E 0 decay of the first excited 0^+ state in ${}^{32}S$

J. C. Adloff, K. H. Souw, D. Disdier, and P. Chevallier Centre de Recherches Nucléaires, Université Louis Pasteur, Strasbourg, France (Received 5 November 1974)

The E0 branching ratio Γ_{π}/Γ of the ³²S (3.78-MeV, 0⁺) state to the ground state was measured to be $(3.54 \pm 0.62) \times 10^{-4}$. When combined with the lifetime $\tau_m = (0.90 \pm 0.15)$ psec of this state one obtains the value $\langle M \rangle_{\pi} = (2.22 \pm 0.27)$ fm² for the E0 matrix element.

[NUCLEAR REACTION ${}^{31}P({}^{3}\text{He}, d)$, E = 8.5 MeV; ${}^{32}S$ measured E0 branching ratio. Deduced E0 matrix element.

I. INTRODUCTION

In recent years a number of E0 matrix elements have been measured for 4n pair-pair light nuclei for $A \leq 40$. Most of these measurements as, for example on ⁴He (Ref. 1), ${}^{12}C$ (Ref. 2), ${}^{16}O$ (Ref. 3), 24 Mg (Ref. 2), and 28 Si (Ref. 2), were made by

electron inelastic scattering. Some of them are new measurements of particularly important cases like in ${}^{16}O$ (Ref. 4) and ${}^{40}Ca$ (Ref. 5). Table I summarizes the existing data on E0 decays in 4n nuclei for $A \leq 40$. As can be seen from the table there are still some nuclei (⁸Be, ²⁰Ne, ³⁶Ar) for which no monopole decay is known. Most of the

TABLE I. Compilation of properties for $J^{\pi}=0^+$ excited states in 4n nuclei of the s, p, and s-d shells.

Nucleus	E_x (MeV)	$ au_m$ or Γ	Ref.	$\langle M angle_\pi$ (fm ²) ^a	Ref.
⁴ He	20.1	$(270 \pm 50) \text{ keV}$	21	2.02 ± 0.32	1
^{12}C	7.65	$(8.7 \pm 2.8) \mathrm{eV^{b}}$		$\boldsymbol{5.00 \pm 1.25}$	13
				5.46 ± 0.29	14
		$(9.7 \pm 3.3) eV$	26	5.57 ± 0.50	15
				5.33 ± 0.26	16
				5.37 ± 0.22	2
				5.39 ± 0.26 c	
^{16}O	6.05	(72 ± 7) psec	22	3.66 ± 0.55	3
		<u>(96 ± 7) psec</u>	4		
		(84 \pm 12) psec ^c		3.55 ± 0.25 d	
	12.05	$(1.5 \pm 0.5) \text{ keV}$	23	4.40 ± 0.44	17
				4.39 ± 0.28	18
	14.00	$(170 \pm 50) \text{ keV}$	19	3.3 ± 0.7	19
^{24}Mg	6.43	(190 ± 60) fsec	12	6.23 ± 0.62	20
				6.33 ± 0.29	2
28 Si	4.98	(45 ± 10) fsec	12	6.8 ± 0.4	2
	6.69	(120 ± 30) fsec	12	$\leq 3.0(2.0 \pm 1.0)$	2
^{32}S	3.78	(900 ± 150) fsec	12	11.8 ± 1.5	9
				10 ± 1	8
				$\leq 3.5(2.2 \pm 1.3)$	2
40 Ca	3.35	(3.4 ± 0.2) nsec	24	3.6 ± 1.1	2
		(3.04 ± 0.11) nsec	25		
		(3.03 ± 0.14) nsec	5		
		(3.12 ± 0.22) nsec ^c		$2.71 \pm 0.10^{\text{ e}}$	

^a For ground-state decays.

^d Deduced from $\tau_m = (84 \pm 12)$ psec (column 3). ^e Deduced from $\tau_m = (3.12 \pm 0.22)$ nsec (column 3).

^b Width deduced from $\langle M \rangle_{\pi} = (5.39 \pm 0.26) \text{ fm}^2 \text{ listed in column 5 and from } \Gamma_{\pi}/\Gamma = (6.9 \pm 2.1)$ 10⁻⁶ (Ref. 27). In deducing $\Gamma_{\pi} = (60 \pm 6) \ \mu eV$ from the value of $\langle M \rangle_{\pi}$ the formulas of Dalitz (Ref. 28) for $Z \neq 0$ (Ref. 29) were used rather than the Oppenheimer-Schwinger one.

