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The scattering of pions from a correlated pair of nucleons is studied in a recently proposed
covariant theory of pion-nucleus scattering. In this theory the off-shel. l effects arising from
the correlations can be treated unambiguously. In the covariant theory, "off-shell effects"
refers to both the usual off-shel. l effects known from conventional nonrelativistic multiple-
scattering theories and to off-mass-sh«L features particular to the relativistic theories. It
is shown that these effects, absent in a "fixed-scatterer approximation, " require knowledge
of the fundamental pion-nucleon scattering amplitudes in regions which are not readily param-
etrized using on-shell scattering data. In a simplified model we il.lustrate this point by com-
paring our dynamical approach to the corresponding fixed-scatterer analysis. We conclude
that any reliable estimate of correlation effects in pion-nucl. eus interaction requires that
serious consideration be given to the off-shell aspects of the dynamics.

I. INTRODUCTION

The optical potential for pion-nucleus scattering
has been intensively studied in recent years. ' Hav-
ing observed that most multiple scattering theo-
ries, ' ' being based completely on nonrelativistic
dynamics, are unsuited to treat either the scatter-
ing of a relativistic projectile from a nucleus or
the scattering of a projectile which can be created
or annihilated (as is the case for the pion), we have
proposed a covariant approach to the problem in
previous works. '

It is well known that in the standard theories the
calculation of the first-order optical potential re-
quires the knowledge of the single-nucleon density
matrix and the calculation of the second-order op-
tical potential requires the knowledge of the nucle-
on-nucleon correlation function. In this work, we

apply our covariant approach to the evaluation of
the irreducible kernel corresponding to the scat-
tering of pions from a correlated pair of nucleons.
In our approach, the four-momentum at each dia-
gram vertex is a well-defined quantity; our analy-
sis then shows that multiple scattering from cor-
related pairs leads to expressions containing highly
off-shell scattering amplitudes. Some of these
off-shell effects in multiple scattering theory have
been discussed for nucleon-nucleus scattering in
previous publications' using potential models and
nonrelativistic dynamics. However, the covariant
character of our method provides an unambiguous
way of using relativistic dynamics to study these
off-shell effects and also enables us to observe
important new features which are totally ignored
in the conventional multiple-scattering theory.

It is important to emphasize that the reference

to off shell eff-ects in the covariant theory refers
to more general off-shell aspects than those stud-
ied in nonrelativistic theories. The relativistic
theories contain scattering amplitudes in which the
particles are off their mas shells. Therefore
these scattering amplitudes depend on a greater
number of kinematical variables than the ampli-
tudes which appear in the nonrelativistic theories.
Indeed, the nonrelativistic amplitudes may be re-
lated to the relativistic amplitudes by restricting
the variables which appear in the relativistic am-
plitudes. (For example, in the relative four-mo-
menta, the zeroth component may be taken to be a
specific function of the relative three-momentum. ')
In a future publication we will show how the use of
covariant amplitudes for off-mass-shell particles
provides an improved treatment of various kine-
matical features in the case of pion-nucleus scat-
tering.

We present the details of our covariant approach
in the following section and discuss its relation to

FIG. 1. (a) The double-scattering diagram where the
dashed l.ine represents the pion, the light and heavy
lines represent respectively the nucleon and the various
nuclei. The m-N (off-shell} scattering amplitudes are
denoted by the fill. ed circles. The vertex interactions
are represented by the open circles. (b) The iteration
of the singl, e scattering diagram which must be sub-
tracted from (a) because of the composite nature of the
target.
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the nonrelativistic scattering theory in Sec. III. In
Sec. IV we illustrate the difference between our
dynamical approach and the widely employed "fixed
scatterer approximation" (FSA) via a model cal-
culation.

In view of the large discrepancies between the
results obtained from our dynamical approach and
the FSA, we conclude that the off-shell effects are
particularly marked in the case of the scattering
of pions from correlated pairs. We conclude that
the FSA is unreliable for low energy pion-nucleus
scattering. Some new aspects of the off-shell ef-
fects brought to light by our covariant treatment
are summarized in the last section.

II. SCATTERING OF PIONS FROM A
CORRELATED PAIR OF. NUCLEONS

Since we do not have a satisfactory theory of
strong interactions, a discussion of pion-nucleus
scattering will necessarily contain various phe-
nomenologieal elements. In particular, paramet-
rizations of the elementary off-shell pion-nucleon
scattering amplitudes are necessary to implement
the calculational scheme we propose. Models for
these amplitudes are under investigation by sever-
al groups.

If we study the propagation of a pion in a nucleus
from a space-time point of view, we may think of
the pion propagating either forward or backward
in time. The elementary pion-nucleon interactions
involve either scattering or production (and absorp-
tion) amplitudes. If we restrict ourselves to the
case in which the intermediate pions move only
forward in time, we obtain a development involv-
ing only the aforementioned off-shell pion-nucleon
scattering amplitudes. Thus it appears desirable,
in a phenomenological approach, to clearly sepa-
rate production processes from scattering process-
es. Such a separation has the consequence that we
do not use a Feynman propagator for the pion be-
tween scattering events, but use only that part of
the propagator that propagates the pion forward
in time.

