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Analysis of three-body final states: Nonrelativistic
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Quantum mechanics forces rapid variation and coherent interrelation on amplitudes usually taken to be
independent and constant in the Watson approximation to final state interactions. These effects are
particularly important when more than one pair of final state interactions is~simultaneously big. We
develop these amplitude conditions using unitarity only. We show how these constraints combined with
analyticity give a set of linear scattering integral equations. These equations are not only the minimal
set compatible with the general constraints of quantum mechanics, but also turn out to be the simplest
form of the separable interaction equations.

I. INTRODUCTION

Very little is understood about the structure of
many particle final states and about how two-body
inter action inf ormation is distributed over these
states. Yet there is a great deal of data on such
systems and the analysis of this data to obtain in-
formation on the interaction of unstable particles,
like 7t-m or n-n, or to study how the pair informa-
tion affects reaction mechanisms, is an important
part of nuclear and particle physics. In this paper
we take a step toward providing the theoretical
basis for final state analysis, and show that the
general principles of quantum mechanics constrain
the final state in a way not normally included in
phenomenological analyses. We develop these con-
straints, discuss their implementation, and de-
scribe where they can be important.

We will develop our discussion in terms of three-
hadron final states, with occasional contact with
the two-body final state problem as examples, but
the methods we develop and many of the cautionary
constraints clearly also apply to more than three
final particles. It is perhaps surprising to find that
after all the recent work in the three-body problem
a correct theory of three-body final state interac-
tion hardly exists, but that is the case. There are,
of course, the many formally correct starting
points, with that of Faddeev as the most familiar,
but these are of no help in phenomenology. They
are like writing down the Schrbdinger equation for
the problem; it is certainly correct, but much
work is needed to extract consequences, even in a
general way. At the other extreme there are the
remarkably successful separable interaction cal-
culations, particularly of n +d breakup. These are
not phenomenological either, but rather detailed
dynamical solutions of the three-body equations,
containing assumptions about the form of the two-
body interaction on and off shell. There is no way
to tell whether their agreement with experiment is

due to these detailed assumptions or to the general
features of the problem. In this paper we develop
a theory of three-body final states containing only
the general principles of quantum mechanics, in
particular unitarity and its implications for analy-
ticity. ' We show how these principles can be used
to establish the domain of applicability of the usual
phenomenology —it turns out to be a rather slim
domain —and how a better phenomenology can be
developed that is generally applicable. This better
phenomenology leads to a set of integral equations
for the final state amplitudes, which set is nearly
identical to the integral equations of the separable
interaction theory. ' Hence we have both established
the "minimal" theory of three-body final state in-
teractions compatible with the general constraints
of unitarity and its implied analyticity, and also,
by showing the great similarity of that theory to
the separable interaction approach, we have shed
light on the remarkable effectiveness of that ap-
proach.

As the discussion above implies, the usual
phenomenology employed for the analysis of three-
body final states violates unitarity. By quantify-
ing this violation we are able to establish the range
of validity of the usual approach as well as provid-
ing an alternative (albeit complicated) for use when
the normal phenomenology fails. The usual ap-
proach to three-body final states is through a form
of "Watson's theorem, " a method borrowed from
the two-body final state problem. ' Even in the
two-body case, what is usually called Watson's
theorem is a special approximation of limited
validity rather than a general theorem, but at
least in the two-body case how to implement the
full correct theorem on the basis of the general
quantum mechanics is known. The Watson approx-
imation in the two-body case consists of assuming
that the pair's final state distribution in a reac-
tion amplitude is proportional to that pair's free
scattering amplitude times a slowly varying real
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factor that reflects the reaction mechanism itself.
In the three-body case the corresponding assump-
tion is that the reaction amplitude can be written
as a sum of three terms, each one proportional to
the free scattering amplitude of a given pair, and
each multiplied by a factor that is essentially the
amplitude for the creation of the spectator particle
and correlated pair in the reaction. The assump-
tion that is crucial to the approximation is that
that last factor is slowly varying over the three-
body phase space, and that turns out to violate
unitarity. Many formalisms, for example the
Faddeev equations, write the final state amplitude
as a, sum of three terms, each ending with one of
the pair's t matrices depending on which pair in-
teracts "last." In fact, the seductive simplicity of
this form in the Faddeev case is sometimes mis-
takenly taken to justify the Watson approximation.
Of course, the Faddeev theory makes no "slowly
varying" approximation for the coefficients of the
pair t matrices. The essence of the Watson ap-
proximation can be seen in the case where the fi-
nal pair interactions are resonant. The approxima-
tion is then called the sequential decay model in
nuclear physics and the isobar model in particle
physics. The final state is then made in two steps.
First the reaction forms a spectator and an un-
stable particle, or resonating pair, and then that
state decays. The decay distribution is given by a
Breit-Wigner form and hence by something pro-
portional to the pair t matrix while the amplitude
for forming the spectator and unstable states is a
quasi-two-body amplitude. In fact the reaction
amplitude is a sum of three such terms, one for
each pair grouping. If the pa, ir resonances are
narrow they will live long, and escape the three-
body interaction volume before decay. Each three-
body event will then have a clear and unambiguous
parentage. We will only need the quasi-two-body
amplitudes at a pair subenergy corresponding to
the resonance energy and there are no problems.
But what if the resonances are not narrow? The
particles begin to decay in the three-body inter-
action volume, or, equivalently, we have difficul-
ty tracing a particular event to an unambiguous
resonant pair plus spectator parentage. Clearly,
interference effects become important and any
coherence enforced by the general constraints of
quantum mechanics becomes particularly impor-
tant. Furthermore, if the pair resonances are
broad, the quasi-two-body amplitudes leading to
them can have important variation over the energy
band in which pair interactions are important.
These problems have been known for some time in
both the isobar model and the sequential decay
model, but since no solution was known, the mod-
els have continued to be used even in wide reso-

nance cases where difficulties were almost certain
to occur. It is precisely in these cases that we
shall show that the simple isobar or sequential
model violates unitarity. Our discussion is by no
means restricted to the case of resonant pair-
wise final state interactions. Our corrections are
just as important in cases involving strong but
nonresonant overlapping final state interactions,
as encountered for example in n-d breakup.

Our basic idea is to apply unitarity to an ampli-
tude with a three-body final state parametrized as
a sum of factors as in the Watson approximation.
We then concentrate on those terms giving the
strong or singular dependence of the spectator
amplitudes on the pair subenergy for fixed total
energy and total angular momentum. The pair sub-
energy and the spectator particle energy are then
related by total energy conservation. We use the
fact that each term in unitarity represents a sin-
gular term in the amplitude with the singularity
at the threshold given by unitarity. We find the
spectator term has a square-root branch point as
a function of its pair's subenergy and that the
strength of that singularity is proportional to the
magnitude of the other pair terms. Hence unitarity
requires that the spectator function, rather than
being constant, have a rapid (in fact singular) de-
pendence on the pair subenergy. Furthermore,
because the strength of that square root is related
to the other pair terms, there is an important co-
herence between the final state terms imposed by
unitarity above. The presence of the square-root
singularity in SchrMinger theories has been known
for some time and its importance for controlling
the dependence of the spectator function has been
emphasized. 4 Also, the coherence between final
state terms has been stressed before, ' but the gen-
eral nature of both these effects and their relation-
ship has seldom been stressed.