^c Weighted average value.

E0 decays are given for the first excited 0^+ state. E0 decays of higher excited states are reported only for ¹⁶O and ²⁸Si. Such E0 measurements on higher excited 0^+ states are of particular interest in determining how much of the sum rule strength these levels account for. For example in ¹⁶O the three reported E0 matrix elements take almost 20% of the isoscalar energy weighted sum rule.⁶

In this paper we give the results of measurements on the *E*0 branching ratio of the ³²S (3.78-MeV, 0⁺) state to the ground state obtained by the experimental method described in Ref. 7. Strehl² has recently reported an upper limit to the value of the matrix element for this transition which is $\langle M \rangle_{\pi} \leq 3.5 \text{ fm}^2$ or possibly a value of $(2.2 \pm 1.3) \text{ fm}^2$. An older measurement of Lombard, Kossanyi-Demay, and Bishop⁸ yields $(10 \pm 1) \text{ fm}^2$. Bishop⁹ reported $(11 \pm 1.5) \text{ fm}^2$. As the discrepancy in these results represents about a factor 10 in the *E*0 branching ratio, we undertook a measurement of the π -branching ratio for the *E*0 decay of this state by an independent method.

II. EXPERIMENTAL RESULTS

The ³¹P(³He, d)³²S reaction was used to populate the first excited 0⁺ state in ³²S. It has been shown that this reaction proceeds mostly through a stripping mechanism and that the deuterons populating the 0⁺ state are strongly forward peaked.¹⁰ For this reason we detect the heavy particles at 0° to the beam axis instead of at 180° as in Ref. 7. Phosphorus targets of ~200 μ g/cm² on 250- μ g/ cm²-thick gold backings were prepared following the method given in Ref. 11.

The 8.5-MeV ³He⁺⁺ beam was stopped in a 50- μ m-thick tantalum foil which was placed on a 6.3mm-diam collimator 3 cm in front of a detector. Deuterons from the reaction passed through the foil and were detected in a 150-mm² \times 150- μ mthick surface barrier detector placed 4 cm downstream from the target. With a proton background from the ${}^{31}P({}^{3}He, p)$ reaction the bias voltage on the solid state detector was chosen so as to have a depletion depth sufficient to fully detect the deuterons feeding the 3.78-MeV state. This depletion depth is also just enough to fully detect the protons from the prolific ${}^{1}H({}^{3}He, p)$ reaction (hydrogen is a target contaminant). The procedure described in the next paragraph provided a check on the identification and purity of the particle group detected in the single surface barrier detector.

In a test run the particle spectrum from the ³¹P + ³He reaction at 0° was taken after replacing the 150- μ m-thick surface barrier detector by a ΔE -E telescope consisting of a 56- μ m ΔE counter followed by a 1000- μ m E counter. The ΔE counter

was collimated to a diameter of 4 mm. Two-dimensional ΔE versus $\Delta E + E$ energies particle spectra were taken for full and partial bias voltage of the *E* counter. The partial bias was chosen so as to detect fully only the deuterons feeding the 3.78-MeV state. The yield of this deuteron group for full and partial bias was checked to be the same for the same integrated total charge. Figure 1 shows the resulting deuteron and proton spectra taken simultaneously at $E(^{3}\text{He}) = 8.5 \text{ MeV}$ for full bias on the *E* counter. As could be seen in the figure the deuterons feeding the three first states in 32 S stand out clearly in the deuteron spectrum.

For the e^{\pm} pair decay measurements the plastic scintillator telescopes, with 0.4-mm-thick ΔE counters as described in Ref. 7, were used. The test run for the 3.35-MeV E0 decay in ⁴⁰Ca gave $(6.0 \pm 0.3)\%$ for the pair efficiency of this decay for a 400-keV electronic discrimination in the *E* counters.

FIG. 1. Deuteron and proton spectra from the reactions ${}^{31}\mathrm{P}({}^{3}\mathrm{He},d)$ and ${}^{31}\mathrm{P}({}^{3}\mathrm{He},p)$ taken at $E({}^{3}\mathrm{He})=8.5$ MeV and $\overline{\theta}=2^{\circ}$. The proton group at channel 88 is from ${}^{1}\mathrm{H}({}^{3}\mathrm{He},p)$, hydrogen being a target contaminant. The particles passed through a 50- μ m-thick tantalum foil before being detected.