We now turn to the consideration of that contribu-
tion to the pion optical potential arising from the
double scattering from a correlated pair of nucle-
ons. The scattering of the pion from a pair of nu-

S = & —i2mM (2.1)

and normalize the free pion state by

(k', n'
i k, n) = 2(ut, 5(k' —k)5~ „, (2.2)

where n' (n) are isospin labels. The state of any
nucleus is normalized such that

(k', s', n'~k, s, n) =X(k)~(k -k)C...V„,„, (2.3)

where K = (E&/M) for fermions, and X =2E& for
bosons. Also, s' (s) and n' (n) denote, respective-
ly, spin labels and internal quantum numbers.
Also, we have used the notations &u-„= (P +M,')'",
Eq =(k +M')"'. The invariant amplitude M corre-
sponding to the second-order irreducible kernel
indicated in Fig. 3 then has the following analytic

P =W+P
f

(I) p -q +q (ZJ p-

cleons can be represented by the diagram of Fig.
1(a). Owing to the composite nature of the nucleus,
this diagram also contains the iteration of the sin-
gle scattering term, shown in Fig. 1(b), which in
general must be subtracted exp1.icitly. Clearly,
the nuclear vertex in Fig. 1(a) contains many-body
correlations. However, we will address our atten-
tion to an independent-pair approximation, appro-
priate to the study of the role of pair correlations
in pion-nucleus interactions. In this case, we may
approximate the complete nuclear vertex by a
quasi-three-body model represented by the dia-
gram in Fig. 2, where the upper vertex represents
the short- range nucleon-nucleon interaction and
the lower vertex describes the interaction between
the center of mass of the dinucleon cluster and the
residual nucleus (a two-hole state).

It is worth noting that owing to the strong corre-
lation contained in the upper vertex function, the
momenta of the emerging nucleons are quite large,
and therefore the explicit subtraction of Fig. 1(b)
need not be made for the process under considera-
tion, given our method of calculation. In other
words, for the correlation effects we are studying,
the difference of the two diagrams in Fig. 1 is now
represented by a single diagram of Fig. 3.

We parametrize the S matrix for pion-nucleus
scattering as

p =w-pz

(A) (CJ (AJ

FIG. 2. The quasi-three-body model. for the nuclear
vertex. The nucleon, dinucleon system, residual. nu-
cleus, and the target nucleus are all treated as elemen-
tary particles and are denoted respectively by the let-
ters N, D, C, and A.

FIG. 3. The irreducibl, e kernel. representing the scat-
tering of the pion from a correlated pair of nucleons
(See caption of Fig. 1). The lines with a cross repre-
sent on-shell particles. The four-momentum 8' is
defined by 8'= (W, O).
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expre ssion'.

M'„'„"(P',P I
2W) = -(2»i) '-',A(A —1) J) d'kd'q, d'q2$'"&(p2 + q) (A,,„I ADD ID,, „„C,)

x GD(P. k+—q) (Dp»+ I
I NN I & p, -; „;& p, -; „,„)

x GN(2P2 2k q )G (2 P2 2k + q2 + q)Gc(k)

&& &lip"-»i &Ip, -i»+„+.IM.N(sn) Illy", -2&+c,i t&IIp, -|»+c,&

G„(P,—q, + q ) (IIp ', „,' N~ p, ,„,, I
M „(s&)I IIp, ; N, p. . .,)

x G, (-,'P, ——,'k —q, )G„(2P, ——,'-k+ q, )

&&(N —p -|»-c i&—p -1» c I ~NNIDp »&GD-(P2 k)&Dp »i C»II'DD-IAp)5 (P2)

(2.4)

Gc(k) = 2»i—[XD(k)] '5(k' —ED q)il~'(k),

with

A(+&(k) P y&c&(k)
—

(c&(k)

(2.5)

(2.6)

Here, A~c"(k) is the projection operator for posi-
tive energy spinors. The bar over y represents
an appropriate "conjugation" which will provide an
invariant normalization of the spinors. For exam-

In Eq. (2.4), for notational convenience, the on-
shell "particles" are underlined. The superscripts
are the isospin label of the pions or the spin labels
of the nuclear spin wave function $. The isospin
labels of the nucleons are not explicit but under-
stood. (These will be reintroduced later when they
become useful. ) The factor —,'A(A —1) is the num-
ber of nucleon pairs among A nucleons.

We now proceed to make a reduction of this am-
plitude. Our procedure will lead to a cova~iant
expression which involves only three-dimensional
integrations and has the same formal structure as
that appearing in the nonrelativistic theory.

We note that for other than very light target nu-
clei, it is reasonable to neglect the off-shell aspect
of the (two-hole state) residual nucleus C, and to
write the corresponding propagator as

I

pie, in the spin- —,
' case, X =g y, . Clearly, such on-

shell approximations reduce a four-dimensional
integration to a three-dimensional one without de-
stroying the invariance of the amplitude.

Taking into account the results of Eqs. (2.5) and
(2.6), we now consider the following quantity ap-
pearing in Eq. (2.4):

O';"" =G (P, -k)X'"(k) &D,- C» I ~DDIAp, &&"'(p2)

(2. I)

This quantity can be expressed in terms of the
variables in the rest frame of the initial target
nucleus [see Fig. 4(a)] as follows:

x [&&w„.r C.„NI 'I'DD IA-2w„&],2, 2('~'(0)

(2.8)

Here S~'(1.„) represents a nonsingular unitary op-
erator which transforms a spin-j spinor. The
four-momentum TV„has only a zeroth component
which is defined to be half of the mass M„of the
nucleus A.