The unitarity relations allow one to test the usual
Watson approximation which neglects the square-
root singularity and the coherence. One uses the
approximate nonsingular amplitudes "on the right"
in unitarity. If through unitarity they generate a
very small singular pa, rt, the approximation of
neglecting that part is valid. If they generate a
large singular part, it is not. This is similar to
using unitarity in elastic two-body scattering to
test the validity of a purely real amplitude. One
puts the purely real amplitude on the right; if it
generates a small imaginary part, unitarity cor-
rections are small, but if it generates a large
imaginary part, unitarity is not just a correction,
but an essential feature that must be included. In
the two-body problem one knows how to use phase
shifts to parametrize the amplitude so that uni-
tarity is guaranteed. Unfortunately there seems
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to be no simple way to parametrize the spectator
amplitudes in the three-body case so as to guaran-
tee unitarity. However, by exploiting the fact that
unitarity provides the discontinuity across the
singularity associated with its threshold, we can
implement the unitarity constraint in terms of a
dispersion relation —that is, by writing Cauchy s
theorem for a function with that branch cut and that
discontinuity. If we assume the spectator function
has only the branch cut required by unitarity, and
recall that unitarity gives the discontinuity as a
linear function of the other spectator functions,
the dispersion relation gives a set of linear cou-
pled integral equations for the spectator functions.
This set turns out to be just the separable poten-
tial equations with neglect of vertex functions.
The vertex functions give lef t hand cuts and they are
neglected by taking only the unitarity cuts. Hence,
in this way we derive a set of integral equations
which are the minimal embodiment of the con-
straints of unitarity and analyticity and also shed
light on the meaning of the separable interaction
equations without recourse to the Schr6dinger
equation, etc. The approach is much like the pro-
cedure developed by Omnes for the implementation
of unitarity in two-body final state interaction the-
ory. Unfortunately, the integral equation one now
encounters is too difficult to solve in general, in
contrast to the two-body case. Hence, though we
have established the minimal structure required
for the correct analysis of three-body final states
by the general principles of quantum mechanics,
we have also found that a full implementation of
that structure requires the solution of a complex
set of integral equations. These equations require
much of the same technology for their solution as
the separable interaction equation. Furthermore,
they admit the possibility of making subtractions
so that, for example, the breakup data in a reac-
tion can be expressed in terms of the elastic scat-
tering. Experience with n -d breakup indicates
that very little latitude is left in the breakup if the
elastic scattering is fitted. ' Much experience will
have to be developed with the formalism presented
here to determine the general validity of such
ideas, as well as the usefulness of the entire for-
malism.

As a technical note it should be stressed that in
most phenomenological treatments of this problem
as well as in our earlier discussions in letters of
the unitarity constraint and its implementation, "
the pair decay factor in the Watson approximation
is taken to be the pair t matrix. Much better analy-
tic structure and better convergence of the integral
equations is obtained if the pair D function is used
instead. This is precisely the factor that carries
the pair final state interaction information in the

two-body case as well. '
In Sec. II we develop the unitarity constraints on

the Watson approximation form of the parametriza-
tion. This section is long and in places complicat-
ed since we develop the constraint for the general
case, but it is also self-contained and begins with

a discussion of our convention for unitarity. The
reader uninterested in detail may wish to skip
from Eq. (16) to the results, Eq. (20a), and the
subsequent discussion. Section III discusses a
simple three-boson example and hopefully clarifies
the content of the general result. Section IV dis-
cusses implementation. In order to keep the alge-
bra simple we only discuss implementation for the

simple three-boson case. We first discuss imple-
mentation without the constraint of analyticity and,

by comparing with two-body final state theory,
show its shortcomings. We then present implemen-
tation with analyticity and show how one obtains
an integral equation very much like that of the sep-
arable interaction theory. We also show here the
superiority of using the pair D function rather
than the t matrix to represent the pair correla-
tions. Discussion of the results and an outline of
future problems is presented in Sec. V. The uni-
tarity constraint in the case of identical particles
is derived in the Appendix.

II. UNITARITY CONSTRAINTS

A. Unitarity —two-body

Since our basic tool is unitarity, we begin with

a discussion of our convention for it. In terms of
the S matrix, we define the T matrix by'

& nisi p&
=

& nil lp& -2~f6(E.-E 8)& nlT lp&.

Unitarity of the S matrix combined with symmetry
of T (time reversal) allows us to write

lm&nlT'lp&=-v g &nl Tlr&&rl 7'lp&*6(E -E,) (2)

so long as E =Ee. The sum over y includes the
usual integration over continuous variables and
summation over discrete variables. Equation (2)
applies to states of any number of particles so
long as n, P, and r can be connected by the quan-
tum numbers and by energy conservation, but in
order to clarify our procedures let us first study
two-body scattering, assuming that the energy is
low enough that only the elastic channel is open.
Consider the scattering of two particles of mass
m, and m, (h =1) with internal quantum numbers
(spin, isospin, etc. ) n, and n, . We can write

& p, n„p.n, I~ I plnl, p.'nl&

= (2m)'5(p, +p, -p', -p,') (q„, n, n, lv lq,'„n', n,'),
(3)
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II f82 2

(2x)' 2g»

X (q)gB~Q~I 7'
lq)2CKg Q~ )

(C2 I ~ I ~lqI2~i~2)

(4)

where (m, +m, )p, » =m, m„and I q» I

=
I q» I

is ener-
gy conservation. If we assume, for simplicity,
that there is no coupling between the internal
quantum number and the orbital motion, we can
write

&a2~i~2I T lq»~i~'&

i*.(q») ~ ~ it(qn / &i2) n'az g. (qi. )~
lmt

(5)

where q is a unit vector and C ~t
&

is an element of
a unitary transformation from the o. representa-
tion to the I; representation, in which representa-
tion the scattering amplitude is diagonal. The
diagonal on-shell T matrix in this l, I; state is then
v«(e). (The quantity t can be thought of as the
channel spin, or isospin, or both. ) Substituting
(5) in (4) and using the orthonormality of the Y's
and the C's gives

(6)

which is our convention for partial wave unitarity.
Equation (6) can be satisfied by writing

7 „(e)= —(Bx'/gq)e" sin& (7)

for any real 5.
It is often useful to write 7 (e) (suppressing the

It labels) in the form

where (m, +m, )q» =m,p, -p, m, . Substituting (8)
into (2) and changing variables to q" and P"
(P =p, +p, ), which transformation has unit Jacobi-
an, we get

in terms of the phase shift. ' There is considerable
literature for generalizing (10) to include the ef-
fects of bound state zeros, Castillejo-Dalitz-Dyson
poles, etc. , hence (10) gives an expression for
D (e) at all e in terms of the physical phase shift,
then (8) or (9) can be used to construct N(e) for
real positive e.

