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%'e report calculations on the contribution of the three-body potential W' to the energy of nuclear
matter which include realistic correlations in all internucleon distances which are consistent with

realistic two-body potentials (V) in the calculation of the dominant second order [g V(Q/e) W )]
contribution to the binding energy. For the Reid soft core potential we get a binding energy
contribution of 6 MeV/nucleon. This is to be compared with the binding energy of 1.7 MeV/nucleon
obtained using hard core potentials. The latter result is consistent with the calculations of I,oiseau,
Nogami, and Ross, The physical reason for the large difference between the results obtained from hard
core and soft core two-body potentials is clarified.

I. INTRODUCTION

As calculations of the binding energy of nuclear
matter using two-body forces have become more
and more refined, it, has become increasingly im-
portant to know hom large the effects of three-
body and other internucleon forces are, so that
they can. be included if necessary. Considerable
work has already been. done on binding energy cal-
culations for three-body forces. In the early work,
correlations introduced into the wave function of
nuclear matter by two-body forces were treated
in an ad Roc manner. The calculations were per-
formed in configuration space" and correlations
mere treated by introducing a cutoff into the wave
function at small distances between nucleons 1 and
2 in Fig. j..

Brown and Green' (referred to as BG) also con-
sidered the problem, including the same correla-
tions but calculating in momentum space. The re-
lation between the momentum space and configura-
tion space calculations was discussed by Bhaduri,
Nogami, and Ross, who showed that differences
arose due to "contact interactions" i.n the nucleon
pairs 1, 3 and 2, 3. The unphysical contact inter-
actions are removed by taking proper account of
correlations in these nucleon pairs which are then
prevented from coming into contact. Hence, cut-
offs were put into all three internucleon distances
by Loiseau, Nogami, and Ross" (we will refer to
this paper as LNH).

The role of correlations in the calculation of
binding energy contributions was later clarified
by McKellar and Rajaraman, ' in a Bethe-Faddeev-
style summation of all the correlation-producing
three nucleon diagrams. This justified the ap-
proach Qf LNR& provHied that realistic correla-
tions derived from solutions of the Bethe-Gold-

stone equation are used in the computations.
The important contribution of BG and LNR was

the recognition that most of the binding from the
three-body force %comes from the second order
cross term (V(Qje)W) between W and the two-
body force V. This is a consequence of the strong
tensor components in both 5'and V. It therefore
seems appropriate to use a realistic two-body po-
tential for V in the computation of this important
term.

In this paper we perform several calculations of
the binding energy contribution of the three-body
force using the effective potential method of LNH.
We use correlated wave functions for the three nu-
cleons. These wave functions are derived from
solutions of the Bethe-GoMstone equation for the
particular two-body potential V considered.

Bethe' and Day' have shown how to calculate cor-
related wave functions for three nucleons from
the Bethe-Goldstone wave function for two nu-
cleons. The particular case they considered was
the Reid-hard-core potential. %e have also used
the results of Negele' and Siemens' for the solu-
tion of the Bethe-Goldstone equation with the Reid-
soft-core potential to construct three-body corre-
lated wave functions appropriate to this potentia. l.

Realistic NNz form factors are used throughout
and, as in LNR, results are also given for the
case of no form factors for comparison purposes
onj.y.

There has been some recent controversy"'"
about the use of correlated wave functions in aLl
three internucleon distances. In an ea,rlier paper"
we discussed this point, and for the reasons out-
lined there, continue to correla. te all three nu-
cleons in the same way. This earlier paper also
briefly reported the soft-core results presented
here.
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Strictly, of course, the binding energy contribu-
tions of 5»,: are, in an obvious notation, the first
order contribution

6E (W2 pp)/N

and the second order contribution

as~&~ = aE~ + aE& ~

2

where

AE 2 ( V W2pp)/Ne
and

2 ( 2pl: 2p( )/'e

However, calculation of 4E ' in this form is al-
most intractable, and for this reason we follow
LNR and replace W», ,

- by an effective two-body
potential V"' defined so that (W p, )=( V'"'). The
validity of this approximation for the second or-
der terms has yet to be tested in detail.

