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Why the Hauser-Feshbach formula works
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It is shown that flux conservation requires substantial channel-channel correlations of res-
onance amplitudes. These, together with the effects of level-level correlations and other
terms conspire to cancel the large additive corrections to the Hauser-Feshbach formula for
the fluctuation cross section, The remaining multiplicative corrections become negligible
for nonelastic cross sections when many channels are open. In other cases, approximation
formulas provide estimates that are adequate for most purposes. However, the Bohr inde-
pendence hypothesis is not always satisfied when fewer than about 20 channels are open. The
cross section correlation width is shown to differ markedly from the average width. The
use of the former for estimating the Hauser-Feshbach denominator is found to be justified.
All of these results are verified by means of statistical model calculations of resonance
parameters and of cross sections.

I. INTRODUCTION

The well-known Hauser-Feshbach formula for
the average compound nucleus cross section is a
computationally simple and widely used tool for
the analysis of nuclear reactions. ' This use has
been eminently successful and consistent with ex-

perimentall

data, except for some well -known and
well understood deviations. Remarkably, however,
in the 3'7 years of its existence, no derivation has
been found which can explain the general validity
of this formula. In this regard we know little more
today than Bethe' did in 1937 when he derived the
formula under the explicit restrictions that all
partial width to level spacing ratios be small, and
that there be no correlations between the partial
widths of different channels. An expansion in pow-
ers of the partial width to spacing ratios reveals
many higher order terms that increase rapidly in
magnitude as the channel transmission coefficients
increase and that seem to defy a simple summa-
tion. ' An approach based upon strict unitarity and
analyticity of the S matrix led to a simple Hauser-
Feshbach-type expression. 4 However, this ex-
pression contains terms that depend on the magni-
tudes of very complicated correlations among the
resonance parameters, and these are extremely
difficult to estimate reliably. The simple esti-
mates of these correlation effects that were pro-
posed in Ref. 4 are, as we shall see below, not ade-
quate from the point of view of derivation, they are
however in many instances empirically successful
in predicting observable deviations from the simple
Hauser -Feshbach formula.

A widely stated model justification for the
Hauser-Feshbach formula considers that Bohr's
compound nucleus principle of independence of

formation and decay applies to averages over reso-
nances. This assumption is difficult to justify in
the realm of large width to spacing ratios, where
the "lifetime" (8/I') of the "compound nucleus" is
short compared to the intrinsic period (h/D) of its
internal state. Such model considerations might
suggest an enhancement of the compound elastic
cross section by a factor of the order of 1'/&,
rather than the familiar correlation enhancement
that is expected to be limited to a factor of between
2 and 3.' Moreover, the proportionality of average
reaction cross sections to the transmission coef-
ficients of the exit channels is suspect in the do-
main of large transmission coefficients T because
of the general breakdown of the linear relationships
between T and channel resonance parameters when
T becomes large. "

Finally there is the often expressed speculation
that the resonance interference terms cancel out
on the average, leaving only the Hauser-Feshbach
contribution. However, the resonance interference
contributions are not the only significant additions
to the Hauser-Feshbach term when transmission
coefficients are not small. There are terms which
do depend on resonance-resonance correlations of
various kinds, terms which depend on channel-
channel correlations, and finally there are non-
Hauser -Feshbach terms that remain important in
the absence of all correlations. " It is our princi-
pal purpose here to show how all these different
kinds of terms cancel to leave a remainder that is
generally quite close to the Hauser -Feshbach pre-
diction. We present numerical evidence to show
under what circumstances this does happen, and to
explain why therefore the Hauser-Feshbach formu-
la, together with some simple modifications is so
widely successful.
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A second purpose is to present evidence to justify
the widely employed computational version of the
Hauser-Feshbach formula, in which the sum over
all transmission coefficients is replaced by 2m

times the ratio of the correlation width to the
average level spacing.

Both of these explanations will be seen to depend
on the demonstrated presence of rather strong
channel-channel correlations of the partial widths
of overlapping resonances, even in the absence of
direct reactions (the latter are here not consid-

eredd).