Let us now examine briefly the particular case
of identical particles. No special care is needed
with sums, etc. if the states are defined with the
appropriate normalization. In particular, an c-
body state of identical particles InPy ) is con-
structed according to

1 1

where the g,~ are the creation operators and they
obey the appropriate commutation or anticommu-
tation relation. In that case the states lnPy )
will have the correct symmetry as well as normal-
ization. Using this, the unitarity relation will
still be (6). The only restriction is that in the de-
composition (5) we maintain the appropriate sym-
metry. Since interchanging the particles sends
q to -q and since Y, (q) = (-1) Y, (-q), we need to
take I,"s such that C~ ~, =+ C' „, the plus going
with even l for bosons and odd l for fermions, and
the minus with odd l for bosons and even l for
fermions.

B. Unitarity —three-body

Let us now turn to the three particle case, and
in particular the pair subenergy dependence of a
three-body final state amplitude as required by
unitarity. Consider an amplitude T» describing
two stable particles going to three as in a breakup
or particle production reaction. Assuming only
the two- and three-body channels are open, uni-
tarity for T» can be written

~(e) =N(e)/D (e), (8)

-1
D (&) =exp-

jr

de 6(e )
(10)

where D (e) carries only the unitarity cut and hence
has the phase -6 while N(e) is real for positive e
and has only left-hand cuts. In terms of (8), uni-
tarity (6) gives

ImD (e) = (p, q/8m')N(e) .

The analytic structure assumed for Ã and D means
that in the simplest case, D(e) can be written

-x g T. ..6(E -E,, )T,~. ..
3I

(12)

where T», and T3 3 are the elastic two-body and
three-body amplitudes, respectively. T.. .can be
decomposed into a connected part T3 3 „and a
sum of disconnected parts T, , d,

.„,„, which rep-
resent one particle going by while the other two
scatter. These disconnected pieces of T.. .are a
correct and necessary consequence of our defini-
tion of the S and T matrix (1). Hence (12) can be
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written

ImT, , = —m g T. ..5 (E -E,, )TJ;,
2P

7t' T2 3P5 -E3P T3
3P

-w Q T. ..5(E -E,, )T3t, , „.„.„. (13)
3 I

This equation is represented schematically in Fig.
1. We are interested in exploiting (13) to obtain
the dependence of T» on the pair subenergies for
fixed total energy. We are particularly interested
in its singularities, since a singularity represents
rapid dependence. As is well known, each term in
unitarity represents a singularity at the threshold
of that term. " Strictly speaking, each term in
unitarity contributes the discontinuity across the
singularity beginning at the threshold and in the
variable carrying that threshold. For a square-
root singularity such as we encounter here for the
subenergy, the discontinuity and the singular part
are the same thing. We are interested in singu-
larities in the pair subenergies, not in the total
three-body energy, since that is kept fixed while
the subenergy varies over the phase-space. Only
terms in vnitarity having pair subenergy thresh-
olds will yield these subenergy singularities.
Clearly, the T»,T.. 3 term has a threshold in E,
the total energy, at E =F.2 „ the minimum two-
body energy. Similarly, the T2 3 T3 3 „ term
has a threshold in E at E = F3

~ Q
the minimum three-

body energy. So, apparently, does the T»T3 3dj„„„
term from (13), but as is clear from Fig. 1 and
as will become clear in our development, the 5

function in T,P, „,,„.,„coming from the fly-by par-
ticle will give it a threshold in the interacting
pair's subenergy. Hence this is the only term we
need keep to study subenergy singularities. Keep-
ing this term alone, we no longer have ImT2 3,
but only the discontinuity of T» across the sub-
energy singularity. This could be called the ab-
sorptive part of T», AbsT», (which is what we
called it in the letter') to stress the fact that we

are no longer dividing the amplitude into real and

imaginary parts but into absorptive and dispersive
parts, each of which can be complex, while the
absorptive part contains the appropriate physical
threshold singularities. We could call it SingT2 3

FIG. 1. Diagrammatic representation of the unitarity
rel.ation Eq. (13).

since it is the part of T» carrying the full sub-
energy singularity of T». This is a special fea-
ture of a square-root singularity; that the absorp-
tive part or discontinuity is the same as the singu-
lar part. In fact, we choose to call it DiscT2 3 to
stress that it is the discontinuity of T2 3 across
the subenergy cut, and that the other terms in
unitarity do not contribute to that discontinuity.
This name stresses the aspect we exploit in de-
riving the minimal separable interaction equations
from unitarity and analyticity (Ref. 2 and Sec. IV),
but equally important to phenomenology is t;he

square-root singularity at the subenergy threshold,
since this threshold is on the boundary of the
physical region and the square root therefore rep-
resents a rapid variation not normally acknowl-
edged in phenomenological analyses.

Keeping only the subenergy term from (13) we

have

DiscT, , =-v Q T, , 5(E -E, )T~t, ,;„.„. (14)

We now flesh out (14) for three final particles of
mass m„m„and m, (h =1), using the conventions
of Sec. IIA. For T3 3 dj „we have

I ~ P ~r
Pl 1& P2 2& P3 3 I 3,3 "13~os& IP1 1& P 2 ™2&P3 3P

(217) 5 (p( —pI)6(v(
kgb,

x (p o-', p o'
I
T I p~ o" p' o") .