Figures 2(b) and 3 show projections of the nonrepresented two-dimensional particle energy versus pair energy spectrum which was obtained for a 30-h measurement with a ³He⁺⁺ beam of 30 nA. The ³²S (3.78-MeV, 0⁺) state was populated by $(4.89 \pm 0.17) \times 10^6$ deuterons detected in the solid state detector as shown in the $\frac{1}{8}$ sampled direct particle spectrum of Fig. 2(a) stored in the X=0channels of the two-dimensional spectrum. The background under the deuteron group relevant to the 3.78-MeV state (around channel 74) which extends until channel ~110 is from the ³¹P(³He, p)-³³S(p)³²P reaction when the two protons are detected simultaneously in the solid state detector.

Figure 3 represents the π spectrum from the 3.78 MeV - g.s. decay. It is the projection onto the π -energy axis of heavy particle channels 70-78 (see Fig. 2). The π yield was extracted from the

FIG. 2. (a) $\frac{1}{8}$ sampled direct particle spectrum from ${}^{31}P + {}^{3}He$ (a part of the spectrum is represented $\times 1/160$) taken simultaneously with the nonrepresented particle energy vs pair energy spectrum. The peak around channel 74 is from ${}^{31}P({}^{3}He, d){}^{32}S$ (3.78 MeV). The heavily populated proton group at channel 57 is from ${}^{11}H({}^{3}He, p)$. The bias of the particle detector was chosen as explained in Sec. II. (b) Projection onto the particle energy axis of the two-dimensional spectrum.

TABLE II. Properties of the first excited $J^{\pi} = 0^+$ state in ³²S.

E _x (MeV)	$ au_m$ (psec)	Γ_{π}/Γ	$\langle M \rangle_{\pi}$ (fm ²)	s.p.u. strength ^a

 $3.78 \quad 0.90 \pm 0.15^{\text{ b}} \ (3.54 \pm 0.62) 10^{-4} \ 2.22 \pm 0.27 \quad 0.11 \pm 0.03$

^a Reference 29.

^b Reference 12.

spectrum either by taking $(2.3 \pm 0.5) \times 10^{-5} \gamma - \gamma$ interactions per detected deuterons⁷ or by analyzing the spectrum by a least squares fit with the known shapes for the $\gamma - \gamma$ interactions and for the π spectra. The latter are represented in Fig. 3 by the dashed curves. A good agreement was obtained between the two methods and $150 \pm 21 \pi$ were deduced in the spectrum.

Combining these numbers with the calculated pair efficiency for the 3.78-MeV π decay, (8.65 $\pm 0.86)$ %, one finds $\Gamma_{\pi}/\Gamma = (3.54 \pm 0.62) \times 10^{-4}$. By taking $\tau_{\pi} = (0.90 \pm 0.15)$ psec (Ref. 12) for the mean lifetime of the 3.78-MeV state, the π partial mean

FIG. 3. Pair spectrum obtained from the projection of the events for channels 70-78 of Fig. 2(b) onto the pair energy axis of the relevant particle energy vs pair energy spectrum. The long-short dashed line is the shape of the γ - γ interactions from the 3.78 MeV \rightarrow 2.23 MeV \rightarrow g.s. γ cascade deduced from Ref. 7. The dashed line is the shape of the π spectrum from the 3.78 MeV \rightarrow g.s. π decay deduced from the ⁴⁰Ca(3.35 MeV) \rightarrow g.s. π decay. The weighting of these two curves was obtained by a least squares fit.

lifetime is found to be (2.54 ± 0.61) nsec. This yields $\langle M \rangle_{\pi} = (2.22\pm0.27)$ fm² for the E0 matrix element. These results are summarized in Table II.

III. DISCUSSION

The discrepancy between the (e, e') results of Lombard *et al.*⁸ and Strehl² has already been discussed in Ref. 2. The present measurement which yields a matrix element of (2.22 ± 0.27) fm² is consistent with the upper limit of 3.5 fm² reported by Strehl² and in agreement with his possible value of (2.2 ± 1.3) fm². One should notice that a matrix element of the order of 10 fm² such as reported in Refs. 8 and 9 implies a π -branching ratio a factor of 20 bigger than that found in the present determination (Table II).