First, in Sec. II we define the effective two-
body force and then in Sec. III use it as calcula-
tions of the contribution of three-body forces to
the binding energy of nuclear matter.

II. EFFECTIVE TWO-BODY FORCE

The two pion exchange three-body potential Syph

derived from the process shown in Fig. 1 is given

by'

W»((r, r, r, ) = ——, C, T, 7.,lo, . o2UX+ S ~2(u)UX+ S,2(x)UX

+I9u xo', uo, x —S»(u) —S„(x)—o, o, jUXI y„y„ (2.1)

2

X=1—~
—",e-'"-»" (2.2)

where u=r3 —r„x=r2-r3, x=x/lxl, and U, U,
X, X are functions of lu l and ~x~, respectively,
and are given by

The coefficient C~ is given by

O, = (f(u'/3w)' ~p o»Q&)(p'+ g') ' = 0.61 MeV,
0

(2.4)

1+—+ —,—, e '" "'"'g 3 3
'gx xj x (2 2)

where f'=0.08 is the mN coupling constant, u is
the pion mass, and o»(P) is the total cross sec-
tion of the P-wave mN scattering in the I=J = ~

state. Other notations used in (2.1) are

S(2(x) = So( ' X(72 ' x —(T~ o2

Y„=e '"/gx .
(2.5)

(2 6)

& and q are constants which depend on the choice
of NNm form factor and are tabulated in Table I.

We now define an effective two-body potential:

(r„(= J rr, , (r,r,r, (r(r, r,r, )dr, , (2 't)

pion rnornentum q,
I

(soindex

where p(r, r, r, ) is the density distribution of the
three nucleons. Calculating this effective poten-
tial is simply a trivial intermediate step if we are
only interested in the first order term of the bind-
ing energy. For the second order term it is an
essential step in obtaining a tractable calculation.

Nucleon
coordinates

Space I

Spin

I 2

(72 Form factor ~ 2/@2

TABLE I. NN~ form factor parameters.

i so spin '7
I

FIG. 1. The Feynman diagram for W(3) with nucleon
and pion coordinates shown.

I
II
III

0.00
0.72
1.00

5.73
10.0
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In general p( r, r, r, ' is the sq
e wave function and

and isospin as llwe as the thre
an depends on sp'in

tances.
ree internucleon d'

If wwe assume that p(r, r r is
d d t fth e spin and iso
write

spin variables we can

(2 8)

2

.vi:.(rishi= &i' T2[o' «'":(r )= z' 2 r' 2 c

+S„(r„)V'"'(r )] (2.9)
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III. BINDING ENERGRGY CALCULATIONS
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A. Momentum space method

This is the classic method of Euler" in which
the configuration space integrals are done first.
The formulas for the 4E are then

V,"'(q) 2 —3 + q' dq,
E F

(3.4)

- (2) c,t=a, U Vct q Vct q6q (3.5)

(2) c,t&E2, t=a3' U — V", ,
"

q 'dq . (3.6)

Here k~ is the Fermi momentum (1.36 fm "). U is
related to the Euler function P(x) "'"by

U(x) = ,'oxP(x) . — (3.'I)

U is a smooth function of x rising from 0 at x =0
to 1 for x slightly greater than 1, where it heals.
The tildes on V, , denote the central. and tensor
momentum transforms:

V.(q) = V, (r)f,(qr) $(r)r' dr, (3.8)

V, (q) = V, (r)j, (qr) $(r)r' dr, (3.9)

where $(r) is the square of an appropriate corre-
lated wave function defined above. We use the
same correlations in (3.8) and (3.9) as we have
already used in deriving the effective potentials
V, ,(r) tsee Sec. II, cc. Eq. (2.8)]. The constants

is given by

V oPl'. P (r) f 71 2 re r q 2 q
II2 (q2)II r(q2)ei q r

27Tg J q +p

(3.2)