II. FLUCTUATION CROSS SECTION

We consider an 8 matrix of the form'

s =s'+s~,

actions), it follows from Eq. (3) that (g„,g„)=0
for c0 d and that

Is'„I'=(~/D)'l&g„, '& I'=-, , C

(8)

This expression becomes very large for T, close
to unity and it exceeds T, whenever T,& 0.8. It
follows that for large values of T„ the value of
a ~, in Eq. (5) emerges as a small difference be-
tween two large terms. Consequently the demands
on the accuracy of our evaluation of ( I

S „I')„be-
come severe. A similar statement can apply to the
evaluation of o~ when channels c and d are cou-
pled by a direct reaction so that S,„does not van-
ish.

Proceeding, nevertheless, with the evaluation
of Eq. (5) one obtains'

where 8' is assumed to be energy independent and
the energy dependent part has the form

o.', = (»/D)& I g~. I'
I g~. I'/r~ &

where

(9)

~p ~ gp gp
E -E~+ 2s I'~ (2)

2 Is& I2
' g cgag~ gIu2" ofc

(z„-z„)+—,'f(r „+r„)
Its energy average is

S = (v/D)(g„x-g„) =-,'(S S*-'), (3)

o.".' =
& I S~ -S..I'&.,=&

I
S'„ I'&,„-I

S' I', (5)

and again from unitarity we have

Pa~=i —g IS,„I'-=V', (0~ T, ~ 1). (8)
d d

The aim is now to express ( I
S~„I'),„ in terms of

the elements of S and simple statistical properties
of the p-dependent parameters of Eq. (2) that are
believed to be universally valid, to insert this ex-
pression into Eq. (5) and to see if the Hauser-
Feshbach equation

Ocg =~ ( l)
Ty

f
or some simple modification results.

When Bethe's condition' that all T, «1 is vio-
lated, and particularly when some T, are close to
unity, then this program faces considerable diffi-
culties. This fact is illustrated by the following
circumstances. When S is diagonal (no direct re-

where D is the mean spacing of the E& and the last
expression follows from the required unitarity of
S.' It follows then also that

S'= -'(S+S *-')

Throughout we use an unlabeled bracket ( ) to indi-
cate an average over the index p. , and a labeled
bracket ()„or a bar to indicate an energy average.

The integrated fluctuation (or compound nucleus)
cross section is defined in appropriate units as

T, =( 2x/D)(N„ le, I') —Q M, ,

where

&„=- Q I gg. I'/r, -1. (12)

Comparison with Eq. (8) leads to the requirement
that

o T~((l —T~) / —1), (13)

which becomes large for T, close to unity. Equa-
tion (13) implies an upper bound on the level cor-
relation dependent second term of Eq. (10) that
would always be satisfied if the term vanished.
Therefore Eq. (13) is insufficient to prove the exis-
tence of short range level-level correlations (com-
pare with Ref. 9 and footnote 8.)

(10)

The first term in Eq. (9) looks like the Hauser-
Feshbach formula. The second term M,d contains
the I S,~ I' of Eq. (5), plus a second term of equal
magnitude, thus exacerbating the difficulty men-
tioned below Eq. (8). One might hope, of course,
that the second term of M, which depends on the
magnitude of level-level correlations, would ex-
actly cancel the first term, which does not depend
on such correlations. Indeed, the estimate of M
given in Ref. 4 leads to such a cancellation in the

limit of large r/D. However, it has been pointed
out by Weidenmuller' that such a cancellation leads
to a contradiction because the insertion of (9) into
Eq. (8) gives
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III. N CANCELLATION and with the width-fluctuation corrected Hauser-
Feshbach formula with uncorrelated partial widths

To inquire how the fluctuation cross section can
be given by the Hauser-Feshbach formula, despite
the discouraging results (8) and (13) we introduce
the notation'

wi-0' C'+n- j ' '" C'+n-r '0'

We see immediately that if

(20)

etc&

which yields

(9„,) = r, + g M„,

lcd (9 ) GcdCcd Mcd ri

(15a)

(15b)

where

et ceded
e

(9„,9„„)
(9,)

(16a)

(9„,9„)
Ccd ( 9 )( )

= 1 +2Pcd(~c vd)
Pc Pd

(16b)

p,„=(C„-1)(C„-1)-"(C„-I)-'~', (16c)

and where it is assumed that the distribution law
of the 8„, is given by a g distribution with v, de-
grees of freedom (v, may have any integer or non-
integer positive value. )