We consider correlations only in the S state of
relative motion of the nucleons in the di-nucleon D.
This system can be either in a singlet or in a trip-
let spin state. For the triplet state (jD =1), we

make the following approximation for GD(W„+K):

[G,(W„+K)]„=[g,(K I2W„)]„

g2 5[(2W'„—W~+K) —MD ]

x g(2W'„—W„+K') -g2 +,(2W'„—W„+K)2 (2Wg —W~+K)&

&/(K) I:AD(K)]8y
2Z -, (-P' -K')/2»2 ' (2.9)
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Pq
(A)

(o)

..-(c)
A&

(a)

(A)
(c) = .. = = (oJ

W„-K WA+K

A (K) = p) "'(R)) "'(R) (2.10)

and

where AD represents the spin-1 projector which
we write symbolically as

(o)

(c) = „=:.. (A)
k p+q 2

(A)
(o) =, - -,= (c)

WA+K WA
-K '

p(R) c, K D, K

m(E. , -K+ED, -K)
'

(2.11)
m =M,M, /(M, +M, ),
2W„-=M„=(-P'+M ')'"+(-P'+M ')'", (2.12)

(QR +M 2)1/2 + (q2 +M 2)l/2 (2.13)
FIG. 4. The relation bebveen the four-momenta in the

center-of-mass frame of the pion-nucleus system amI in
the rest frame of {a) the initial. target nucleus and {b)
the final target nucleus.

For the case of the singlet state (jD =0) the corre-
sponding expression for gD(KI 2W„) is similar to
Eq. (2.9), with the AD being replaced by 1. Substi-

tuting Eq. (2.9) back into Eq. (2.8), we obtain

p2 K2 -1
(q )(c&&a) ~ ~&d)(~ k)1 fx ~ 0( P2 2g 2m

d D, K

xg,"(R)X'„"(-R)[(D„„;C,„,I V„I~2~„)]y„,g' (O

) (d)(~ k)
& ( ) @&d)(c);(a)(K)

tx p2 2g D, K
(2.14)

which in matrix notation is
q(c)(a& g ~(d) (p k) [&/(R)/2 E ]@(d)(c);(a)(K) (2.15)

[Note that K'=W„—(K'+M, ')'".] Similarly, for the following quantity appearing in Eq. (2.4),

q',"'"=("'(p,+q) (a,,„lv„lD, „„c,)q'"(k)G, (P, —a+q), (2.16)

we have, after a similar reduction was made in the 2'est frame of the final target nucleus [see Fig. 4(b)],
2 I2 -1

Q2
""= Q Ã"'(0) (&22 „I I'DD IDw„.r ' Cw„-r )~'"'(R')X"'(-R')5'"'(p2 - k+q)

d' O' K

Q [v(R )/2E ]pa(a &; (d'&&c&(yp))'&d')(p k ~ q) (2.17)

[Note that K' =W„—(K' +MD')'". ]
Equations (2.15) and (2.17) define, respectively,

the relative wave functions 4 and 4* for the pair
C-D in the rest frame of the target nucleus. They
satisfy a covariant equation of motion which was
constructed to be of the Schrodinger form. This
wave function is a generalization of the standard
nonrelativistic wave function. Since two of the
three "particles" involved at each vertex [A-(CD)]
are on shell, it follows that each of these wave
functions depends only on one invariant. We choose
it to be the relative four-momentum of the pair
(CD), K and K' respectively, as in Eqs. (2.15) and
(2.17). (Note that the values of Id' and K" are fixed

by having the nucleus C on shell. )
Further reduction of the four-dimensional inte-

grations in Eq. (2.4) can be achieved by putting two
of the four nucleons (marked by crosses in Fig. 3)
on the mass shell. To do this, we first consider
the following quantity appearing in Eq. (2.4):

Gg(2 P2 2~ Q&)G&)/(2 P2 2~ 'Vl)

&&(f&'id i2„ if&11&, l2 „II'~NID2 -»)&''(P2-k)

(2.18)

where the spin function X'"' results from using Eq.
(2.15). In terms of the variables defined in the
rept frame of the initial D system, this quantity
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can be expressed hs follows:

(Q3) ):S )8 (LD )[G«(WD+«)]SySg'q (LD ) [G«(WD «)]q [(N(( N&(, ~ V«(((~D2(( )]y X,)(0) (2.19)

Our reduction scheme then consists in using the following Green's function' to approximate the two
nucleon propagators in Eq. (2.19):

G«(W'D + «) G„(WD —«) = g(« ~
2W~)

= (-2')6[(WD —«) —M„]8(W()—«)2M«A'„"( «)-
/2&&, „5[(2WD —W() + «)' —M„']8(2WID —W~+ «')[y. (2W&') —W)) + «) +M„]

p2 q
2

(2.20)

with

W, =-,'M, =(-p +M„')'",
W' =(q" +M ')"'
6(«) =W() —E«, = 2MD —(«+M„)')

(2.21)

(2.22)

(2.23)

It is clear that by this reduction procedure the nucleon having the momentum WD —I(. is now on the mass
shell and all the spinors in Eq. (2.18) have positive energy In addi. tion, the presence of a new 5 function
in Eq. (2.20) will reduce one four-dimensional integration in Eq. (2.4) to a three-dimensional one. Using
Eqs. (2. 19) and (2.20), we obtain

(Q3)~), =(-2))i)(M«/E« „)5(« —L(«)) Q S'„'8 (L~ )u'8'(«)u')', (2p, —2k+q))u~y(«)u ''(-«)
r, s

!!&(A„„;x„,
~ v„„lD„,&]„., ,~!!!(0)( ." .)