[Note the error in sign in Eqs. (10) and (15) of
BNR'. ] Only the central part of the effective po-
tential contributes to the binding energy in first
order. In second order, both central and tensor
parts contribute. We denote these parts separate-
ly by

rr. E "=DE "+b.E ' (i=1, 2) .
The integrals implicit in (3.1) are over configu-

ration space and over momentum space. Different
insights into the calculation are obtained depend-
ing on which integral is done first, so we describe
both methods.

a„a„and a, in (3.4)—(3.6) have the values

-27p 7T

a =—— =-1.433

-24@14 '
= -0.1475 MeV ' fm ',

Tr

c
03 = 2Q3

+c,t 2+c, t
3 ~ (3.10)

Dimensions for the above constants are chosen so
at the potentials V' ' and y"" can be used in

MeV in Eqs. (3.8) and (3.9) and all distances can
be measured in femtometers. The conversion
factor for k = c = 1 units is given by

197.32 Mev=1 fm-' .

By evaluating the momentum transforms of the
effective potentials we have discussed in Sec. II,
we are able to calculate their binding energy con-
tributions. The results of these calculations are
summarized in Table II.

Note that we have used form factors in OPEP,
which are given by (3.2). The effect of these form
factors is much the same as that of correlations
p —both reduce the potential. at short distances.
Form factors were therefore ignored in OPEP,
but not in 8'„,, by LNR. We believe that this is
inconsistent. Moreover, although the form fac-
tor and the short range correlations have the
same effect on the potential, they represent
physically different effects and both should be
included. Their results for the case where the
cutoffs c and d in (2.9) are both equal to 0.8 fm
are given in column 1 of Table II for each of the
three form factors included in (3.2) are shown in
column 2; we have found that their inclusion modi-
fied ~E," and hence, the total by 0.3 MeV repul-
sion for both form factors II and III. The net re-
sult, with form factors in (3.2) is about 1.5 MeV
attraction for form factors II and III.

The two-body correlations used in (2.10) also
affect the results. Column 3 shows the results
obtained using form factors in (3.2) and Reid-
hard-core correlations. The contributions are
only modified slightly for this two-body correla-
tion function, giving a result of 1.7 MeV attraction
for both form factors II and III. We would conclude
this section with a fairly stable result of 1.7 MeV
attraction were it not for the set of results in col-
umn 4 of Table II. These last results were ob-
tained using the Reid-soft-core potential both as
V"" in Eq. (3.1) and in the Bethe-Goldstone equa-
tion when calculating the correlation function E in
(2.9).""The total binding energy contributions
(column 4, Table II) are just over 6 MeV attrac-
tion. This large result is somewhat puzzling.
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TABLE II. Binding energy contributions of the three-body force to nuclear matter (MeV).

Form
factor

LNR (no form
in OPEP) ~

c =d =0.8 fm

LNR +form
in OPEP

c=d =0.8 fm

Reid-
hard-core

corr elations

Reid-
soft-core

correlations

~E(2)

~E (2)

(no form) Total

1.3
—6.0
—0.5

-5.2

1.3
—6.0
—0.5

-5.2

1.3
—8.2
—0.6

-7.5

—3.2
—17.2

-1.7
-22.1

gE (f)

Total

1.Q
—2.5

—p. 1

-1.6

1.0
—2.2

—0.1

1,3

Q.9

—2.5
—0.1
—1.7

p4
—5.7

—0.3

~E(~)

&E(2)

Total

1.3
-3.0
-0.2
-l.9

—2.7
—0.2

-1.6

-2.6
-0.2
—1,7

0.3

-6.0
-Q.4

-6.1

These are calculated independently to LNR and agree with LNR errata except for AE ~

I=1.3 which they give as -1.3.

%e can see from Fig. 2 that the effective two-
body potential using Reid-sof t-core correlations
differs appreciably from the hard-core-derived
potentials. However, the above derivation of bind-

ing energies does not make clear which feature of
these curves is primarily responsible for the dif-
ferences. %'e turn to the other method of evalu-
ating (3.1) to clarify this point.