We now apply this to the case of n competing
statistically equivalent channels. By this we mean
that all &, =T, all v, =v, aQ p,„=p for distinct c
and d. We then write for all distinct c and d

C„—= C= 1+2/v,

C,„=D= 1+2p/v,

M„—= M,

M d=P,
n

cc cd C ( 1 )D

Upon substitution into Eq. (15b) we obtain then

CT n —1
C+ (n 1)D C+ (n —1)D

(18a)
DT

'" C+(n 1)D C+-(n 1)D

(18b)

This is to be compared with the Hauser-Feshbach
prediction

gH& HF
cc Cd

where the channel correlation coefficient p,„ is de-
fined as

(21)

then Eq. (18) yields the width fluctuation corrected
Hauser -Feshbach formula

fl gWI'

D (22)

We shall refer to the condition (21) as M cancella-
tion, and we hypothesize that ~VI cancellation holds
as a consequence of S-matrix unitarity a,nd that a
corresponding condition holds also for statistically
inequivalent channels. Before turning to the justi-
fication of this hypothesis we discuss some of its
consequences.

In the case of diagonal S, the most plausible as-
sumptions regarding the statistical properties of
the ~g„c ~-" and of the 9„,would lead one to expect
no channel-channel correlations and hence D= 1
and P =0. In consequence of Eq. (13), M cancella, —

tion could then not occur, and Eq. (18) would pre-
dict large deviations from Hauser-Feshbach. In
fa,ct, for sufficiently large n, the absence of chan-
nel-channel correlations would imply a. negative
elastic fluctuation cross section for any reasonable
va, lue of v. To avoid such negative cross sections
would, for large I' and n, require the assumption
that v&2(1 —T)'~'/n. Such very small values of v

would imply huge statistical dispersions of the
pa. rtial widths. This would contradict the existence
of sta.ble avera. ge cross sections for reasonable
and physically relevant averaging intervals.

The effect of direct reactions upon the fluctuation
cross section has been generally assumed to arise
from the correlations of the ~g«~" between direct-
ly coupled channels, which arises from the corre-
lation of the g„, as determined by Eq. (3)."" The
fact that the ~g„, ~

are already correlated by the
unitarity condition complicates the discussion of
the direct effect. This will be treated in a future,
publication.

The presence of channel-channel correlations
and Eq. (22) explains why for large I'/D the elastic
enhancement C' can be limited to a. factor of 2, '
while from the known width distributions6'7 one ex-
pects I" to be considerably greater than 2. The
reason must be that C/D approaches a, value of 2,
which, as we shall see, appears to be correct.

The M-cancellation hypothesis was tested nu-
merically by means of a modified version of the
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MATDIAG program. " In this procedure R-matrix
parameters are generated randomly to yield a
specified average S matrix. " The y„, are selected
independently to be normally distributed with zero
means. " The R-matrix level spacings are selected
according to the Wigner distribution. '6 The pro-
gram then carries out the level matrix inversion
procedure to produce the corresponding S-matrix
pole parameters E„, I'„, and g~, of Eq. (2) and
from them the quantities M, P, C, and D are cal-
culated as given by Eqs. (10), (16), and (1'I), as
well as many other properties of the resonance
parameters.

As an example, we performed 5 statistically in-
dependent calculations, each with 100 resonances,
for the case of 10 statistically equivalent uncoupled
channels with transmission coefficients T = 0.75.
We obtained the following results.

C =4.64+ 0.38,

D = 2.23 + 0.14,

from which we find that

v =0.55+ 0.06,

p =0.34+ 0.06,
C'= 2.08+ 0.22.

For comparison, the Porter -Thomas distribution"
would yield C =3 (v =1) and Satchler's' normal dis-
tribution would give C=2 (v=2). The e„„and
also the ~g„, ~', fluctuate much more severely than
either of these predictions. The channel-channel
correlation p and its effect D are pronounced.
What happens is that a "broad" resonance p. tends

~= 0.64+ 0.10,

P =0.32~ 0.02.

