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A set of coupled integral equations (CIE) for multichannel nuclear reactions is considered
which appears to have some advantages over the conventional coupled-reaction-channel
(CRC) equations when transfer channels must be included. Both the CIE and CRC formal-
ism are based on the assumption that the system has a limited number of cluster type
intermediate states available to it. The CIE have a connected kernel while those of the
CRC do not. In addition, the troublesome nonorthogonality terms of the CRC formalism
have no counterpart in the CIE formalism. The CIE are compared with those of the CRC
formalism. The CIE for a simple model for deuteron scattering from a structureless
target are presented as an explicit example.

NUCLEAR REACTIONS Coupled-reaction-channels formalism with no

nonorthogonality term and having a connected kernel.

I. INTRODUCTION

A new method for dealing with the many-body
scattering problem has been suggested" which
appears to be a viable alternative to the Faddeev
method. ' This method has been used to derive
variational functionals for the many-body transi-
tion amplitude. ~

We will refer to this new method as the "cou-
pled integral equations" (CIE) formalism. The
starting point in this method is that suggested by
Glockle and by Takeuchi, ' the N simultaneous
Lippman-Schwinger (LS) equations for the wave
function. Here N is the number of partitions of
the system into two clusters of particles that can
be formed. The specification of the inhomogenie-
ties in all N equations is necessary for a complete
characterization of the asymptotic behavior of the
wave function. Linear combinations of the N si-
multaneous LS equations are formed to produce a
set of coupled integral equations for the elements
of the transition matrix operator. This set of
equations can be written as a single matrix equa-
tion. It is possible to arrange matters so that the
kernel of this matrix integral equation is con-
nected. The fact that the coupled integral equa-
tions can be cast in the form of a single matrix
equation permits the formal solution to be expres-
sed simply in terms of operator inverses.

In this paper we observe that the use of a trun-
cated channel state expansion to represent the
partition Green's function operators that appear
in the CIE's leads to a calculational scheme that
appears to have the same physical content as the
widely used coupled-reaction channels (CRC)
formalism. The CIE has the advantage over the

CRC in that there are no nonorthogonality terms
in the CIE equations and the kernel of the CIE
equations is connected. Nonorthogonality terms
are present in the CRC equations. They are dif-
ficult to evaluate and are generally neglected, al-
though there is evidence' that they are not small.

The fact that the CIE formalism has a firm the-
oretical basis in that it does incorporate the com-
plete set of asymptotic boundary conditions and the
kernel of the set of equations is connected means
that the conventional methods of constructing suc-
cessive approximations to the solution of these
equations must ultimately converge to the correct
result. Thus the CIE appears to be an attractive
starting point for theoretical analyses of nuclear
reactions.

As an explicit illustration of the kind of expres-
sions that must be evaluated in a CIE analysis, we
apply the CIE formalism to a simple model for
scattering of a deuteron by a structureless target.
The coupled equations for the elastic, stripping,
and breakup transition amplitudes are presented.
In Sec. II the CRC formalism is presented. The
CIE formalism is described in Sec. III. The two
methods are compared in Sec. IV. In Sec. V the
CIE formalism is applied to a model deuteron
scattering problem.

II. COUPLED-REACTION-CHANNEL

(CRC) FORMALISM

Let Q,
—= Q„, be a member of a set of channel

states of a many-body system. Each such set is
associated with a particular partition (n, P, etc. )
of the particles of the system into two groups or
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clusters:

a=el, n2, n3,

b =PI, P2, P3,

etc.

The letter a will represent a particular member
of the set ui(i=1, 2, . . .}, the letter 5 will repre-
sent a member of the set pj (j =1, 2, . . .}, and so
on. Each of these sets include a discrete spectrum
of two-body channels and a continuum of three- or
more-body channels. Q, is a total angular
momentum eigenstate that depends on the internal
degrees of freedom of the two clusters of partition
n and on the direction in space of the relative dis-
placement r„of the centers of mass of the two

clusters.
Let g, be the scattering state of the system as-

sociated with the total energy E and unit' incident
flux in channel a. Let H be the Hamiltonian opera-
tor for the system. Then