For T» we take a particular form suggested by a
number of approaches, sequential decay models,
quasiparticle models, the Faddeev equations, and

isobar models to name just a few. They are all
equivalent for our purposes. In general one can
always separate T2 3 into a sum of three terms
characterized by which pair interacts last. That
final interaction will be through that pair's half-
off-shell t matrix. If that t matrix is dominated

by a particular partial wave (or by a sum of a few

waves), the term ending in that pair's interaction
can be written as a product of a factor depending
on the initial state and on the spectator momentum
times a factor depending only on the relative mo-
mentum of the interacting pair (or as a sum of

such terms). The first term is the amplitude for
going from the initial two-body state to a state of
the spectator plus the correlated interacting pair,
while the second factor represents the subsequent
propagation and decay of that pair. This factor
is proportional to the on-shell t matrix of the pair.
In the Faddeev formalism, for example, the fac-
tor is the half-shell t matrix, but half-shell and

on-shell t matrix differ only by a real factor that
has no physical region singularities. Hence in the
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usual isobar or sequential decay phenomenology
the propagation and decay factor is taken to be the
on-shell pair t matrix (with certain kinematic cor-
rections) and that is how we presented it in pre-
vious work. " In fact, there are a number of
reasons for preferring to represent this factor by
the two-body D function (again with kinematic cor-
rection) of the pair instead. This function can be
constructed directly from the two-body scattering
data, as we discussed above. It is the essential
part of the pair propagator, and furthermore since

D- I for weak pair interaction while t —0, using
1/D rather than t allows one to include weakly in-
teracting channels easily on the same footing'as
strong. The usefulness of 1/D to represent pair-
wise final state interaction in the two-body case is
well known. ' In the three-body case we shall find
considerable technical advantage to its use when
we come to implementing the unitarity constraint.
However, since the t-matrix form is normally
used in phenomenology we will give the unitarity
condition in both forms. The two forms (essen-

tially equivalent in the physical region) are

=(2~)'5(pl+p2+ps) g ' " ' 'i„" ' i. , i «i»'/ t. J») i,.( i»)
fjk jk

cyclic
l jk ~ ~ jk»m

(2 ),5@ - -
) ~ (&l&lpi&i, 4»ti»~&lq. »l » I, (- )Ci(»

~ +p~ +p3
( 2/2~ ) t»yg 'V» ai a» i

i jk l jk, tjk ~jk jk
.cyclic

& jk» &jk» m

(16a)

where k is the relative momentum in the initial
state and p represents the internal quantum num-
bers in that state. W'e work in the three-body
center of mass. The &&. , or D, & are thejk ' jk jk ~ jk
& or D of (7) or (8). l;»t, » are the states in which
interaction of the& -& pair is important. Strictly
E or f is defined by (16), but they are clearly the
amplitude for going from the initial state to a
final state of spectator particle i in the state p&,
&& and a correlated j -& pair in the state ~jk, & „.
This correlated pair has total momentum -p&
and center of mass energy if,.»'/2ti. ,», which en-
ergy is related to P by total energy conservation.
The remaining factors in Eqs. 16 carry the propa-
gation and subsequent decay of the correlated pair.

I

sion, we obtain

I

The factor of q' in Eqs. 16 gives the decay ampli-
tude the correct threshold behavior. It is needed
in the denominator of (16a) because &, has a if"
threshold. If the forms (16a) and (16b) are to be
used far from threshold and/or if Coulomb forces
are important, this factor should be replaced by
the appropriate penetrability factor.

We now substitute the form (16) into the unitarity
constraint (14) using the partial wave decomposi-
tion (5) in the expression for the disconnected
amplitude (15). We give our discussion in terms
of the usual phenomenological form, (16a), and
will quote the corresponding result for (16b) at
the end. Equating coefficients of C„»~»&, (q»)jk, m

on both sides of the fleshed out unitarity expres-

(2,,~, -, . ( p lflkp,.~~, , lt„') h, , q„'
)jky jk 2p

8'm' W

mrs cyclic
&rs&rs

lrs t s 2~ I,rs 8 s) 8„8
rs rs

X(&&)'~(pi —p,') 5, , 8;(»)' ~(pi+p» -pl-pl)CS, '. g, t,„'
p 2m, 2m, 2m 2m, 2m 2m
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Disc (f&) = (Discf )r *+f Disc&

= (Discf )&*+f Imv, (18)

which follows from the original relation of Disc
to Im, and from the definition of the imaginary
part of a product

2 ~ ImAB =AB -A *B*

=AB -A*B+A*B-A*B*

=2 ImA+2iA, *ImB .

In (18) we have also used Discs-Imr because the

where we have used the fact that the various &

functions force the condition I q,'.k I
=

I q» I . On the
left hand side of (17) we use

only discontinuity of & comes from its one thresh-
old and that gives its imaginary part. There are
two types of terms on the right hand side of (17).
In the first g =i &&=&&, In this term the &&

integrals are easily done by orthonormality since
they are of the same argument and the C'8 sums
are similarly done. One then finds that the f1m'
term on the left cancels exactly with the f I

v I
'

term on the right by two-body unitarity (6). This
result that the f Imv term must cancel with a cor-
responding term on the right by two-body unitarity
is general in all such calculations, identical
particle or not, relativistic or not, (16a) or (16b)
form, and serves as a useful check on these calcu-
lations. One is now left only with the (Discf)v*
term on the left and the term on the right where

Canceling the &* in both of these, one finally

gets

Disc( kpI f I pi &f, leak teak m)

d3 ' 2 I2
qik 6 qSk qSk

jk (2v)' 2p, »

(iPlflP~P 4 «m') tffa')
I

lik lik iik

m'. 8)sy

x If f ygkfk (kplfl PkPk lfi ftim)
I q,', I

'fi

(20a)

where in evaluating p~ and p„' it is realized that p, is fixed and p~+p„'=p„while q&~ is varied. Equation
(20a) shows that (kp I f I pi if.„l»t»m), the quasi-two-body amplitude for producing particle t and the corre-
lated j-k pair, has a rapid dependence on the j-k pair subenergy Z» = q»'/2 p», which is related to P,

'
by

total energy conservation according to

1 1 (21)

In fact, f has a (E»)"' singularity. The strength of that singularity depends on the "non-i" parts of the
amplitude, that is, on the fpfk and fk7;i terms. Hence it is important when a number of different final
state pair interactions are strong in overlapping parts of the final state phase space.

If one begins with (16b), an exactly parallel argument can be made to give

Disc( kpI EI pi &f, l, k t » m)

—&&f„f„(qik '/2tk~k )

q If»
"&&I g &ga

m'8 Sg

lg~ tg~ y A]~ tg ~

(kpl&lpiP, l'ktfkm')
f

l jk tgk

(kp IF I PkPkf lfitffm'& I qIf I'"I'f„(qif) f,

4g (20b)
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where all symbols and the importance of singulari-
ties are the same as given following (20a). Equa-
tion (20) represents a set of integral constraints on
the singular parts of the f s or F&'s, the non-
singular parts being arbitrary; that is, deter-
mined by dynamics and analyticity but not fixed
by the unitarity constraints. The constraints can
be used to check the unitarity of any particular
parametrization of a final state. Since most phe-
nomenological studies treat the various f's or
F's as independent and constant, while unitarity
requires that they be neither, there must be a
number of cases of overlapping interactions where
the usual analysis is wrong. If one is given a
theoretically generated (or guessed at) set of non-
singular f, 's and the two-body v's (or E's and D's),
one can use (20) as a set of integral equations to
determine the additional singular parts of f, or
F& required by unitarity. The importance of the
unitarity correction will depend on the relative
strength of the non-i final state interaction. Un-
fortunately, it is not simple to guess the non-
singular parts of f, or E,. In particular, they are
not just the Born term or equivalent. |n order to

fully implement the unitarity constraint (20) one
needs to add analyticity. This is discussed in Sec.
IV 8. What goes wrong with using a simple guess
for the nonsingular part directly in (20) and using
it as an integral equation for the singular part is
discussed in Sec. IVA.