These are very large numbers when compared
to the Hauser-Feshbach contribution of only 0.075.
Our results are consistent with M cancellation
because

II—= 0.50+ 0.08
D—= 0.48+ 0.05.
C

Figure 1 shows a comparison of the P/M and D/C
ratios obtained in this and other similar calcula-
tions. The quoted uncertainties are calculated
from the sample dispersions under the assump-
tions of uncorrelated normally distributed vari-
ables. These results are generally consistent
with M cancellation and suggest that the elastic
enhancement factor C'=C/D=M/P varies from
about 3 for small QT to about 2 for large QT, as
expected. '

The channel-channel correlation coefficients p
are plotted in Fig. 2. They are seen to depend
primarily on the transmission coefficient T and
rise from zero at small values of T to around 0.5
at T= 1 in an almost linear fashion. These corre-
lations in the e„, are primarily due to channel-
channel correlations in the

~ g~, ~', rather than due
to the level normalizations N„.

The substantial magnitudes of P clearly also im-

to have large
~ g~, ~' for all channels, while a "nar-

row resonance" tends to have small
~ g„,~'. The

compound elastic enhancement factor C' is con-
sistent with Satchler's value of 2.

From the same calculations we obtained

1.2

I.O

0.8

NO. OF CHANNELS: 5 IO I5

P/M:

D/C:

0.6

0.4

0.2

FIG. 1. Comparisons of statistical. ly computed ratios P/~ (black points) and D//C (open points) for statistically
equival. ent channels with transmission coefficient sums ZT. (Program MATDIAG. )



430 P. A. MOLDAUER

ply correlations among the g„,, belonging to dif-
ferent resonance terms p, . However these level-
level correlations are very weak and the resulting
contributions to P arise from the cumulative ef-
fects of the sum over many slightly correlated
terms v in Eq. (10). The modified MATDIAG pro-
gr~ calculates correlations of g„,', ~g„,~', and

8„,between neighboring resonance poles. In no
case was it possible to establish statistically signi-
ficant nearest neighbor level-level correlations,
in marked contrast to the very pronounced channel-
channel correlations.

V. OTHER REPRESENTATIONS OF S

The parametrization of the fluctuations of S that is
given in Eqs. (1) and (2) has the virtue that because
of its simple analytic form it is relatively easy to
average. On the other hand, the statistical prop-
erties of the parameters, in particular the corre-
lations which they must satisfy because of the uni-
tarity condition are, as we have seen, very com-
plicated. Nevertheless, we have seen that because
of M cancellation the effects of these correlations
on average cross sections are quite limited. This
suggests that Eqs. (1) and (2) are the wrong para-
metrization for our purpose and that we should
look for another representation, one that is mani-
festly unitary with no hidden and complicated cor-
relations, but also one that can be averaged. Rep-
resentation by an R matrix satisfies the fir st re-
quirement but not the second. At present we are

not aware of a representation that satisfies both of
these requirements.

One interesting attempt in this direction is the
work of Kawai, Kerman, and McVoy. " These
authors construct a representation of the S matrix
that looks just like Eqs. (1) and (2), except that the
parameters E„, I'„, and g„, are all energy depen-
dent. In that case the results of Eqs. (3) and (4) no

longer hold and Kawai et al-. were able to choose
the energy dependence so that S'=S and S =O; thus
overcoming the difficulty associated with our Eq.
(8). However, the correct averaging of o in the
Kawai representation presents difficulties that are
probably as formidable as those encountered in our
Sec. II. All parameters must be evaluated anew at
each energy point in the averaging interval. In-
stead of this, Kawai et al. suppress the energy de-
pendences of their parameters within their aver-
aging interval. The resulting approximate S ma-
trix with constant pole parameters is unitary at
most at one energy. Its deviation from unitarity
elsewhere in the averaging interval is a conse-
quence of the requirement that S'=S in violation of
Eq. (4), and it is not connected with any possible
dynamical effects, such as the presence of the
thresholds of new reaction channels. Averages
based on such an approximation are questionable
because the effect on averages of small deviations
from unitarity increases rapidly as transmission
coefficients approach unity.