=( 2')(M„-/E„-„)5(«' —A(«)) Q S'„"q"(L~ ')u'&)'(«)u'~ (-,'p, ——,'k+q))P'"""'"'(2W~, «) )

r, s
(2.24)

or in a more compact notation

Q ( 2))f)(M /E )5(«o g(«)) P S()/2)(L -))+(r)(«)&&s)()p )k+q )~&r)(s);&d)(2W

r, s
(2.25)

By applying the same reduction procedure in the rest frame of the final D system to the quantity related
to the other [(NN)-D] vertex function, we obtain

Q4' =)( '(p2 k+q)(Dp -) I
I'N)((IN-', ( ——,),- 'N-,'(, -I), ) G (2P2 2& I )G(2(zP«2

=(- ~ 2)( fM/ „E-„,) ( 5"«—~(«')) g q*"' "'"'(2W„«') g'"'(2p, ——,'k - q, )g"' («')S"'"(L, -') .
r', s'

(2.26)

Here the variable g' is the relative momentum of
the nucleon pair, as illustrated in Fig. 5(b), and
b, («') =W)) —E„-„. Equations (2.24) and (2.26) de-
fine the two-nucleon "defect functions, "

g and P*.
Since only one of the three "particles" in the cor-
relation vertex is on the mass shell, it follows
that the wave function so defined must depend on
two invariants. AVe choose one of them to be the

relative four-momentum of the pair and the other
to be the square of the total four-momentum of the
pair. The dependence on the second invariant is
usually less significant than on the first invariant.
Again, we emphasize that these wave functions
satisfy a covariant equation of motion of Schro-
dinger form.

Combining all the formulas, we obtain from Eq.
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(2.4) the following reduced invaria. nt amplitude:

)';d„(«(«() «Wd)=-', d( d—)) d')d' «d'««g P 0' ""' ""()d')
&

d'(d'&; (d'&(d)

I d pe 8

Z/2

x (K ', ), *(4'&: «'&(d'&(2'. ) &() )
s g(d')(/&) )g(~&» (I -

&)
D2

D, K'

p y- gy+ $2

d""" "'(dW «)
"' ' —-' ' — d"""""()d)I (2.27)

In keeping with our discussion at the beginning of
this section, we use only the retarded part of the
pion propagator in Eq. (2.27). We have also used
the relation d'qyd Q2 d Kd K and the fact that the
values of the zeroth components k', K', and K"
were determined previously by the reductions. The
four-momenta of the pions and the nucleons in Eq.
(2.27) are therefore related to the integration vari-
ables k, K, and K' by appropriate Lorentz trans-
formations (see Figs. 4 and 5). Owing to the large
masses of the nuclei A, C, and D, these Lorentz
transformations are very close to the correspond-
ing Galilean transformations. In other words, the
vectors K, K', K, and K' are very close to those
calculated with nonrelativistic kinematics. [T&= q„
g' =q, + 2q, K= (A —2)p, /A —k, and K' = (A —2)
x (p, +q)/A —k. ]

In Eq. (2.27), the pion-nucleon scattering ampli-
tudes as well as the wave functions all involve off-
shell quantities. In our covariant approach, the
invariant energy associated with each process is
unambiguously defined. For example, we have s,
= (((&, + —,

'
p, ——,'k —q, )' and s» = (P, + —,P, ——,k + q )'. In

this respect, the notation M, „(s&) and M, „(s») is
redundant. However, we adopt this notation so as
to facilitate the comparison of our analysis with
that based on the FSA.

III. RELATION TO NONRELATIVISTIC
SCATTERING THEORY

For simplicity, we discuss forward scatte ring,
q =0, and consider the case where the nuclei A,
C, and B are all of spin zero. Therefore, the fac-
tors [X„(p)] '" and [Xc(k)] '", etc. , are equal to
(2E+-) "' and (2Ec &) '", etc. , respectively. For
the forward scattering, a simple parametrization
of the invariant amplitude is obtained in the labora-
tory frame, which now coincides with the rest
frames of both the initial and final nuclei A. (See
Fig. 6.)

The magnitude of the momentum K is small com-
pared with that of the relative momentum K of the
correlated pair. Consequently, we neglect the de-
pendence of the wN amplitude on K and separate
the d'K integration from the rest of the expression.
With the following normalization of the wave func-
tion 4

(o)
p -k
2

Lo
1

(o)
(N) =(w)6'- K W+ /c

d'Kv(K)(2Z, -,2E, -,2M„)-'e *(K)e(K) = I,

we can rewrite the forward scattering amplitude

(a)

(o)
p -k+q

2

(o)
(e) = - =(Nf

Lv -7c' w
og

(v„,o) (E,„-,x)
d

(v, o)

FIG. 5. The relation between the four-momenta in the
center-of-mass frame of the pion-nucleus system and
in the rest frame of (a) the initial dinucleon system and
(b) the final dinucleon system.

FIG. 6. Forward scattering of pions by a correlated
pair in a finite nuclear system (see captions for Figs. 1
to 3). Here q'= (q', g'}, p = (~, p), & = (M~-Eg,g, -&),
K(= (E -Eg „,w), and &2= (Eg „,-&).
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as follows:

M, „(P,P~2W) =-',A(A —1) ~ d'q'd'T& g P (2M„)g«»&$7*'" '"' ~&(z+q')(M„/E - -)"'u~"(-Tc—q')
8 f g f'j' rs r's'

x (up —a„—Z„-, —E~ -„,q. +2M„—vz -„vie) '(M„/E„-, , ~
)'~'u'"'(Tc+q')

(3.2)

with

(3.3)

and

K, = (M„—Mc —E„-,, Tc),

~, = (z„-„Tc). -

q' =-Mg+M~+Fg, +E~ K, „)
—= A~ —2MN+E'g K +FN K+ q

.