We shall also need the result corresponding to
(20) for bosons and for fermions. These are ex-
plicitly derived in an Appendix, but in fact they are
nearly the same as (20) except for an important
sign change in the fermion case.

III. SIMPLE EXAMPLE —THREE BOSONS

The unitarity constraint we have derived Eq.
(20) is complicated in its general form and hence
difficult to analyze. In order to see its content
clearly, let us consider the special case of a final
state of three spinless bosons. Let us further as-
sume that their only important interaction is in S
waves and that neither the bosons nor the initial
state have any internal quantum numbers. For
identical particles (2m=1) there is only one spec-
tator function f or P and (20a) and (20b) become
(see the appendix for an explicit treatment of iden-

tical particles):

Disc & klf I p& = ——
2

d3p1
,&klfip'&~(E-'p")~(E-2p -2p"-2- -

) (21a)

and

Disc( kl El p& = —,N(E —~p')— d'p'
(2~)3 D(E -&P") &(E 2P' —2P" —2-p p'), (21b)

where we have suppressed a number of unneeded
labels. In particular &, &, and D all refer to two-
body S-wave scattering. The content of Eq. (21)
is clarified if we make a partial wave decomposi-
tion according to (we take the a case)

pressed by changing variables to P' =x and P" =p.
Let us call (kl f, lP& =f, (E,x). Equation (23) then
becomes

1
Discf, (E, x) =--, „~, dy f, (E, y)v(E —~2y)82r x' '

&klflp& = g I'i-(I)&~lfalp»~*. (p) (22) E -2x —2y
(24)

l corresponds to the total three-body angular mo-
mentum since the correlated pair has zero angular
momentum. Equation (21a.) then becomes

Disc & I
l f, l p &

= ~, , & u—[f, l
p'&~(E ,p")——

1
x dz P, (~)&(E 2p2 2p ' 2pp, )

(23)

in terms of the Legendre polynomial P, (z). Clearly
the & function can be used to do the z integral, but
since —1 &z &1, there are restrictions on the P'
range for fixed E and P. These are most easily ex-

where y, =2(E-x +[2x(E-+x)j' '}. These limits
on p are just those allowed by phase space. One
sees clearly that (24) gives f a singular part at a
given x in terms of an integral over f at different
values. For example, for x near zero, g values
near 2 E contribute, while for x near ~3E, y near
—', E contributes. Since as x approaches +E the
integration region shrinks to zero, Discf, (E,x)
goes like (E —~~x)' ' in this region. This is the
square-root branch point we have stressed. E
—~2x =0 is precisely the two-body threshold of the
pair associated with the "x" spectator. The in-
tegration region also shrinks to zero as x-0 like
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x' ', but because of the x ' ~' in front f, (E,x) is
finite at x =0 and has no singularity there. In fact
the branch cut associated with (24) runs from
g-~2x=0 to E —~2x =~ or from x = ~~E to x= —~,
just as we would expect for a two-body scattering
cut, rather than from x =~3E to x =0, as one might
naively expect from phase-space considerations
only. In the physical region (0 & x &~E), (23) or
(24) may be used to calculate the discontinuity
across the cut; for negative x these expressions
do not apply and some form of analytic continua-
tion in needed to get the discontinuity or singular
part.

We see that (21) or (24) require the spectator
function to have a singular or rapidly varying part
not normally included in phenomenological anal-
yses. The size of the singular part depends on the
importance of the final pair scattering. Just as
with (20), (21) can be used to check the importance
of the unitarity-generated discontinuity or singular
part by substituting the assumed nonsingular part
on the right and seeing how much discontinuity it
generates. This is just like using (4) or (6} in the
two-body case with a purely real t matrix on the
right. If that purely real t matrix is small, it
will generate very little imaginary part and the

assumption that is is purely real and has no &"'
branch cut is justified. If the purely real assump-
tion on the right generates a large imaginary part,
unitarity is violated. Of course, in the two-body
case we know that the phase -shif t parametr ization
(7) will satisfy unitarity for any &, but we do not

yet know how to parametrize the spectator func-
tion so that (20) or (21) is automatically satisfied.
We must therefore take a more complex route to
implement unitar ity.

IV. IMPLEMENTATION

In this section we discuss ways of implementing
the unitarity constraint (20) or (21). To keep the
algebra simple we shall concentrate on the three-
boson example of Sec. III. We shall first discuss
implementation without analyticity and then with

analytic ity.

A. Without analyticity

Equation (24) implies that in the physical region
we can write

f, (E,x) =A, (E,x)+i (E —~x)'~'B, (E,x), (25)

with A and B analytic in x in the physical domain

0-x~~3E. In terms of (25), (24) becomes

32m'a, (a, x)[x(a —~~)1'~*=— d)a, (a, ylv(a —~y)p, „, )

(26)

For a given A, (E,x}this is a Fredholm integral
equation for B, (E,x). [It is Fredholm because
the kernel is a finite function and the domain of
integration is finite. ] Since we are assuming the
two-body on-shell amplitudes & are known, we
need only give A to obtain &. The usual phenom-
enological guess for f is a constant; one might
then think that A = constant would be the corre-
sponding correct guess. Although any choice of
A will generate a B by (26) that satisfies unitarity,
only if the unitarity effect is small (that is, only if
the Neumann series generated by iteration of (26)
converges rapidly) will the choice A =constant
satisfy analyticity (approximately) as well. So
far we do not have enough experience with solving
(26} to know if the Neumann series to (26} always
converges, but clearly there are cases when it will
not converge rapidly. A, (E,x) and (E ——,'x)'~'
x B,(E, x) are essentially the real and imaginary
parts (really the dispersive and absorptive parts)
of an analytic function in. the cut plane with the cut

in x going from ~~E to -~. These two parts are
related by a dispersion relation and by the choice
of driving terms, that is, by subtraction. A sim-
ple choice of these, in general, does not corre-
spond to a simple choice for A and B.