- ¹R. F. Frosch, R. E. Rand, H. Crannell, J. S. McCarthy, L. R. Suelzle, and M. R. Yearian, Nucl. Phys. <u>A110</u>, 657 (1968).
- ²P. Strehl, Z. Phys. <u>234</u>, 416 (1970).
- ³M. Stroetzel, Z. Phys. <u>214</u>, 357 (1968).
- ⁴M. Birk, J. S. Sokolowski, and Y. Wolfson, Nucl. Phys. A216, 217 (1973).
- ⁵C. M. Bartle and P. A. Quin, Nucl. Phys. <u>A216</u>, 90 (1973).
- ⁶R. A. Ferrell, Phys. Rev. <u>107</u>, 1631 (1957).
- ⁷J. C. Adloff, K. H. Souw, D. Disdier, F. Scheibling, P. Chevallier, and Y. Wolfson, Phys. Rev. C <u>10</u>, 1819 (1974).
- ⁸R. Lombard, P. Kossanyi-Demay, and G. R. Bishop, Nucl. Phys. 59, 398 (1964).
- ⁹G. R. Bishop, Nucl. Phys. <u>41</u>, 118 (1963).
- ¹⁰J. Kalifa, G. Gotbard, M. Vergnes, and G. Ronsin, J. Phys. (Paris) <u>34</u>, 139 (1973).
- ¹¹B. W. Hooton, Nucl. Instrum. Methods <u>27</u>, 338 (1964).
- ¹²P. M. Endt and C. Van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973).
- ¹³J. H. Fregeau, Phys. Rev. <u>104</u>, 225 (1956).
- ¹⁴H. Crannell and T. A. Griffy, Phys. Rev. <u>136</u>, B1580 (1964).
- ¹⁵F. Gudden and P. Strehl, Z. Phys. <u>185</u>, 111 (1965).

The E0 strength in single particle units (s.p.u.)²⁹ of the 3.78-MeV state in ³²S is 0.11 ± 0.03 . It is interesting to compare this value with the E0 strength of the first excited 0⁺ state in neighboring 4n nuclei. For A less than 32, one can deduce from the matrix element values of Table I the following strengths (in s.p.u.): 1.28 ± 0.15 (²⁸Si), 1.36 ± 0.20 (²⁴Mg), 0.74 ± 0.11 (¹⁶O), 2.50 ± 0.24 (¹²C), and 1.5 ± 0.5 (⁴He). For ⁴⁰Ca one finds 0.127 ± 0.009 which is of the same order of magnitude as the ³²S value and about a factor of 10 lower than the strengths in lighter nuclei. An E0 measurement in ³⁶Ar would be interesting in view of that sudden drop in the E0 strength after ²⁸Si.

We would like to thank Dr. A. Pape for critical reading of the manuscript and Miss M. A. Saettel for preparing the 31 P targets.

- ¹⁶H. Crannell, T. A. Griffy, L. R. Suelzle, and M. R. Yearian, Nucl. Phys. <u>A90</u>, 152 (1967).
- ¹⁷M. Stroetzel, Phys. Lett. <u>26B</u>, 376 (1968).
- ¹⁸J. C. Kim, R. P. Singhal, and H. S. Caplan, Can. J. Phys. <u>48</u>, 83 (1970).
- ¹⁹M. Stroetzel and A. Goldman, Phys. Lett. <u>29B</u>, 306 (1969).
- ²⁰O. Titze, Z. Phys. <u>220</u>, 66 (1968).
- ²¹C. H. Poppe, C. H. Holbrow, and R. R. Borchers, Phys. Rev. 129, 733 (1963).
- ²²S. Devons, G. Goldring, and G. R. Lindsey, Proc. Phys. Soc. (Lond.) <u>A67</u>, 134 (1954).
- ²³F. Ajzenberg-Selove, Nucl. Phys. <u>A166</u>, 1 (1971).
- ²⁴R. M. Kloepper, P. B. Day, and D. A. Lind, Phys. Rev. 114, 240 (1959).
- ²⁵S. Gorodetzky, N. Schultz, J. Chevallier, and A. Knipper, J. Phys. (Paris) 27, 521 (1966).
- ²⁶F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. <u>A114</u>, 1 (1968).
- 27A. W. Obst, T. B. Grandy, and J. L. Weil, Phys. Rev. C 5, 738 (1972).
- ²⁸R. H. Dalitz, Proc. Roy. Soc. (Lond.) <u>A206</u>, 521 (1951).
- ²⁹D. H. Wilkinson, Nucl. Phys. <u>A133</u>, 1 (1969).