In addition Kawai et al."adopt statistical as-

0.7

0.6 — CHANNEL- CHANNEL COR RELATIONS

5 CHANNELS

IO

+ 20

0.2

O. I

0
0

I I I I I

O. l 0.2 0.5 0.4 0.5
I I I I

0.6 0.7 0.8 0.9 I.O

FIG. 2. Statistical. ly computed channel-channel. correlation coefficients p, as defined in Eq. (16c), for statistically
equivalent channels, each having transmission coefficient T~. (Program MATDIAG. )
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VI. APPROXIMATION FORMULAS

Even if we assume that M cancellation holds ex-
actly we are still faced with specifying n channel
distribution coefficients v, and n(n —1)/2 channel-
channel correlation coefficients p,d, in addition to
the transmission coefficients T, in order to calcu-
late fluctuation cross sections. For most practical
purposes it is sufficient, however, to take the
channel-channel correlation into account by means
of effective correlation enhancement factors C,' in
the manner of Eq. (22) and corresponding effective
v,'=2/(C,' —1). Dropping the primes, we are then
left with the familiar width fluctuation corrected
Hauser-Feshbach formula'""'.

)('( (1 +26~/v(()Gc((TqT~ (23)

where G,„can be obtained by numerical evaluation
of the integral' '"

Q~= dt 1+

The integral (24) is easy enough to evaluate nu-
merically by digital computer. However another
approximation method is also available.

v",„'=X, X +25,„A~'/v„, (25a)

sumptions, which are claimed to remove all level-
level correlations, and therefore also the second
term of Min Eq. (1) is made to vanish. It appears
unlikely, however, that these assumptions can also
remove the channel -channel correlations discussed
in Sec. III above. However no such effect in the
first Hauser-Feshbach term of Eq. (9) is included
in the Kawai average.

Interestingly enough, Kawai et a/. finally arrived
at a formula which yields almost identical numeri-
cal results as the width fluctuation corrected
Hauser-Feshbach formula o'wF with all v 2 They
claim validity for this result for large I'/D, and
indeed the formula is very good in that limit for
diagonal S (see next section), presumably because
of compensations among the neglected terms that
are akin to M cancellation. However, when applied
to compound processes that compete with direct
reactions, their formula fails. ' '"

as Eq. (23). When different channels have different
T, and v„ then Eq. (25b) must first be solved for
the X, which are then substituted into (25a). It is
doubtful that this procedure is numerically prefer-
able to evaluating the integral (24). However,

Tepel et &/."have discovered a simple approxi-
mate solution of Eq. (25b) which is quite accurate
in most instances. According to this

(25c)

In order to test the adequacy of these approxi-
mation formulas we have performed a number of
statistical model cross section calculations using
the computer program STASIG." In this program
a statistical A matrix is generated in exactly the
same way as in MATDIAG, but instead of perform-
ing a level matrix inversion, the channel matrix
is inverted to compute the 8 matrix at regular en-
ergy intervals. From this energy dependent cross
sections are computed which are then averaged
and statistically analyzed in a variety of other
ways. Many internal checks are performed includ-
ing the direct energy averaging Of the 8 matrix for
comparison with the input average 8 matrix.

Effective tests of the approximation formulas re-
quired channels with differing transmission coeffi-
cients. Accordingly we chose cases in which half
the channels (called o. channels) had very weak
transmission T„=0.1, and half the channels (called
P channels) had very strong transmission T&= 0.91.
Calculations were performed with the total number
of channels n varying from 4 to 30. The resulting
averages of the statistically generated average
cross sections are listed in Table I for the elastic
fluctuation cross sections in the o. and P channels
and for the nonelastic cross sections. The proba-
ble errors in the last places of these averages are
given in parentheses. These statistical average
cross sections are compared in Table I with the
uncorrected Hauser-Feshbach result (HF) and with
the result obtained with the width fluctuation cor-
rected formula (WF) of Eq. (23) and with the ap-
proximation (app) of Eq. (25). In the latter two
cases the v, were chosen so as to agree with the
elastic enhancements of the statistically generated
average cross sections

T,=X, X„+2X„~ v, . (25b) 1+2/v„=o „"/o "„', ,

For v, =2 this is identical to the result that Kawai,
Kerman and McVoy" obtained in the limit of large
I'/D. For arbitrary v, it is identical to the for-
mula of Tepel, Hofmann, and Weidenmuller, 22 who
used the notation V, =X, Q~ X~. For n statistically
equivalent channels Eqs. (25) give identical results

and correspondingly for P.
The predictions of the width fluctuation corrected

formula (23) and the approximation (25) are within
3% of one another throughout Table I. We conclude
that both formulas may be used interchangeably in
estimating compound nucleus cross sections, and
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TABLE I. Average elastic and nonelastic fluctuation cross sections obtained by statistical
model calculations and from Eqs. (23), (25), and (7) for n competing channels, half of which
have Ta =0.1 (n channels) and half of which have T~ 0.91 (p channels, for n = 4 the value
is 0.94).