B. Configuration space method

The integrations over r and then q in Eqs. (3.8)
and (3.4) can be done in the other order, giving

(3.12)

where

C0

Ql

e-l

V

R (fm)

FIG. 3. Central weight functions for calculation of
gE(&)

Q, (r)=,'- coskrr —412a, sinker
k~r k~r

cos kp.r 4
2 ~ +1+

k~ r F r (3.13)

Q, ) can then be thought of as a "weight function"
which selects the relevant parts of the effective
potential V', ""in Eq. (3.12). In Fig. 3 we have
drawn a graph of Q, (r) When $.(r) is a cutoff,
the weight function Q, t is merely the part of Q, (r)
outside the cutoff distance (0.8 fm cutoff is shown
dotted). For the Reid-derived correlations, $(r)
varies smoothly up to a healing distance of 2.1 fm
and the weight function 0,( is also shown in Fig.
3 for this case. Now comparing Figs. 2 and 3 we
can quickly verify, using Eq. (3.12), that the Reid-
derived and cutoff-derived effective potentials
should give oppositely signed first order energy
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contributions.
The second order terms can be handled in a

similar fashion. As the function U in Eq. (3.5)
and (3.6) heals quickly to 1, the q integrations
can be done ana, lytically except in the small q
region which we treat as a wound. The second
order binding energy contributions can then be
written in the form

gg(2) gc, g r ri y2PI:. r ynn

x ((r)((y')dr dr' (3.14)

x ](y)$(r')dydy' (3.15)

where the four weight functions 0,', 0,', 0,', and

Q,' are defined by 30
CA

(3.16)

j, qr j, qr'dq

(3.17)

If U were equal. to one, we could use the analytic
1 esult

J min r) r
2g(Qr)2t( fr )d7 3(2f 1) [ ( i)] &+i

(3.18)

Q"(r) = ( Q"(y', r')P,"",(r')((r')dr, (3.19)

leaving +k~ in 'the fo2 m

Q,"(r)((r)V,". ,"(y)dr . (3.20)

This is a one-dimensiorlal lntegr'al similar to
(3.12) so that 0,) is a useful weight function for
graphica. l evaluation of the contribution 4J",' .

which can be derived from the normalization inte-
gra, l for the spherical Bessel functions. This re-
sult, together with a. short numerical integration
in the small q region, gives the two-dimensional
weight functions 0,'3.

For the second order contribution 4E~~2~ no
further reduction is possible and we use the
weight functions Q,

' with Eq. (3.15). However,
for the dominant cross term sI.'~'~, we can now
do the r' integration in Eq. (3.14) provided we
know the particular two-body potential V"" which
we intend to use. %e can then do the integration

FIG. 4. Tensor weight functions for calculation of
g g(2)

As 4I:,', is negligible compared to the tensor
part 4E~", , we only show the tensor weight func-
tion 0,'E . This plotted in Fig. 4 for both the Reid-
soft-core potential and OPEP in Eq. (3.19). Com-
bining Fig. 4 with the tensor curves in Fig. 2, we
can roughly verify the results for 4E~'~ by eye.

IV. CONCLUSION

It is clear that the differences between the re-
sults are due to the nature of the effective two-
body potential and not to a cancellation effect
caused by any oscillation in the central and tensor
weighting functions; the latter are smooth func-
tions peaking at an internucleon distance of about
j..5 fm. Both the central and tensor part of the
Reid-sof t-core-derived effective two-body poten-
tial l.ead to increased binding. The tensor compo-
nent has the more significant influence.

It is clear that consistency requires that the
same two nucleon potential should be used in cal-
culating the two-body force contribution to the
binding energy, in the cross term with the three-
body potential, and in the correla, tions used in cal-
culating the three-body force contribution. Gur
results shov that the Reid-soft-core potential,
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used consistently in this way, Leads to a consider-
abl. e overbinding of nuclear matter.

On the other hand, the Reid-hard-core potential
vrould appear to give more reasonable results, in

that l.t does not. lead to over blndlng.
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tions with A. M. Green and R. Rajaraman.
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