The relation of A. , B, and analyticity can be seen
in a simple two-body example. Consider a two-
body process in which a weak initial channel leads
to a strong one. ' Classic examples are photo-pion
production (y+&- )) +N) in particle physics and
photodisintegration of the deuteron (y d+-n P)+in
nuclear physics. Let &„be the amplitude for this
process in an appropriate eigen channel where &

is the strong process. Assume further that only
the a and & channels are energetically allowed.
Unitarity applied to t„gi e vscshematically (to
lowest order in the weak process)

im ab ( } a() ()() (27)

where (v)' ' is the relative momentum in the strong
channel ((r is the corresponding kinetic energy)
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e" sinO
bb (g) 1/2 (28}

and comes from the phase space. The elastic t
matrix is normalized to

dispersion relation (really Cauchy's theory)

t ( ) =Ai ( )
1 "

dv'Imtbb(~ )
0

(33)

Equation (27) says that t, b can be written

lS (29)

where ~,b is real. Any choice of M„will satisfy
the algebraic constraint (27). A common choice is

~ab =Nab sin~
~ (3o)

where N„ is real, and constant or slowly varying.
This is often called Watson's theorem, but it
clearly is neither a theorem nor generally valid.
In fact, (27) implies that t„has a square-root
branch cut in o starting at o =0. One might try to
exploit this by writing

t„=A,b + b (o)' ~'B (31)

where A' and B' are real, that is they have no
unitarity cut. This corresponds to (25). Putting
this in (27) with (28) gives

t„=A.'„e' b /cos5 . (32)

B. With analyticity

In the two-body example we wish to exploit the
fact that unitarity does not just give the imaginary
part of t,b, but tells us that in fact &„has a branch
cut in a from 0 to , with discontinuity given by
(27). It may have other singularities in o, but
those are not directly required by unitarity. If we
assume t,b (v) goes to zero sufficiently rapidly as
o'-, we can explo'it this information to write a

This form is superior to (30) for weak interactions
where it gives t,b-A,'b rather than t„-0, but it
clearly is inadequate in other cases, for example
in the case of a final state resonance where it gives
not the usual Breit-Wigner form, but rather t„
-~ on resonance (6 =2m). Of course A,', can be
chosen in (32) to make (32) exactly correct in any
theory, just as A, (E,x) can be chosen in (26) to
make it correct. The point is that those cases
where in the limit of weak final state interaction
we expect t„ in the two-body case or f in the
three-body case to go over to a simple form, for
example constant, do not correspond to choosing
A in (25) or A',

b in (31) to be correspondingly sim-
ple in the presence of strong final state interac-
tions. Rather, they correspond to a simple choice
of driving term in a dispersion relation. To study
this we turn to implementation of the unitarity con-
straint including analyticity.

where the driving term A,'b does now represent
any simple ideas we may have about the primitive
mechanism for the transition that is ~„-A,'b as
the rescattering is turned off. If we substitute
(27} and (28) in (33) we get the well-known singular
integral equation whose solution has been given by
Muskhelishili and Omnes. ' The usual formulation
of the problem, Eq. (33), corresponds to including
only the unitarity cut in t,b and neglecting left-hand
cuts (except those in A') that, though present in a
Schrodinger treatment of the process, are not re-
quired by unitarity. It is also easy to see that
with A,', chosen as constant in (33), the real part
of the solution for ~,b will not be constant if the
final state interactions are important, which is
why choosing A,', as constant in (31) and (32) will
not work.

These same considerations apply to the three-
body case. Equation (26) can be used to implement
the unitarity constraint, but the choice of A, (E,x)
is difficult unless the final state interactions are
unimportant. To employ simple choices of driv-
ing terms, one must include analyticity as we did
in (33) for the two-body case. As we have seen,
unitarity forces ( kI f, (E)I P) to have a cut in P'
in the interval -~ &p'& ~bE. If we assume f has
no other cuts, in particular if we assume it has
no left-hand cuts in the subenergy o due to poten-
tial contributions I just as we assumed no left-
hand cuts in the two-body case to write (33)], and
if we assume f goes to zero sufficiently rapidly
at large P' to drop the contour at infinity, we can
use Cauchy's theorem to write the dispersion re-
lation

(&If, (E)le& =(&I&, (E)I q&

Disc ~ ) E p
(2/3)EP -&

where ( kI ft, (E)I q) is the / -wave projection of the
driving term, the part of f that has no unitarity
cut. There are two technical impediments to the
direct use of (23) in (34). First, as we discussed
in Sec. III, while (34) requires the discontinuity
for -~ &p'&xbE, (23) is only valid for 0&p'&~bE.
Hence some analytic continuation is required. A

simple way to do that continuation is to substitute
(23) into (34) and interchange the order of the P'
and P' integration. For small P' the argument of
the ~ function will have its zeros for 0&p'&~3

Having done the P' integral for small P', the ex-
pression may be continued to ail P'. Equation (34)
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then becomes

& kl f & (E)I q& =& kl I~i (E)I q& +—
I2d /

, &klf, (E)i~'&~(E-~~")E, (q,~'),
where

E| (q, p') =
~ OO 1

dz P, (z)5(P'+P" + pp'z --,'E) .
j3)~P

(35)

E& (q, p') =- P, (z)(-P'z+y)dz
y[q'--'(-P'z+y)'] ' (3S)

For even l, P, (z) =P, (-z), and hence for even l
we can symmetrize the integrand in (38). A few
lines of algebra and the definition of y from (37)
then give

P, (z)dz
l (qtp ) I 2 pl 2 Pl-I (39)

for even l . For odd l we came to our second
technical impediment. The partial wave projec-
tion makes & kl f, (E)l q) an even function of q for
even l, but for odd l it is odd in q [recall that at
threshold &kl f, (E)l q&

—q']. Hence (34) is not a
correct form for the analytic structure of the spec-
tator function for odd l, since then ( kl f, (E)l q)
has an additional kinematic branch cut in g' in the
interval 0( p (. This difficulty is circumvented
by studying q& k

I f, (E)l q& for odd l . The extra
factor of q removes the kinematic cut. The ampli-
tude q(kl f, (E)l q) can be treated by Cauchy's
theorem and after interchanging the P' and p' in-
tegrals, using the & function, and exploiting the
fact that P, (z) = P, (-z) for o-dd l, one gets after
some algebra precisely Eq. (35) with B, , as in
(39). Hence the result is true for even and odd l .
The partial wave projection may now be undone
to give the linear integral equation

The argument of the 5 function has roots at

P, = '( -0'z-+[2E -P"(4-z')]'"] -=-'(-P'z~ y).