(E-H)$, =0 .
The coupled-reaction-channel method is based on
consideration of an expansion of the scattering
state wave function in terms of the channel states.

k.=P AF.(r ) . (2)
b

The sum on 5 = Pj is understood here to include, in
general, various different values of P and of j. If
the sum over channels b included only all those
channels associated with a particular partition P,
including an integral over the continuous spectrum
of three- or more-body breakup channels, then
Eq. (2) would be an expansion of g, in a complete
orthogonal set of channel states. However, this
is not feasible in general. In the CRC method the
sum on the right of Eq. (2) is taken to include only
the most important open channels from all possible
partitions. Thus Eq. (2) is to be regarded as an
expansion in terms of an incomplete nonorthogonal
set of Q»'s.

Now we introduce the partition HamiltonianH
and the regular channel radial wave function f,(r„)
normalized to unit incident flux. We write

0 = (F H„)Q,f,(r )—

A,g»= Q Q, F,»(ry) . (6)

Thus we have the CRC coupled integrodifferential
equations

(E, —T„—U, )F,»

(Pal ln —(& —Hn)Aal 4»F»»&

(6)

The (E -H„)A, term is the nonorthogonality term
It gives a nonvanishing contribution only for chan-
nels c which are not associated with partition n .
In the case that only channels associated with a
single partition are included in the channel sums,
the CRC equations reduce to a set of coupled dif-
ferential equations and no nonorthogonality term
appears.

Operating on both sides of Eq. (6) with

a'. =(&n —Tn -U.)
'

gives

(7a)

F..(r.)=6,f (»r)+pa. (e.l I.le.F.»(r, )&

-P (e.le.F..(,)& .
c&a

Multiplication by Q, and summation on a yields,
by virtue of Eq. (2),

(7b)

0'» = @»fi + Q 0'.(g.(4&. l
I'

I @»&- (@.IA. I 4»&]

(7c)

III. COUPLED INTEGRAL EQUATIONS (CIE) FORMALISM

The CIE formalism is based on the Lippman-
Schwinger (LS) equations7 for the scattering wave
function. These are a set of N simultaneous inte-
gral equations.

and U, is a potential chosen to provide an approxi-
mate representation of the background elastic scat-
tering. Let V„=H -H„be the partition n residual
interaction. Then

4k» = (& H-a)4»

= P,(E, —T„—U,)F„+(Z -H„)A,g», (4)

where

= 4.[&.—7'. —U.(r.)]f.(r.),
=7'n+Un =7'n+ Q I 4n;) Un((ln;I

(3a)
4.= 4.f.+& 4k.
4.= Ga I'84.

$, =GyVyg,

(8a)

(8b)

(8c).
(3b)=7' +Q IA.)UIA.I,

where T„ is the kinetic energy operator for the
relative motion of the two clusters of partition n (8N)
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The quantity Ga is the partition P Green's function
operator defined by

Ga --(E-Ha) ' .
All but one of the N LS equations are homogeneous.
This reflects the asymptotic boundary conditions
fulfilled by g„namely, that g, has incoming flux
only in channel a.

To make this set of simultaneous integral equa-
tions more tractable we convert them into a ma-
trix equation for the vector (V„g, , VatP„. . . , V„f,).
Let lW~sj be the elements of an Nby N matrix
such that

4.= g WysXs.

in Eq. (11)with the result

(16)

Xaa=5sn4'mfa+ Q GaVaWyaXaa ~

where now the kernel is diagonal in partition space
so that the equations for the various components of
f are uncoupled.

A set of coupled integrodifferential equations
based on the CIE formalism integral equation can
be formed using the procedure suggested by Hahn,

Kouri, and Levin. ' One merely makes the substi-
tution

W~a =1 (10)

Then we can form the following N linear combina-
tions of the N LS equations:

Then operation by the inverse of Ga gives a set of
coupled differential equations for the wave function
components g:

V g, = V Wy„g,f, + Q VyWysGs Vs), (&-Hs)Xs. = Va Q WyaXa. (18)

(y=1, 2, . . . , N). (11)