(3.4)

(3.5)

Equation (3.4) is given by the conservation of the
zeroth component of the four-momentum, while

In Eq. (3.2) the nucleon isospin labels are explicit-
ly indicated, as are the isospin coupling coeffi-
cients g„.&) and g«» describing the coupling of the
nucleon pair in the dinucleon state. In addition,
we used the following relation in writing the denom-
inator of the pion propagator:

Eq. (3.5) defines the mass defect h„.
The result of the FSA can now be obtained from

the more general expression, Eq. (3.2). Apart
from the different multiplicative factors arising
from the use of noninvariant normalization for
states, in the FSA the momenta of the struck nu-
cleous are set equal to zero; also, the binding en-
ergy of the nucleons is ignored. Further, each of
the intermediate nucleons appearing in the diagram
is placed on its mass shell; it is then easy to see
that energy conservation at each internal process
is no longe~ possible if we allow momentum trans-
fer to the struck nucleons. Because of the limita-
tions imposed by the FSA, the total energy asso-
ciated with each mÃ scattering processes can no
longer be determined by first principles and in fact
these are arbitrarily chosen to have the values cor-
responding to the incoming pion impinging on a
motionless free nucleon. We shell denote the en-
ergies so determined by s. Consequently, the for-

ward scattering amplitude in FSA is given by

M",„"(P,P~2W) = —,'A. (A —1) &f'q' Q Q g«. q&g(( ~&

Sfjf'j' r.sr'.~

(3.6)

where C „(q') is a pair correlation function and

s =
(&Up +My) —p (3.7)

The quantity q", which is inherited from our co-
variant approach and represents the energy part
of the relativistic four-momentum transfer to the
pion, loses its meaning in the potential scattering
theory within the framework of which the FSA is
originally formulated. Henceforth, we set it to be
zero. Indeed, with q" =0, Eq. (3.6) becomes iden-
tical, in the nonrelativistic limit for the kinematic
factors, with the FSA amplitude used in the litera-
ture.

After this discussion of the approximations

leading to the FSA expression for the 7tH ampli-
tude, we return to a more general discussion of
the result of our dynamical analysis and compare
that result to other schemes. In the nonrelativistic
limit, we use in Eq. (3.2), ( M/E~ -, )=(M~/E~ „,q)
= 1 and (2M„—E„-„—E„„,q ) = —P/2M' —(T&'+ q') /
2M~. We see that there is now a correspondence
between Eq. (3.2) and the Goldstone diagram shown

in Fig. 7(a). Also, if we apply our covariant anal-
ysis to the Feynman diagram obtained from the
diagram in Fig. 3 by crossing the external pion
lines and again keep only the retarded part of the
pion propagator, we then, in the nonrelativistic
limit for the kinematics, obtain a result corre-
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FIG. 7. GoMstone diagrams representing the scatter-
irg of pions from a correlated nucleon pair in nuclear
matter.

sponding to thai given by the other "Qoldstone"
diagram shown in Fig. 7(b). It is possibly worth
remarking on how the Qoldstone diagrams of Fig. 7
could be generated. One procedure would involve
the construction of a pseudointeraction which, when
calculated in lowest order, would generate the
pion-nucleon scattering and production amplitudes.
In Fig. 7 the heavy black dots would then represent
these amplitudes while the horizontal double lines
would be nucleon-nucleon reaction matrices calcu-
lated in the nuclear medium. We may criticize
this procedure on several grounds, probably the
most serious criticism being the general ambiguity
as to the specification of the off-shell aspects of
the phenomenological amplitudes when they are in-
serted in diagrams such as those of Fig. V. How-
ever, when these diagrams are generated via the
procedure we have described, the off-shell aspects
of the pion-nucleon invariant amplitudes are clear-
ly defined. It is possible to show that the diagram
of Fig. 7(a.) can be given a precise meaning in a
nonrelativistic theory of pion-nucleus interactions.
Indeed, it will correspond to the influence of cor-
relations in the target on the second term of the
multiple-scattering series for the optical potential.
The process shown in Fig. 7(b) does not appear as
a proper Qoldstone diagram unless we introduce
production amplitudes in the H.'.miltonian and, as
noted above, that procedure is ambiguous.

In the nonrelativistic theory of nucleon-nucleus
scattering we usually work with potential models
of the interaction. Scattering amplitudes may then
be introduced through the summation of ladders of
potential interactions between the particles. In
this approach the energy variable appearing in the
scattering amplitudes is obtained unambiguously
as in the energy denominator arising from a dia-
gram such as that of Fig. 7(a). Similar potential
models of pion-nucleon scattering are presently
under intensive investigation and these nonrela-
tivistic models have been used in the calculation
of pion-nucleus scattering. To the extent that these
nonrelativistic potential models are reasonable,
we may discuss the correspondence of our rela-
tivistic theory and the nonrelativistic analysis. It
is the correspondence with the nonrelativistic theo-

ry which provides some justification of the proce-
dure we have used to evaluate the Feynmann dia-
grams of Figs. 3 or 6. Indeed, referring to these
figures, we see that we have chosen to put some
of the particles internal to the diagram on their
mass shells in a particular manner. Other choices
for the reductions of the vertex functions of the
correlated pair al e possible. For example~ in
Fig. 3 (or Fig. 6) the particle entering the first
fHled circle and that leaving the last filled circle
could have been placed on its mass shell. Still an-
other reduction, such as that used by Blankenbec-
ler and Sugar, would have neiNex of the particles
of the correlated pair on their mass shells. Each
of these possible reduction schemes leads to quite
different values of q" and the invaria, nt energies s.
Correspondingly, the energy denominator of the
pion propagator and the dynamic off-shell aspects
of the mN scattering process will differ depending
upon the reduction procedure used. The values for
these quantities obtained u.sing the method of this
paper are given in Eqs. (3.3) and (3.4) for the for-
ward scattering case. It can be shown that the first
of the above-mentioned two other possible reduc-
tion schemes will produce s values of mX scatter-
ing processes completely irrelevant to the binding
of nucleon, while the second scheme yields a pion
propagator which has no correspondence to the
Qoldstone diagram of nonrelativistic many-body
theory.