(3V)

It should be recalled that E has a small positive
imaginary part, and under these circumstances
only the root with the positive square root is on
the first sheet of the P' plane. Using the standard
rules for doing the integral of a & function, we get
for (36)

This is just the usual separable interaction linear
integral equation for the spectator function in the
special case of unit vertex function. The vertex
functions were excluded when the assumption of no
left-hand cuts in the subenergy was made to write
the dispersion relation of Eq. (34). The denomi-
nator of the integrand in (40) is just the well-known
particle exchange denominator. Equation (40) is
represented graphically in Fig. 2. &klR(E) Iq& is
the driving term for the process. It is easy to see
that in a simple 2-3 (or a 1-3) decay process,
the usual Born term has the correct features, in
particular no unitarity cut, to be &RIB(E) Iq& so long
as the two-body state in the incident channel is
stable. Since no mention has been made so far of
Schrodinger dynamics, that state can be a bound
state or an "elementary" particle. If r(c) in (40)
has a stable two-body state pole, (40) can also be
continued in the usual way to represent two-body
elastic scattering from that state, as well as the
breakup process. If the two-body state in 7 comes
from an elementary particle, Eq. (40) is a Fred
holm equation, but if it is a bound state in a poten-
tial it is not, since in that case the appropriate
traces of the kernel do not converge at the upper
limit. " In the usual Schrodinger theory the ver-
tex functions provide that convergence. One might
try to correct this deficiency by introducing a sub-
traction in the dispersion relation (34). A useful
point to make that subtraction would be at the pair
subenergy corresponding to the two-body bound
state. One would then have a Fredholm integral
equation for the breakup in which the elastic scat-
tering for the stable two-body bound state appears
as part of the inhomogeneous term. This would
allow one to examine explicitly the question of what
additional information is contained in the breakup
process over elastic scattering. Calculations to
date with separable potentials for the n-d system

&klf(E)l q& =&klft(E)l q&

d'P' &klf(E)lp'&~(E-~P")
(2w)4 E —2p" —2q' —2p' q

(40)
FIG. 2. Diagrammatic representation of the dynamical

equation implementing unitarity and analyticity, Eq. (40).
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would lead one to believe that the answer is "very
little. "' An alternative would be to use (40) to
generate the Neumann series. For reasonable
forms of &k~B(E) ~q) the integrals in that case all
converge, even without vertex functions. One
could then regroup that series by the method of
Pade approximates. Clearly much work remains
to be done to investigate the usefulness of this and
related approaches.

It is interesting that implementation of unitarity
and analyticity leads directly to a linear scatter-
ing integral equation so close in form to the equa-
tion generated by the Schrodinger-I ippmann-
Schwinger-Faddeev approach. Of course (40) re-
quires only on-shell information, as does any uni-
tarity-analyticity approach, but it does require
r(e) for negative e, that is on-shell but for negative
energies. This is familiar in the Faddeev ap-
proach. Its occurrence here reflects the fact that
this "unphysical region" information is required in
the three-body problem by the most general prin-
ciple of quantum mechanics. One might try to im-
prove convergence in (40) and include more physi-
cal information by taking t(e) to have both a right-
hand unitarity and a left-hand potential cut, since

it was onlyf, not r, that we assumed not to have
such a cut. But in fact this mill spoil the total en-
ergy analyticity of (40). It is remarkable that we
have come so far as (40) with only subenergy ana-
lyticity and unitarity, but now we must invoke total
energy analyticity. If we allow t(e) to have a left-
hand cut then because of the way r appears in (40),
the integrals will run over that cut and will in-
troduce a complex component to the integral, even
if «0. But clearly for E below the lowest scat-
tering threshold the spectator amplitudes must be
purely real and hence t(e) is not allowed to have
a left-hand cut. Hence in terms of this parametri-
zation consistency (i.e. E analyticity) requires
that if &k g, ~ q) has no left-hand cut, T(e) must not
have any either.

Many of these problems can be avoided by using
the parametrization for decay of (16b), which in-
volves not v(e) but D(e). This leads to the discon-
tinuity relation (20b) or, in terms of the simple
three-boson case, (21b). We make a partial wave
decomposition of (21b) as in (23), assume the cut
structure for &k ~&, (E) I q) required by unitarity
alone, just as in (34) (at least for even I), and
arrive at the integral equation (corresponding

to 35)

&kI+, (E) le&=&klII, (E) l~)+2 2, ~ DE' ~,. Bi(&,p')
p"dp' &klan, (E)IP') B (41)

where for even l we can write, corresponding to (36),
2

B~(~, P') = dz Pi(z)-. .N(E :p') [&(p'+p"-+-Pp' 'E)+5(p'+P-"-pp" 'E)]---
2 -I ~(2/3)E P

(42)

We can explicitly do the P' integral to get
1

B&(tg, p') = —— dz P&(z) —
2 ~, 2 N(E —f(-p'z+y) )+ 2 ~, 2 N(E —N(p'z+y) ) (43)

We want to be able to continue (43) to all P' or to
study it for & &0; in both cases we seemingly en-
counter trouble because y has a branch point and
hence becomes complex. This is the same diffi-
culty we found before when we used ~ without an

In fact, it is not really there. Because of the
symmetrization in s, the quantity in square brack-
ets in (43) is actually only a function of y', hence
it may be continued to large p' and/or to negative
E without fear of meeting spurious branch points
or, what is the same thing, spurious imaginary
parts. This cancellation of terms odd in y is most

easily effected when the explicit analytic form of
N(e) is known. It cannot be done if N is only known

numerically for real positive e. But if f(e), the
on-shell two-body t matrix, is known for all &,

N(e) can also be determined for negative e. Since
N(&) has only a left-hand cut, we can then write

N(e)=1
" P()dy

(44)
m

where p is the discontinuity of & across the left-
hand cut and is known if v(e) is known for all nega-
tive &. -jU, ' is the "threshold" of that cut. In

(45)

terms of (44), (42) becomes

B,(q, P') =— dz P, (z) . . . , [t5(p'+P" +PP'z ,'E) + 5(p'+P" —p-p' z,' -)]E. --
5/3)EP 'V —a y + 2P
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The denominators in (45) can be split by partial fractions according to

1 2 1 1 1
Ã-s)5+9'-&) 3 0'-v' P'--'(&-v) q*--.*(&-v))' (46)

Using (46) in (45) with (44) and the techniques used to obtain (39), we get

( --'e'), " yp(y)
2E —p' q —P'Vz m „(E—2(I —V)(3y —P' —~E —P'[~ (E —V)]' z)

(47)

which shows explicitly that the continuation to
large P' causes no problems. Equation (47) seems
to contain new problems. For positive or negative
E, q' runs from 0 to ~ and N(E —,q') in the first
term will require & on its cut and can therefore
introduce problems. Similarly, the & —2q' —y de-
nominator in the second integral of (47) can vanish
for E positive or negative. In fact, these two dif-
ficulties exactly cancel. They both arise from the
common denominators factor in (46) of E —,q' —y,
which in turn arises from the partial fractions de-
composition. In fact, (46) is not singular when this
denominator vanishes, because the terms in the
brackets cancel them. Hence there are no singu-
larities or imaginary parts arising in (47) at that

point, but rather they cancel. The second denomi-
nator in the second integral in (47) cannot vanish
if E & jj,

' since y &-p, '. There is also no singularity
associated with the square root in this factor so
long as E&-p, '. For «-p, ' these terms will pro-
duce singularities and hence complex parts, but

these are expected since now we are considering
E more negative than the range of the force, and

even the on-shell two-body t matrix becomes com-
plex there.