—el
On

-—el0'8
—ne
One ' ne

On 8
—ne
088

20

30

Statistical
WF, Eq. (23)
app, Eq. (25)
HF, Eq. (7)

Statistical
WF

Statistical
WF

Statistical
WF
app
HF

Statistical
WF
app
HF

Statistical
WF

0.0186(13)
0.0157
0 0157
0.0050

0.0081(4)
0.0070
0.0069
0.0025

o.oo45(2)
O.OO41

0.0041
0.0016

o.oo31(3)
0.0032
0.0032
0.0011

o.oo24(2)
O.0024
0.0023
0.0009

O.OO15(2)
0.0015
0.0015
0.0006

0.583(11)
0.580
0.571
0.425

O.352(5)
0.350
0.349
0.206

O.26O(5)
0.260
0.259
0.138

0.219(6)
0.219
0.219
0.104

0.172 (6)
0.172
0.172
0.083

O.11O(6)
0.110
0.110
0.0 54

0,007 27 (12)
0.006 15
0.006 15
0.00498

0.003 35(6)
0.002 89
0.002 86
0.002 46

0.001 98(7)
0.0O1 82
0.001 80
0.001 60

0.001 22(4)
0.001 27
0.001 26
0.001 14

o.oo1 o1(3)
0.00O 99
0.000 99
0.000 91

0.000 67(2)
0.000 65
0.000 65
0.000 62

0.0380{16)
0.0400
0.0412
0.0460

0.02O6{4)
0.0211
0.0213
0.0225

O.O141(2)
0.0143
O.O143
0.0149

o.o1o6(2)
0.0105
0.0105
0.0109

0.008 45 (15)
O.OO847
0.008 48
0.008 68

o.oo5 68 (12)
0.005 70
0.005 70
0.005 78

o.282(6)
0.280
0.276
0.425

0.160 (6)
0.160
0.158
0.206

0.115(3)
0.115
0.114
0.138

0.0 88 (2)
0.088
0.088
0.104

0.073 (2)
0.073
0.073
0.083

o.o5o(1)
0.050
0.050
0.054

that Eq. (25) with the Tepel approximation (25c) is
certainly computationally more convenient. The
agreement between these formulas and the statis-
tically generated fluctuation cross sections is gen-
erally also very good. Only when few channels are
open are there appreciable discrepancies which
amount to less than 20%%up in our four channel case.
When many channels are open, the uncorrected
Hauser-Feshbach formula (7) also gives a good
account of the nonelastic fluctuation cross section.

1.5

l. 3

I.2

—fl,—fl
Oanopp'

((gp)

VII. BOHR HYPOTHESiS AND

ELASTIC ENHANCEMENTS

One question of interest is how well the approxi-
mation formulas represent cross section ratios.
For this purpose we have plotted in Fig. 3 the ratio
of average nonelastic fluctuation cross sections

+ =oan o 8 s ~(on o) ~

obtained from the data of Table I. The bars indi-
cate averages over all computed cross sections of
the same type. Evidently A=1 for more than 20

I.O

0.9 I I

IO 20

Number of Channels
30

FIG. 3, The ratio R of statistically computed nonelas-
tic fluctuation cross sections for equal numbers of n
channels with &~ = 0.0975 and P channels with T ~

= 0.91.
(TB =0.94 for the point Ã =4.) The curves labeled WF
and app give the ratios R computed from Eqs. (23) and

(25), respectively. (Program sTAs~G. )
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competing open channels, thus satisfying the modi-
fied "Bohr assumption" of Tepel et &l." However,
for smaller channel numbers we observe signifi-
cant deviations from unity and these deviations are
substantially larger than those predicted by the
width fluctuation correction formula. Thus caution
is advisable in the application of the approximation
formulas to cross section ratios.