As remarked previously, our procedure for plac-
ing particles on their mass shell in the evaluation
of the Feynman diagrams reproduces energy de-
nominators, Eq. (3.4), and scattering amplitudes
having the same off-shell structure as those ob-
tained from the nonrelativistic theory. This cor-
respondence between the diagrams of the relativis-
tic theory is limited to only a, few diagrams, since
the nonrelativistic potential models do not admit
production processes such a.s those required for
the evalua, tion of Fig. 7(b). However, the corre-
spondence we have exhibited gives us confidence
that the reduction scheme we have adopted is sensi. -
ble. In the next section we introduce an elementa. ry
model for some pion-nucleon off-shell amplitudes
in order that we may compare the dynamical ap-
proach with the FSA ana, lysis.

IV. COMPARISON OF THE FSA AND THE DYNAMICAL
APPROACH VIA A MODEL CALCULATION

For the sake of illustration it is useful to choose
some model for the correlation funeti. on and for
the off-shell pion-nucleon amplitudes. Qiven such
a model we can compare the FSA with our dynami-
cal analysis. One example which may be treated
relatively simply is the ease in which the pion-
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P„'

FIG. 8. El.ementary model for the pion-nucleon scat-
tering amplitude based on the nucleon pol. e diagram.

nucleon scattering is in the channel which may
contain a single nucleon. In this case we may at-
tempt to approximate the full amplitude by the
nucleon pole term. (See Fig. 8; for simplicity we

neglect the corresponding crossed diagrams. )
Limiting ourselves to this simple model, we can

argue that the correlations introduce large values
for ~ and therefore the invariant energy in the
&c-N system, s, of Eq. (3.3), has values that can
be in the vicinity of the pole at s& =M„'. Thus we

expect large differences between the FSA [cf. Eq.
(3.6)] and the dynamical approach. Similar large
differences would be expected in other m-N chan-
nels and could be elucidated by making models
of the off-shell amplitudes in those channels.

In our simple model, we write the pion-nucleon
scattering amplitudes of Eq. (3.2) using four-
momenta defined by jc) = (M„-Mc —EN -„jc)and

j&2 = (EN -„,-jc ), as follows:

u'" '(Tc+q')(II» '
~ N",', ~ ~M„„(s ) ~II&) '; N„"&) u&") (jc)

=u&" )(jc+q')v[(p —j&, -2q')';(p —q')', M„']G (» ', ". ' Gv[(p —jc))';M„', &c)']™x
x{X &' &(&t)*& & ~ r )(7- ~ &t)&"&)X&'&)u&"&(jc) (4.1)

u" )( jc —q')(II-' ' N", ', ~M„„(s )~II& & N&j&)u&'&(-&c)

y ~ —q +Kl

=u" '(-jc -q')v [(p —)&2+ q')';M, ', (j&2 —q')'] G, 2 2 . Gv [(p —q' —j&2)'; (p —q')', M„']

x/Xt&j &(ct
2'«2& T )(r„'Q &&')X '} (4.2)

where ($* ~ T) and (7. Q) are the isotopic factors.
In Eqs. (4.1) and (4.2), G' is related to the re-
normalized pion-nucleon coupling constant. ' The
n's are the phenomenological form factors. Using
p„and p~ to denote respectively the four-momen-
tum of the pion and the nucleon, we can construct
a Yamaguchi-type form factor in the following co-
variant form:

2. 2 2l ~ +tp
[(P2 PN) r Ptr y PN j X2 ( tP)/M

(4.3)

Here s = (p, +p„)', t' is a new invariant defined by

frame of the pion-nucleon system. The form fac-
tor v in Eq. (4.3) depends on three Lorentz in-
variants, say (P„~PN), P,', and P„', in the ca, se
when all three particles are off the mass shell.

Again for the sake of illustration, we may as-
sume that the correlated pair (or the dinucleon D)
is in a spin singlet (S =0) and isospin triplet (T =1)
state. The wave function in Eq. (3.2) can then be
expressed as:

&r', i ') &2 ', j ')
(N +ql)(&r, i &&2, j ) (

2 2 2

2 N u rt N (p p )2
(4 4)

C]tf t ~ C] f +~ Cr' s' p Cr s o
jM'

T
T

x &t

*
(jc + q') &)')

= '( jc) . (4.5)
and t,' =M„'(M„'/4M„' —1) is the value of t' cor-
responding to the specification (p, +p„)' = p„'
=M»' and p, ' =M, '. From Eq. (4.4) we see that
the invariant t' reduces to the square of the pion-
nucleon relative three-momentum in the c.m.

Accordingly, the isospin coupling factors in Eq.
(3.2) are given by g&, j& =g&,. ~, &=CN) N ', or an
isospin-zero target nucleus A. . By introducing
Eqs. (4.1)-(4.5) into Eq. (3.2), we finally obtain
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the following forward scattering amplitude:

M ,„(P(!~2W)= —'A(A —1)f d'i!'d ir( '2!r) g (c „', ;„]', ('(M ](„g' 1& I& )(T 'T )(iT 'i( t") l]!M,)
INy

00 g„p~g»q + air n ~~~»&
N~K+q

x[A, (p, K q )+iGI BI(P, K„q')] l(l, 2)00&

+N. K +~N +S=o ~ ~i S=p ~
g

' '(K+q')g'='(K)G'f s, —M„'+i e] '[s„-M„'+ie]
N, K

where

xv[(p —K, +q')'™,', (K, —q')'] v[(P —q' —K, )'; (P q')' M„']

xv[(p —K —2q ) ' (p —q ) M» ]v[(p —KI) '
Mrr KI ]

x(2&& q. ) '[(dz +2M„—a» —E» -, —E»;, q
—wz q +i e]