Equation (47) is valid for all t just as (39) is,
and may be used in (41). The partial wave projec-
tion is not simply "undone" in this case because in

one term of (47) we have P'qz, but in the other
P'[&(E —y)]' 'z; but one can write these as p'q

and p' q[—', (E —y)]' ', where q is a unit vector, and then one obtains

(k I +(E) lq) = (k I &(E) I q& + "
~ (2m)' D(E —-',P")

~(E —-'q') 1 " dy p(y)
E —2p" —2q'-2p' q 2& (E —2q'-y)(3$ P SE p q[3(E -y)] ') (48)

Equation (48), or the set of (41) with (47), forms
the new set of integral equations for the spectator
amplitudes. For reasonable choice of & they will
be Fredholm, that is, have convergent traces.
Just as in the other case their convergence can be
increased by making a subtraction, for example
to relate the three-body amplitude to the elastic
scattering of one from a bound state of two. Equa-
tion (48) is not so simple as (40), but it contains
more places for input and hopefully does a better
job of describing the physics. The true usefulness
of either form must clearly await a study of nu-
merical examples.

V. DISCUSSION

We have seen how the usual Watson approxima-
tion for the treatment of three-body final states
fails when there is significant overlap of the pair-
wise final state interaction. This failure can be
both exhibited and quantified by using only unitarity.
We have also shown how the usually neglected con-

straints of unitarity can be implemented through
analyticity to give a set of coupled linear integral
equations for the final state amplitudes. The equa-
tions are constructed using only on-shell informa-
tion and the cut structure required by unitarity and

hence are an embodiment of the minimal con-
straints required by the general principles of quan-
tum mechanics. At the same time the equations
are very similar in form to the separable interac-
tion equations for the three-body problem. Thus
the separable interaction equations, rather than

being detailed dynamical equations, are barely
more than this minimum. Given the remarkable
success of the separable interaction approach to a
wide range of three-body situations, it seems that
these situations are little more than manifestations
of these minimal constraints and hence contain lit-
tle detailed dynamical insight. This point has been
made before, ' but our work here casts new light on
it as well as illuminating the content of the sepa-
rable interaction approach. From a theoretical
point of view, it is also remarkable that implemen-
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tation of unitarity and analyticity, the two central
pillars of S-matrix theory, should lead to a linear
scattering integral equation of the Lippmann-
Schwinger type. Technically this arises because
we study subenergy analyticity and hence obtain
linear unitarity relations. If we had considered
total energy analyticity, we would have found non-
linear unitarity constraints and all the complexity
they imply.

The usefulness of the methods we have present-
ed here remains to be tested. The unitarity con-
straint can be tested directly on existing paramet-
rizations to check their validity. For example,
the recent large study of m+N- m+m+N was made
neglecting the unitarity constraint. " That neglect
is probably unjustified and we are presently test-
ing their amplitudes in our unitarity equations. "
More interesting is the question of using the inte-
gral equations to generate a new phenomenology,
particularly using the freedom to make subtrac-

tions so that breakup and elastic scattering can be
united. Here the question of usefulness depends
on the success of trial calculations and favorable
cases. We are presently embarking on a program
of doing such calculations. Hopefully others will
as well.

It is clear that though our analysis has been giv-
en in the language of the three-body case, the gen-
era1. results, the existence of square-root subener-
gy singularities due to unitarity, the possibility of
writing linear integral equations to implement the
unitarity constraint, etc. , all also apply to four or
more particles. It would be interesting to study
overlapping final state interactions in these cases.

APPENDIX: UNITARITY CONSTRAINT

FOR IDENTICAL PARTICLES

For a final state involving three identical parti-
cles (5 =2m =1) the decomposition corresponding

to (16) may be written

(kplT2, 3lpl~llp2o2PP3~3) (2~) 6(p&+P2+Pg) g f ~f g(2qjg )C. .Ypg(qjg)
1 (kplf lp, o'i, «m)

ijk
1mt

(Ala)

(A1b)

lmt

for bosons,

(kplflp;~ «m)(kpIT. IP& i%& P )=( (P+P +P
2

I

I i, g q & q»)
7jk I

j k
(A lc)

=(») ~(pa+Pa+Ps) 2 Q &&» 2 2 i%el Yi (%a)C
(&plFlp~~i «m)

D $ t 2 m nnk
i jk
lmt

(A1d)

for fermions, where it is convenient to take the sums to run over all ijk and the factor of —,
' has been intro-

duced to keep the f and F normalized as in (16). With our convention for identical particles, T, , „„.„can
be written

t~r i ~r I ~r
P 1+1& P2 ™2& P3 +3 I 3, 3 disco n I P1+1& P2 +2 7 P3 +31

= —' P (2w)'5(p, -p,')(2v)'5(p, +p, —
p&

—p,')5„Y,„(q„)C'„„r,,(2q»')Y, (q»)C' „ (A2a)

abc
ltm

for bosons,

= ' g (2v)'6(p, -p', )(2v)'6(p, +p, —p~ -p,')5 „,. e,~,e„,Y,"(q„)C', r, ,(2q& ')Y, (q~, )C'„„.
ijk
abC

atm

(A2b)
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for fermions. These have the correct symmetry
so long as the odd and even l are correctly asso-
ciated with the symmetry of the C' . We now can
substitute (Al) and (A2) in the unitarity relation
(14). As before, the left-hand side can be written
(Dis fc)r* +f Imr [or

(DiscF)1/6*+Firn(1/D)].
On

the right the symmetry can be used to greatly re-

duce the forest of indices. One set of terms can-
cel on the left and right by two-body unitarity.
(Again, insuring that they do cancel is a good
check on any calculation. ) The remaining terms
are equal by symmetry. Cancelling the r* or 1/D*
on both sides these give, after some simplifica-
tion and noting that for identical particles q»

—.(p, -p, ),

Disc(kp ~f (po. , Itm) =-2wq', —,,', , 7, , (2(p+-,'p')')Y, (p+-,' p')Y',* (p'+-,' p)
"d'P' &kplf Ip'O' I'f'~')

2% p+ zp88'

or

xC„'gC8 86(E —2p' —2p" —2p p') (A3a)

&kp(F~p~ Ifm& 2, &~. ~2q ~ I
d p (kplFlp P I f ~ &lp+&p I

Y (p ~p)

x Y',*(p'+ —,'p)C'„SCg 86(E —2p' —2p" —2p p') (A3b)

for bosons, where

E = —,'P'+2q . (A4)

for exchange graphs and arises because (A3) is
essentially the imaginary or singular part of such
a graph.

Not surprisingly, (A3) is exactly the same as (20)
where the identity of the particles is used. For
fermions the same calculation gives precisely the
same result as (A3) except that the sign of the
right-hand side is reversed. This is the well-
known sign difference between boson and fermion
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