flip M1 transition, i.e. ,

the orbital current does not contribute at all. A
Fermi density with c = 5.4 fm and t = 2.2 fm is
used to model the spin magnetization density in
both Eqs. (25) and (27). We see that the diffrac-
tion minima for model II are displaced relative to
those for model I.

From the examples we have discussed we see
that for smaller scattering angles the eikonal cross
section becomes progressively more inaccurate
(it grows rapidly as 8 decreases). Near a diffrac-
tion maximum one can always locate the limit
point below which the eikonal formalism breaks
down by computing the PWBA cross section. For
a given p'A, the inaccuracy increases as the multi-
polarity I is raised.

The reason for this inaccuracy lies in the fact
that for forward angles, some terms in the eikonal
expansion such as R(&, e) defined after Eq. (6),
which enters the amplitude through E " ', are no
longer small compared to unity. This difficulty
arises from the basic eikonal method which ex-
pands deviations from plane waves in powers of
&, cf. Eqs. (2) and (3).

It seems probable that by not using the asymp-
totic integration over p, this type of error could
have been rendered less significant. However, as
remarked by Yennie et al." (and it still remains
true today), a numerical evaluation of the scat-

lO 2

208pb (p )
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FIG. 11. Inelastic cross section for the 3 level of
Pb at 502 MeV, obtained by eikonal (solid line) and

phase-shift (dashed line) methods.

FIG. 12. M1 transitions in In, obtained by eikonal
(solid lines) and Born (dashed lines) methods on the
basis of two collective models for magnetic transitions
as discussed in the text.
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tering amplitude avoiding completely the asymp-
totic integration over the angular variable p. , seems
profitless due to the very large amount of computer
time that a three-dimensional integral would con-
sume.

Another source of error is the fact that we have
retained only the first-order spinor u'(r, ) and the
first-order term in a Taylor series expansion of
the eikonal function S(r,). McDonald44 has shown
that for charge scattering from a uniform density,
inclusion of the second-order terms in S(r, ) and
in the spinor u(r, ) produces only a slight improve-
ment in the accuracy of the cross section.

testing models of the nuclear charge and current
densities.

We have seen that for low values of q'R the meth-
od becomes inapplicable. For small scattering
angles, even at high incident electron energies,
only a partial-wave analysis can compute the ef-
fect of Coulomb distortion. However, at the pres-
ent time, the eikonal approach appears to be par-
ticularly useful for high-energy magnetic elec-
tron scattering (both elastic and inelastic) and
large scattering angles. The limits of applicability
in (E„9,I.) of a recently developed phase-shift
code ZENITH" are unknown to the present authors.
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