(K+q') ~ (p+K) (p+K) K (M„+Q, )((K+q') K]

(4.6)

(4.7)(,) (M Q, )
(K+q') ~ (p-q' —K) (p-q'-K) K (M„+Q'„)[(K+q') K]

E» K+q'+M» E» K™» (E» K(. q! +M»)(E» r( ™»)
(K+q') x(p+K) (p+ K) x K (M„+Q', )[(K+q') xK]

&»,.+q +M» &», K+M» (&».~+q +M»)%», K+M»)

(K +q ) X (p —q' —K) (p —Q —K) X K (M» + QII )[(K +q ) XK]

E»,:,q +M» &», , +M» (&», .+q +M»)(&», K+M»)

(4.8)

(4.9)

(4.10)

s, =(p+K, )', s„=(p—q'+K, )', QI =—&] +2M»-&»-&», „Q'„=—&I)+2M» —&» —&», K+q ~ (4 11)

In Eq. (4.6), the quantity inside the curly bracket represents the isospin average and is equal to —,. The
spin matrix element is simply (A„A., +B,, B,). We note further that in the pionic-atom limit, p=0 and
(v-=M„Eqs. (4.7)-(4.10), and the form factors v. in Eq. (4.6) all have very simple expressions.

Since the FSA essentially reduces the dynamics to a potential scattering problem, there are therefore
various ambiguities in passing from our dynamical result to the FSA result. Adopting the scheme outlined
in Sec. III we obtain (after the isospin average) the invariant FSA amplitude

M', „(P,Pi 2W) =-,'A(A —1) d'q'G'(s -MN'+i e) '(2M„)

x[An (pr K2, q )AI(pr KI q ) +B„(p,K„q') BI (Pr K» q )]

x v[(p —q' —I]!)';( p —q')', M»'] v [(p —KI)'; M, ', MN'] C „„'(q'), (4.12)

where we have introduced the new notation R,
=K. =(M» &), Iir=(&q», ),qn, =(&q,»-q'),
q' = (0, q'), and s = (p + KI)'. These quantities are,
respectively, the counterpart of K, K2, K, +g',
K, —q', q', and s, (and s») of the dynamical ap-
proach. The functions A and B are defined as
follows:

A, (P, K, q') = —P'+(p q')/(E» -q ~ +M„), (4.13)

BI(p K q') —= q' xp/(E» q ™„), (4.15)

BII(p, K, q')= -q'XP/(&», q +-M»). (4.16)

The form factors of Eq. (4.12) are still defined
by Eq. (4.3). In particular, in the pionic-atom

AII(P, K, q')= -P'-(P-q-') q'/(E», q +M»),

(4.14)



NUCLEON-NUCLEON CORRELATIONS AND THE. . .

limit, where the magnitude of the pion momen-
tum (p( can be treated as small compared to the
masses of the particles involved, we have 8 =—(M„
+M„)', and the pion propagator is approximately
equal to 1/(q"). Further, the quantity C~„„'(q') is
the usual correlation function appearing in the
fixed scatter approximation, and may be expressed

t fth '"d f ctf to "'t g d p-
proximation by

C'. ' i(')=f d'it( * '(ir+i(')iV='(i) (4.17)

where K =3.7 fm ', c =0.42, and I'=1.25 (fm) '.
Now in the evaluation of Eq. (4.6) or Eq. (. . )4.$.2

we encounter the product g ='(K) xp ~ '(K+q').
Since Eq. (4.19) implies that the defect function is
represented by a function that is peaked in mo-
mentum space, we do not introduce a large error
by making the approximation

We note that Eq. (4.12), the FSA, still contains
certain off-shell features with respect to the pion-
nucleon scattering amplitudes. This is due to the
fact that the pion propagates off its mass shell
between successive scatterings. (For overlapping
scattering centers these "off-shell" effects in-
fluence the result. ) We emphasize, however, that
most of the off-shell aspects of our dynamical cal-
culat1on are lost 1n the FSA. For examp]. e, 1n the
pionic atom limit we have s = (M„+M„)'&M„',
while in Eq. (3.2)

~&2 ~2
s( = (M „+M„-Mc—E„;)- K

2=(M ~
—6,, +2MN)(M„—A(i+2M' —2Eii „)+MK

(4.18)

Then taking 4 =40 MeV, we have s&
- M~" for

CV

l-~ 3. 5 fm ' From various nuclear matter ca-m
culations" one finds that values of ~ = 3 fm are
important and therefore in that case s& «M~'.
Hy comparing Eqs. (4.13) to (4.16) with Eqs. (4.8)
to (4.11), we also note that the absence of nucleon
motion in the FSA changes the interaction strength
considerably from the dynamical method.