Equation (11) then can be given the following ma-

trix form

To convert these multidimensional differential
equations into six dimensional integrodifferential
equations, we make a channel state expansion of
each wave function component y:

g= VWg+ VWGg,

where the vectors g and g have elements

4 =Vy&

ny = ~ye 4.f.
and the matrices V and G have elements

(12a)

(12b)

(12c)

xs = Q ~ rrs, (& ) ~

Substitution of this expansion into Eq. (l,8) gives

s ~»~b. =g g Wya(fbi

Valses,

Ja, ,.& .

g=(1- VWG) 'VWq . (13)

(12d)

(12e)

Equation (11)or, equivalently, Eqs. (12) are the

coupled integral equations of the CIE formalism.
The formal solution of these equations is then

(20)

This result is seen to be identical with CRC result
shown in Eq. (6) except for the presence of the
elements of Wand the fact that there is no nonor-
thogonaliiy term. Recall that this results from
us lng

Wys 4'a~ Jay;(y s)
8 j

It has been pointed out' that if W is chosen such

that
Ws, s„=1 P=1, 2, . . . , N- 1,

y i.)~y+i~,.&8 (21)

W~ =1,

W„a = 0 for all other (cy, P),
(14) in place of Eq. (2) and substituting this into &e

CIE formalism coupled integral equations instead
of the SchrMinger equation.

then the kernel VWG is connected, so henceforth
this choice will be assumed. One consequence of
this choice is that (VWG)" is a diagonal (in parti-
tion space) matrix. Thus, if we iterate Eq. (12a)
N-. 1 times we find

IV. COMPARISONS OF THE CRC AND CIE
FORMALISM S

Let us introduce the channel state expansion for
the partition Green's function operators

N

g = Q (VWG)" VWq+(VWG)" f
n=o

N-1
=[1—(VWG) j i Q (VWG)" VWyi,

n=0

G. = g I y. ,)Z. , (~ ~'.)(y.;I
i= 1

= P I 4.)g.(~., ~.')(e.l, (22)
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where the sum is understood to include an integral
over the continuum of three- or more-body break-
up channels. By using the subscript ui and sum-
ming over the index i we mean to indicate that the
sum includes only those channels associated with
partition n. This is in contrast to our use of a
(or 5 or c) as a subscript and the summation over
that index to indicate a summation over channels
from all partitions.

Substituting the channel state expansion into
Eq. (11) leads to the following form of the CIE:

dr'X„(r, r') $»,(r'),

(23a)

(23b)

(23c)

dr"&y, 5(r, -r)l V, ly, 5(r, r")&-

x Wysg»(r", r) (23d)

The solution of this set of coupled integral equa-
tions would then be used to evaluate the elements
of the transition matrix

T..=& y.f.I 1.I y, &

drr'f, *(r)F„(r) . (24)

In this form the CIE method may be readily com-
pared with the CRC result of Eq. (7) which can be
written in the following form:

F,.(r) = 5f.( )r+ Q dr'K„(r, r')F„(r'),

where

Fc„(rr') = f nr n(rr",)",,

«(, — ")e.l y, l5(rs-")e, &

+(1 —5.»)&|)(ry -r)A. I 5(rs r')4»& . -
(25b)

The solution of the CRC equations would be used
in the following expression to evaluate the ele-
ments of the transition matrix.

T.»= P &y.f.lv„l y, F..&

0»=4»f»+ Q G~l'4»+ Q&n4», (2Va)

(27b)

(27c)

We see that the equations have a fairly similar
form. The CIE equations are for the transition
functions (= the residual interactions times the
wave function) while the CRC equations are for
the components of the wave function. There is no

counterpart of the nonorthogonality term in the
kernel of the CIE equations. This must be re-
garded as an important advantage. The other im-
portant advantage that the CIE formalism has over
the CRC is that the kernel X of the CIE formalism
is connected' while the kernel K of the CRC for-
malism is not.

In both cases the basic approximation that must
be made in practical applications is the truncation
of the channel sums. Thus, except for the fact
that the nonorthogonality term will be neglected
in a CRC calculation, CIE calculations and CRC
calculations rely on the same physical model.
This model is a kind of a cluster model that per-
mits the system only cluster type intermediate
states.