Ratios such as A have been measured experimen-
tally in situations where reactions competing with
many channels dominate. When angular momen-
tum and isospin conservation effects are taken into
account these experiments are found to be consis-
tent with 8 =1. To observe deviations from 8 =1
would require the comparison of channels with
large differences in transmission coefficients and
small numbers of competing channels.

The use of either Eqs. (23) or (25) requires a
knowledge of the effective degree of freedom index
v, for each channel. Tepel et al."suggested that
each v, depends only upon the transmission coeffi-
cient for that channel in a specific way such that
v, goes from 1 to 2 as T, goes from 0 to 1. Our
experience with the program STASIG does not sup-
port this simple dependence. Figure 4 shows the
effective elastic enhancements C and the v indices
obtained from the STASIG results in Table I, as

well as from STASIG calculations that were made
with statistically equivalent channels for cases
with T, =0.1, 0.'75, and 0.91 and with up to 30 chan-
nels. It is apparent from Fig. 3 that the effective
v, depends strongly both on T, and also on the
channel sum of transmission coefficients Q T, and
possibly upon further details of the distribution of
transmission factors.

The results are consistent with the hypothesis
that v, approaches 2 as Q T becomes large. How-
ever, this approach is evidently considerably
slower for large T, than for small T, . On the
other hand, the effect of moderate variations in
v, (say between 1.5 and 2.0) upon nonelastic cross
sections is not very large when the number of
channels is large. Therefore, the assumption that
v, =2 for all cases with N&20 will not introduce
serious errors in nonelastic cross sections. The
results from Table I are also consistent with the
statement that the v, for all competing channels
are the same when Q T is greater than 5. In view
of the limited accuracies of the approximation
formulas (23) and (25), interpolations based on
Fig. 3 are probably adequate for most cases, par-
ticularly where nonelastic cross sections are con-
cerned.

VIII. WiDTHS AND FLUCTUATIONS
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In situations where very many channels are open
it is often impractical to estimate the transmission
coefficients for all channels, or even to identify all
open channels correctly. In such cases it has be-
come customary to repl'ace the sum of transmis-
sion coefficients Q T which occurs in all of the ap-
proximation formulas (7), (23) and (25) by"

g T, =2wl ""/D, (26)
C

Here D is the mean spacing of resonances as esti-
mated from theoretical level density formulas and
I'"" is the correlation width obtained by fitting the
energy autocorrelation function C(E) of the cross
section to the formula

2.0
0 Io I5 20

l.75
2.0

c(o)C(+) =
I (E/Pcorr)2 (27)

FIG. 4. Effective elastic enhancement factors C and
distribution indices &, for various channel transmission
coefficients T and transmission coefficient sums ZT, as
obtained from statistically computed crass sections.
The circles refer to calculations in which al. l channels
have the same T, the triangles refer to the calculations
described in Table I. The curves are free hand indica-
tions nf the trends exhibited by the points. (I'rogram
STASIG, )

This formula comes from cross section fluctuation
theory where it is assumed that in the case of
very many open channels all widths become equal
to the average width I' and it is then shown that I'
is identified with the I'"" of Eq. (27).

This procedure is open to question on two counts.
Because of the strong channel-channel correlations
it is no longer obvious that the widths become equal
in the many channel limit. Indeed, numerical evi-
dence that puts this assumption in question has al-
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ready been presented. ' But if the widths are not
approximately equal the cross section fluctuation
theory becomes suspect and with it Eq. (27).

Secondly, even if it turned out that I' = X'"", it has
already been shown that Eq. (26) would be incorrect
and we should instead write'7'"

Q ln = 2nl"/D. (28)
C

C

Nevertheless, the use of Eqs. (26) and (27) in
conjunction with the Hauser-Feshbach formula (7)
has lead to generally consistent results. " In order
to understand this, we have studied the distribution
of widths obtained from MATDMG calculations and

also the cross section auto correlation functions
obtained from corresponding STASIG calculations.
Figure 5 shows a typical width distribution histo-
gram for the case of 20 open channels with all
T=0.91. The distribution of widths is seen to be
very broad and very skewed. There are no very
narrow widths at all. A peak in the distribution
occurs near the minimum width {in this case about
I'/3), and a long tail reaches to values of several
times the average width I . The average width I'
agrees well with the prediction of Eq. (28). The
correlation width I'""predicted by Eq. (26) lies
at the low width peak of the distribution. Also
shown in Fig. 5 on the same scale of widths are
the points obtained by averaging all 190 indepen-
dent auto correlation functions of the statistically

