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Odd-even differences in the elastic scattering of 48 MeV « particles by %®Ni, ® %Cy,
and ®'%Zn are well accounted for, up to back angles, by core polarization.

NUCLEAR REACTIONS & #Ni, & 8zn(a, ), (@,a’), % ®Cu(a,a), E=48MeV;
measured ¢(9); 6 =18—172°, enriched targets; %6 Cu core mixing deduced.

Odd-even differences in the angular distributions
of a particles elastically scattered by two adja-
cent nuclei are generally attributed to two differ-
ent phenomena:

(i) The I* L interaction between the odd-nucleus
spin / and the a-particle angular momentum L.
Rawitscher® and Love? have calculated a strength
smaller than 0.1 MeV for the /* L potential, in
disagreement with the larger values (1.0-2.75
MeV) deduced from optical-model fits® of experi-
mental data.

(ii) The scattering from the multipole moments of
the odd nucleus® (if 7>3). Recently, an explicit
formulation of this effect has been derived,® in
which the elastic cross section for the odd nucleus
is expressed as a sum of the elastic scattering for
the adjacent even nucleus and of part of the inelas-
tic scattering to the first excited states of the
same even nucleus. A satisfactory agreement was
found by these authors® when comparing the 49.9
MeV a-particle elastic scattering by the nuclei
9Co and ®Ni over the angular range 40°-110° in
the center-of-mass system.

The aim of the present experiment was to check
the model® of Satchler and Fulmer on a large num -
ber of nuclei, i.e., ®*%'Ni, *%Cu, and ®*:67Zn,
over a wide angular range. The 48 MeV a-particle
beam of the University of Louvain isochronous
cyclotron (CYCLONE) was successively focused
on six self-supporting enriched targets: °2Ni(1.068
mg/cm?), Cu(1.229 mg/cm?), #Zn(1.245 mg/cm?),
54Ni(1.243 mg/cm?), %°Cu(1.272 mg/cm?), and
56Zn(1.000 mg/cm?). The target thickness was
measured, with an accuracy of 5%, through the
energy loss of o particles from an ?**Am source.
After scattering by the target, the « particles
were detected in an array of 1000 um thick surface
barrier silicon detectors. Conventional electronics
was used, including an antipileup circuitry on each
detector channel. The over-all energy resolution
was 150 keV full width at half-maximum. The de-
tectors solid angles were estimated by measuring
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the defining slits directly; they are known to +1%.
Angular distributions for the elastic scattering
were registered between 18 and 172° in the labora-
tory system, by 1° (2°) steps, with an angular
resolution of 0.3° (1°), over the angular range
18--60° (62—-1172°). For the four even nuclei, we
have also extracted the inelastic scattering cross
section to the first 2* state.®

Let us briefly recall the main statements of Ref.
5. The odd nucleus is considered as a core (the
adjacent even nucleus) in its ground state or in its
excited levels, plus a spectator particle (or hole)
with spinj; other levels than the core ground state
are mixed in by the presence of the spectator par-
ticle (or hole). In the following, we only consider
the contribution of the core ground state and first
excited level to the odd-nucleus ground-state wave
function, which accordingly takes the form:

| odd, IM) =a | (even, 0), j; IM)
+B,| (even, 2), j; IM) )

with o®+B,2=1. Following Satchler and Fulmer’s
assumption in the calculation of the elastic scatter-
ing amplitude,® the terms of order af, in the latter
are taken to be equal to the amplitudes for the in-
elastic scattering to the 2* state of the even nu-
cleus. With these hypotheses, the elastic scatter-
ing cross section for the odd nucleus is related to

TABLE I, Calculated o? values in the spectator model
(this work), compared with the intermediate-coupling
calculations of Vervier (Ref. 10).

Core+1p Core+1h
a? Spectator 2 Interm. coupling® Spectator 2
8oy 0.74£0.07 0.81+0.06 0.66+0.08
85Cu 0.59+0.07 0.64+0.06 0.66+£0.08

2 This work.
b Reference 10.
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that for the even core by:

o,(odd) =0,(even)
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FIG. 1. Experimental and calculated angular distribu-
tions for #:8Cu. The error bars only include statistical
errors. The solid curves are computed with the assump-
tion of a ®: ®Ni core, the dashed ones, of a % %Zn core;
the solid curve alone has been drawn at forward angle,
where both curves overlap. The C, coefficients indicate,
for each case, the amount of the inelastic scattering to
the 2+ state which is added to the even nucleus elastic
cross section.

The parameters a and 8, are calculated from the
experimental quadrupole moment of the odd nucleus
(@), using its expression in terms of the contribu-
tions of the odd valence particle (@,,) and of the
core (@)

Qszal +Qcore9 (3)

I Rk SR
Qval":F (j+1)<r>j

x[a?~B2RI+1)W(IIII;2L)], 4)

g [ 84mI@I-1) 712
Qcore "0‘52[5(14. 1)(2I+3)}

x(2 | 7>v,]0). (5)

In Eq. (4), the minus sign holds for a particle, the
plus sign, for a hole, and {7?); is the mean square
radius of the valence particle (or hole) orbit. In
Eq. (5), the reduced matrix element (2| 72Y, || 0)
is estimated from the experimental reduced tran-
sition probability B(E2,2 - 0) in the even nucleus.

We have calculated the coefficients a and 8, for
83:65Cu in the following way: The nucleus **Cu was
successively represented as a ®2Ni core plus a
(2p5,,) proton particle, and a **Zn core plus a
(2p5,,) proton hole; the same was done for *°Cu,
starting from ®Ni and ®®Zn. Recent values of the
quadrupole moments” and of the B(E2)® were used
in the calculations. The mean square radius 1*2>j
was estimated from the formula®:

(r2); = (r AP,

The choice of the 7, value is of little importance in
the calculations, which did not include the hypothe-
sis of an effective charge for the valence particle
(or hole), unlike in Ref. 5. Table I summarizes
the a? values; the indicated errors come from ex-
perimental errors on the @’s and B(E2). Our esti-
mate in the particle representation is in good
agreement with the core-excited model calculations
of Vervier.!® For the hole representation, the
same amount of quadrupole mixing is found for the
two Zn cores; this could be related to the fact that
B(E2,2~0) is nearly the same for *Zn and %Zn,
giving the same polarizability to the two cores.

Figure 1 shows the calculated elastic scattering
angular distributions for %:%°Cu, compared to the
experimental data; we have indicated in the figure
the amount C, of inelastic scattering admixture,
where C,=(2a8,)?/2L+1. The agreement is very
good at forward angles; for the backward angles,
the particle representation is closer to the experi-
mental data than the hole representation; the latter
would need more mixing in the wave function. It
thus appears that collective effects, as described
by Satchler and Fulmer,® account fairly well for

with 7,=1.25.
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most of the odd-even differences up to backward
angles. Moreover, the reduction of the inelastic
scattering to the first 3~ excited level (1.547 MeV
in ®Cu, 1.725 MeV in %*Cu), as predicted in this
model, has been experimentally observed in the
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(a, ') scattering.*
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