Erratum

Erratum: Macroscopic and microscopic model analysis of polarized proton scattering on ¹⁸O [Phys. Rev. C 10, 1645 (1974)]

J. L. Escudié, R. Lombard, M. Pignanelli, F. Resmini, and A. Tarrats

Because of a computer error, it is necessary to change the normalization of the experimental cross section for some levels by a factor of "f." It then follows that the deformation parameters β (Table II) and the normalizing factors Λ (Table IV) are reduced by a factor \sqrt{f} and changed to the values given in the following table:

J^{π}	E (MeV)	f	$\beta_{\rm DWBA}$	Λ
4+	3.55	2.5	0.20	0.9
0+	3.63	2.5	0.08	1.26
2^{+}	3.92	2.73	0.18	1.91
1-	4.45	2.73	0.13	3.81
3-	5.09	2.73	0.39	2.36
2^{+}	5.25	2.5		3.16
2-	5.52	2.5		2.00

The levels $0^{\scriptscriptstyle +}({\rm g.\,s.}),\ 2^{\scriptscriptstyle +}(1.98~MeV),$ and $4^{\scriptscriptstyle +}(7.11~MeV)$ are unchanged.

Coupled-channel calculations for the $0^+ - 3^-$

states (corrected data), using the vibrational model, have been performed with $\beta = 0.37$ and the following optical potential:

V = 52.99 MeV, r = 1.06 fm, a = 0.75 fm, $W_i = 5.37 \text{ MeV}$, $r_i = 1.39 \text{ fm}$, $a_i = 0.66 \text{ fm}$, $V_s = 4.90 \text{ MeV}$, $r_s = 0.90 \text{ fm}$, $a_s = 0.50 \text{ fm}$.

The above changes have the following effects: (1) The stated discrepancy for the measured β of the 2⁺ level at 3.92 MeV with the (α , α') experiment is removed.

(2) The two 4^+ levels have about the same magnitude for their cross sections.

(3) For the 2⁺ level at 3.92 MeV, Λ becomes nearly equal to λ_p (which remains unchanged) so that there is no longer evidence for a lack of neutron excitation.

(4) Apart from the 1⁻(4.45 MeV) and 2⁺(5.25 MeV) levels the values of Λ correspond to a reasonable effective charge ($\Lambda = 1 + 2l_0$, where l_0 is the isoscalar polarization charge).