TABLE II. Average widths and correlation widths ob-
tained from statistical model calculations with n statis-
tically equivalent channels having transmission coef-
ficients T, , compared to the predictions of Eqs. (26)
and (27).

nT
Eq. (26)

~&1 corr//D

(s rAs&G)

-n ln(1 —T ) 27' I"/D
Eq. (27} (MAroiAc)

20 0.75
30 0.75
10 0.91
20 0.91

15.0
22.5
9.1

18.2

14.7
20.7

9.2
17,4

27.7
41.6
24.1
48.2

31.4
43.7
26.1
54,4

computed elastic and nonelastic cross sections.
Fitting these points with the formula (27) produces
a correlation width I"""which is in good agreement
with the prediction of Eq. (26). The numerical re-
sults for I', I'"", and Eqs. (26) and (28) a.re shown

in Table II for this case and three others, as well.
The conclusion to be drawn is this. The widths

are not narrowly distributed and fluctuation theory
is therefore not well founded. Nevertheless, the
cross section auto correlation function is well rep-
resented by Eq. (27) for small values of the argu-
ment. However, I"""is not related to the average
width I", but rather to the minimum width. More-
over, this I'""satisfies Eq. (26), while I' satisfies
Eq. (28).

y'o

/0. 8

c(E)„
0.2

CROSS SECTION

ELATION FUNCTIONS

C(0)
I+ (E /I" GORR) ~

I GoRR/I" 20 CHANNELS
T= 0.9 I

D I STR I BU TION OF WIDTHS

DZ

0
0 0.5 I.O

7,
DZln~ &/2+I" /+~I-T

Z&ii i~Pi
2.0 2.5

I /C
5.0 5.5 4.5

FIG. 5. Histogram of the number n of statistical. ly computed widths fal, ling within each width interval for the case of
20 statistically equivalent channels, each having T = 0.91. The points show the average of statistical. ly computed cross
section auto correlation functions for the same case. The results are compared with the predictions of Eqs. (26}, (27),
and (28). (Programs MA'rolAG and s+As&G. )
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IX. CONCLUSIONS

We have shown that flux conservation (S-matrix
unitarity) requires channel-channel correlations
of the resonance amplitudes of reactions even when
no direct reactions are present. By means of sta-
tistical model calculations of resonance parame-
ters we have demonstrated these channel-channel
correlations, as well as the effects of weaker lev-
el-level correlations. We have also shown that the
magnitudes of these correlations conspire to can-
cel the very large non-Hauser-Feshbach terms in
the expression for the fluctuation cross section, at
least approximately (M cancellation). The remain-
ing multiplicative corrections to the Hauser -Fesh-
bach formula become unimportant for nonelastic
cross sections when the number of open channels
n is large. For the evaluation of elastic fluctuation
cross sections and for nonelastic cross sections
when n is small, two approximate formulas are
available whose results we have compared with

averages of statistically generated cross sections.
These approximations can be used to obtain fairly
reliable results when used in conjunction with em-
pirically determined channel distribution indices
v, . Caution in the use of the approximation formu-
las is indicated, when cross section ratios are to

be determined.
The successful use of the cross section correla-

tion width in estimating the denominator of the
Hauser-Feshbach formula is explained by the re-
sults of statistical model calculations of width dis-
tributions and cross section correlation functions.
We have shown that for large T the correlation
width is close to the minimum width and much less
than the average width and that 2zI'""/D=g T.

We have raised the question of finding a better
representation of the reaction amplitude which
might yield all of these results more directly with-
out the cancellation of large contributions to the
average cross section and without complicated
nonlinear relationships between resonance param-
eters and transmission coefficients, and we have
argued that no such improved representation is as
yet available.

The implications of these results for fluctuation
cross sections that compete with direct reactions
and for the theories of precompound processes and
of cross section fluctuations will be discussed in

futur e publications.
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