The CRC integral equation displayed in Eq. (25)
would be completely equivalent to the LS equation
shown in Eq. (Ba) if the channel subscripts c and 5
were to refer only to partition u channels and all
such channels were included in the channel sums.
In truncating the partition n channel sums, the
CRC formalism adds contributions from other
partitions. This compensates in some degree for
the truncation. Thus in the CRC, where the parti-
tion Green's function operator truncation is accom-
panied by the insertion of additional terms and the
neglect of nonorthogonality terms, it is not clear
that the consequences of the truncation will be
similar to those of the simple truncation used in
the CIE.

The CRC formalism has been invoked as the
theoretical basis for the perturbation expansions
used in the analysis of multistep transfer reac-
tions. Let us compare CRC expressions for multi-
step transition amplitudes with those predicted by
the LS equations. Toward this end we rewrite Eq.
(7) to read

=p f n.„J' n. „y.(r„)

x&5(r„r'„)Q,l V„-l 5(r r' )Q,&F„(r'-) .
(26)

where the prime serves to indicate that the chan-
nel sum has been truncated. Neglecting the non-
orthogonality term and repeatedly iterating Eq.
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(21a) gives the perturbation expansion

2

a, = 1++ a„'v„+( g a„'v„+ a,f,

leading to the transition amplitude sum

27„=(a,f, I
—v„+Ir„g ay vy + 'v„( P Gyve)

+ ' ' '
I a,f, )

y y

(29)

This then is the CRC multistep expansion. The
transition amplitude is represented as a sum of
one-step, two-step, three-step, etc. terms involv-
ing all possible combinations of intermediate
states.

Now let us turn to the LS equations shown in Eq.
(8) and see what sort of perturbation expansion
they produce. The CRC integral equation, Eq.
(27), is after all merely an approximate repre-
sentation of the LS equations. If we combine the
LS equations to form the CIE and iterate the CIE
as shown in Eqs. (12) or (15) using the W matrix
given by Eq. (14), then the result is equivalent to
successively iterating the N LS equations in cyclic
order. The result we get depends on the order we
assign to the various partitions. For example, if
we start with Eq. (Sa) and successively iterate
using Eqs. (8b), (8c), . . . (8N), (Sa), (Sb), . . . in

that order we will find

4.={1+9.+Q.'+" )0.f. ,

Q„=G„V„GSV8Gyvy. . .G„v~

(30a)

(30b)

On the other hand if we had started the same pro-
cedure with Eq. (8c) instead of Eq. (8a), we would
have found

f, = Gy Vy G g Vg
' ' ' G ~V~

x{1+Q „+Q'„+ ~ ~ )y,f,
The associated transition amplitude is

r.„=(y.f.lv„G, V, " Gv.{1+q,+q, + )ly, f, & .

(32)
There are infinitely many other expansions of the
transition amplitude that can be constructed by
iterating Eqs. (8) in various sequences. For ex-

ample, one might have

Tay
= (Q afa I V~G y V~

' ' ' G V {1 + G 8Vg + G gVB G g Vg + G 8VB G g Vg G g VB + G 8Vg G g Vg G 8Vg G

yves

G p Vp G a VU

+GsvBG, v, GsvsG'P, G„v G', v„G, v, + )ly„f, ) . (33)

The pattern that any such expansion must conform
to is (a) the product outside the bracket can have
any number of factors of GV except that GBVS must
not be included, P being the partition to which the
incident channel 5 belongs; (b) each new term of
the series must include the previous term as an
initial factor; (c) every time the factor GSVS ap-
pears it must appear by itself; and (d) two subse-
quent terms both lacking a final factor of GBV8 may
not appear. Ultimately, one term in the series
must include all N different possible factors of
G V in order that the series not contain an infinite
set of unlinked diagrams.

The exact perturbation expansion is thus seen to
differ from the approximate CRC expansion in that
(a) there is no nonorthogonality term to neglect,
(b) the partition Green's function operators G
G8, etc. appear instead of the truncated partition
Green's function operators G'„, Gs, etc. , and (c)
rather than being a sum over all possible diagrams
as in the CRC expansion, the LS equations expan-

sion is a sum of a particular, though fairly arbi-
trary, sequence of diagrams. It is especially
noteworthy that the first term of the LS equations
expansion can be of arbitrarily high order. Thus
the transition amplitude for a particular multistep
process can be the lowest order term of a particu-
lar perturbation expansion. In that case, however,
the amplitude for other multistep processes of the
same order or lower order may not appear in the
expansion at all.