To illustrate the differences between the two
approaches we have discussed here, we use a
simple model for the correlation functions. Fol-
lowing Grange and Preston" we note that 1t is rea-
sonable to write, with K = (K(,

(27i)"'2='( ), F, ,(, ,)„

We note that introducing the 5 function for the var1-
able (K+q'( rather than K will yield the same re-

4.20 .suit as the approximation defined in Eq.
Since the pionic atom limit ((p( =0) has been ex-

plicitly used in the framework of FSA to derive
the so-called Lorentz-Lorenz effect in pion-nu-

4

cleus scattering, "we believe that a companson
between the dynamical approach and the FSA in
that limit deserves our attention. In the p =0
l' 't the FSA amplitude becomes a real quantity,
while the scattering amplitude due to the dynamical
approach remains complex, although its imaginary
part is negligibly small with respect to its real
part. To show the detailed structure of these two
amplitudes we compare in Figs. 9 to 11 the inte-l

d ' E (4.12) and the real part of the inte-
d

' E (4 6) as functions of the intermediate
plion momentum transfer (q'(. We see that both
integrands acquire larger magnitudes when the
d

' rameter A. in the pion-nuclearn formGamPlng PRram
f t increases. In fact, the larger the value ofRC.Ol 1

toffthe parameter X the less important is the cuto
effect of the form factor. Our calculations show
also that the integrand due to FSA (dashed curves)
is negative at low (q'( and becomes positive for
very large values of (q'(. The change of the sign

sociated with the increasing importance of the
q' term in Eq. (4.14) as q' increases. On the con-

CA

0 OIW

(

I

2
I

I

I

0 05
Iq ( (Grec)

T(,"='(K)q '='(K+q')

(27r)"' C (21T)'"
5(K —K)I'

~
~+@ r +((K+q'( —K)'

(4.20)

FIG. 9. The integrands of the forward scattering
ampbtude as function of intermediate pion momentum
trans el, q „ ln ef ( '~ „ th limit p= 0. The dashed curves are
FSA results and the solid curves are the real parts o
the dynamica1. approach. Calculations are done with
6&=40 MeV and A/M~=2,
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trary, the real part of the integrand of the dy-
namical approach (solid curves) is negative at all
~cl

~
values. This difference in the asymptotic

behaviors will persist in the cases with not too
large ~p~. Gn the other hand, the discrepancy
between the behavior at ~q' (=0 of these two ap-
proaches changes drastically when the p =-0 limit
is removed. In fact„ for p& 0 the FSA pion propa-
gator is no longer equal to -(c[') ' and does not
cancel the (ci')' coming from the volume element,
d'q'; the FSA integrand will then also start from
zero at ~cl'~=0 as does the intrgrand of dynamical
approach. Finally, we note that for very high-
energy incoming pions such that [p(» ~lc ~, we

may expect a similarity between these two differ-
ent RpproRches.

V. CONCLUSION

We have considered the contribution to ihe pion-
optical potential due to the pion scattering from R

correlated nucleon pai.r. In our formalism we see
that the strong nucleon-nucleon correlation pro-
vides the struck nucleon with a large momentum
Rnd also takes it very far off its mass shell. Con-
sequently, the s values for the pion-nucLeon scat-
tering amplitudes appearing in the analysis of
this part of the pion-nucleus interaction are mostly
in a region very different from the one correspond-
ing to on-shell scattering data. . These features of
the problem are usually ignored in any current
Rnalysi, s which uses nonrelativistic scattering
theory where, as we have emphasized earlier,

the s values are ambiguous.
In a phenomenological analysis of pion-nucleus

scatteri. ng using a nonrelativistic separable poten-
tial model for the ~N interaction, the energy de-
nominator Rnd form fRctors Rre usuRlly parame-
trized in a manner appropriate to particles on
their mass shells„ for exa.mple, the FSA uses the
pa. rameter s rather than s. In this respect, our
covariant approach provides a more satisfactory
scheme in the sense that the extension io off-
mass-shell particles can be made unambiguously
in the framework of a phenomenological covariant
model. However, we have seen that owing to the
off-shell nature of the particles involved, the form
factors for mÃ scattering depend on more than one
relativistic invariant. [See Eg. (4,4).] In other
words, the use of covarinnt form factors in a
phenomenological analysis requires more detailed
information for the off-shell dynamics of mE scat-
tering processes. (Although unlimited choices of
specific analytic structures for form factors ex-
ist, the number of independent Lorentz invariants
on which these form factors depend is determined
by ihe number of off-shell particles, as dictated
by ihe general principles of relativistic kine-
matics. ) The various choices of form factors are
equivalent to using various models of off-shell
dynamics in a phenomenological analysis within
a chosen covariant reduction scheme.

As mentioned previ. ously, we have used the non-
relativistic theory to provide some guidance as
to the nature of the best reduction scheme. It is
now clear that in the nonrelativistic limit of kine-
mati. cs, our covariant pion-nucleus scattering
amplitudes has the same formal structure as the
one generated from the corresponding Goldstone
diagram. The covariant amplitude still contains
ingredients such as the covariant off-shell form
factors, which cannot be supplied a priori by a
nonrelativistic many-body scattering theory, not
to mention a potential scattering theory.

We have also pointed out that in order to com-
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pare our approach to widely used nonrelativistic
approaches, we are obliged to leave out the part
of our covariant amplitude involving elementary
pion production or absorption amplitudes. These
amplitudes are related to pion-nucleon scattering
amplitudes by "crossing. " This aspect may be
important in pion-nucleus scattering because of
the small mass of the pion; some consideration
is being given to this question.

In view of the large differences between our
dynamical approach and the FSA, shown in the
results of our model calculation, we believe that
many conclusions, for example the derivation of
I.orentz-I orenz effect in pion-nucleus scattering
based upon nonrelativistic potential scattering

theory, should be seriously reexamined.
One may expect that the discrepancies between

these two approaches mill diminish for very high
energy pions. However, at these ultra relativistic
energies the use of a potential scattering model,
such as the FSA, becomes dubious. For example,
amplitudes involving production and annihilation
of pions not contained in the potential scattering
model may be important. Clearly, only in a co-
variant scattering formalism such as the one we

advocate here can these relativistic aspects of.

the dynamics be taken into account. We recog-
nize, however, that many of the amplitudes re-
quired in a fully covariant approach are only poor-
ly known and more work is needed in this respect.
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