Although the CRC expansion is approximate in
nature and is not convergent because of the un-
limited number of unlinked diagrams it contains,
it nevertheless has the advantage that a simple
physical interpretation of each term is possible.
The LS equations expansion, on the other hand, is
formally exact and will converge for sufficiently
small residual interactions V„, VB, etc. Physical
interpretation of individual terms of the LS equa-
tions expansion, however, is problematic in view
of the arbitrariness of its structure.
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V. SCATTERING OF A MODEL DEUTERON
BY A STRUCTURELESS TARGET

Consider a system consisting of three spinless,
structureless particles: a neutron n, a proton P.
and a target t. We suppose these particles to in-
teract with each other via two-body local potentials
V~„, V~t, V„, , capable of supporting a single s-
wave bound state each. The two-body subsystems
will be identified by capital letters: P+n = D, p+ t
= P, n+ t =

¹ The Hamiltonian of the system is
then

a solution of

(&Do —7'Dt" —~Dt)foo(rDt) = o,
&Do=&- &Do ~

~(t )
ff' 1 tP l o(l o+1) (

RmDt rD, drD, 2 rD, a

(38a)

(36b)

where /p is the orbital angular momentum of the
incident channel and m» is the reduced mass of
the D+ t system.

H= T+ Vp„+ V~t+ V„,

~nIp + ~Dt ~nt + ~PE TPt + ~&P

The partition Hamiltonians are defined to be

IID = T+ V,„+UDt,

Il, = T+ V„t+tr„,
II„=r+ Vpt+U~

so that the residual interactions are

VD = V~t+ V„, —UDt

Vp
——Vp„+ Vp, —U~„,

V„= V,„+V„,-U„p .

(34a)

(34b)

(35a)

(35b)

(35c)

(36a}

(36b)

(36c)

t pa, Do(r) =(@a%rp» -r)I &.+ &t —&p»I tIPDofDo&, (39a)

(na, DO(r) =0 (39b)

t, „(r)=O, (39c)

where we have chosen the channel sequence to be
D-P-n-D. The nonvanishing kernels are

&pa, D((r r') = ~r"(tttpa~(ra» r)I l'p + ipt

—&»I yDl5( Dt r"}&gDt(r",r')

(40)

and ED, „and E„». The partition radial Green's
function for channel DE is

(~Da ~Pn ~Pn)4Da(rnP 4 rDt} (37a)

The partition D channel states are solutions of gDt(r", r')= &Dt(r-)xDt(r ),
where x» and y» are solutions of

(41)

where k=0 is the bound state and the rest of the
spectrum is continuous. xDt is the unit vector in
the direction of rD, . The corresponding equations
for the other channels are

(42)

such that x» is regular at the origin and has the
asymptotic behavior

(&pa —T.t —l't) Cpa(r. t, rp») = o,
('a Tpt —lpt)tt). a-(rpt r~) =o .

(37b)

(37c)

1/2

xDt(r), - sin(kDr —lt —,tt+5D, ),2~Dt
(43a)

Again k=0 is the bound state and the rest of the
spectrum is continuous. En practical calculations
one will generally approximate the continuous spec-
trum by a discrete one.

Our objective here is to present explicit expres-
sions for the components of the CIE integral equa-
tion, E(l. (23), for the deuteron scattering model
just described. We suppose that the incident chan-
nel is DO, ground state deuterons incident on the
target. The source function f, Do defined by Eq.
(23c) then is calculated from the unit incident cur-
rent regular optical model wave function which is

5 kDr

2m Dt

and y» has the asymptotic behavior

(431}

2' D, . le,(e)-, — exp((e, e- ee } . (4te)
D/ 2

The integrations required for the evaluation of
the kernels and the source functions are six dimen-
sional ones of the sort encountered in finite range
distorted-wave Borri approximation calculations.
These calculations are difficult but not beyond
reach.
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