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The muon capture matrix elements M„2, M,2, and M~ are calculated for 'He and ' 0 using the
closure approx1mation and utilizing the linked cluster expansion to introduce correlations 1n the nuclear
target wave functions. An important set of diagrams is summed by replacing uncorrelated wave
functions with Bethe-Goldstone wave functions, However, we also find it necessary to include diagrams
insuring that the pair number operator is unchanged and (for ' 0) particle-ho]e diagrams to account for
the fact that oscillator orbitals rather than Hartree-Pock orbitals are used for the uncorrelated basis.
Typical results for 160 are M 2(corr) 0 82M 2(corr) 0 74M 2(corr) 0 58M 2(os ) while for
M ( ori)= 0.88M 2(corr) 0 78M 2(mr ) 0 76M (os . The bulk of the efYects arise from correlations
induced by the tensor component of the nucleon-nucleon interaction. We find that including correlations
reduces the predicted total capture rate by —30% in ' 0 and —20% in 'He.

NUCLEAR REACTIONS 4He, ~6O, calculated total Inuon capture rate, closure"
and nuclear correlations.

I. INTRODUCTION

A. Historical

In general, to make muon capture predictions
for complex nuclei one must adopt several global
assumptions regarding the muon-nucleon weak in-
teraction coupling constants as well as utilizing
some model for the nuclear target wave functions.
Some early approaches. to muon capture concen-
trated on testing the validity of the various as-
sumptions adopted to relate the appropriate muon
capture coupling constants to coupling constants
appearing in other weak and electromagnetic pro-
cesses. For example, Foldy and Nalecka" and
Primakoff and Kim' adopted standard assumptions
regarding the p, -capture coupling constants and
related muon capture maA ix elements to matrix
elements appearing in other processes such as
photoabsorption, P decay, and eiectron scattering.
Thus, the appropriate muon capture matrix ele-
ment strength could be obtained from experimental
data involving other processes without making de-
tailed assumptions about nuclear wave functions.
Using this approach, comparison of predictions
with experiments to date confirms one's confidence
in the validity of the standard assumptions for the
muon capture coupling constants (although, appar-
ently, the induced pseudoscalar coupling constant
value has still not been strenuously tested).

If one has confidence in the form of the muon
capture effective Hamiltonian and values of the
coupling constants, t:hen the capture process ean
be used to probe the nucleus, i.e., test proposed
nuclear model wave functions. Historically, pre-
dictions of partial or total capture rates in l.ight

closed shell nuciei using the particle-hole (p-h}
shell model. have not been in good agreement with
experimental results. For example, calculated
total capture rates for "0 have overestimated
the experimental result by roughly a factor of
1.5 to 2. ' For the case of. the known pa, rtia. l
transitions in "0 leading to the lowest states in' N, reduction factors are also frequently re-
quired. Subsequent inves tigation" has demon-
strated that including (reasonabiy well motivated)
two-par ticle two-hole admixtu res in the ground
states of "closed shell nucl. ei" can substantially
improve the agreement with experiment for partic-
ular partial transitions (especially to low lying
p-h i'inai states of the daughter nucleus). How-
ever, the situation for the total capture rate has
not yet been reconciled by adopting this particular
configuration mixing mechanism. '

For practical purposes shell model calculations
a.re usually performed in a greatly restri. cted basis
us ing a nons ingular residua, l interae tion. Thus
as we test in more detail the nuclear wave func-
tions obtained in this manner it is no surprise
tha, t they are found inadequa, te. In particular, the
presence of a very strong short range repulsion
(the "hard core") and a longer range noncentral
spin dependent interaction (the tensor force) in
the realistic nucleon-nucleon interaction ma, kes
it improbable that the model nuclear wave func-
tions one traditionally uses (even for "closed
shell" nuclei) are correct in detail (aithough to
be sure the simple model wave functions can often
yield the correct energy location and relative
strength of various transition processes). This
criticism of nuclear model wave functions to date
is not limited to p-h ealcula, tions, but a,iso applies
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to calculations of the type given in Refs. 6, 7, and

8 where, for reasons of practicality, it was neces-
sary to severely limit the type of nuclear configu-
ration mixing studied.

Faced with the complexities of correctly de-
scribing a strongly interacting many-body system,
Migdal' has recast the problem so that effects ap-
parently very difficult to calculate from first prin-
ciples (i.e., starting with a realistic nucleon-nu-
cleon interaction and actually evaluating the ap-
propriate series of diagrams in the many-body
environment) become parametrized as renormal-
ization constants multiplying various nucleon spin,
isospin, and momentum operators that often ap-
pear in single particle transition matrix elements.
By employing appropriate experimental data the
renormaliza, tion constan. ts may be determined and
then used in making predictions regarding other
processes. When applied to muon capture, ' the
Migdal theory is not entirely satisfying since: (1)
one has little or no evidence concerning the valid-
ity of the several simplifying assumptions that
must be adopted, and relatedly, (2) the underlying
"microscopic" reason for the operator renormal-
ization remains hidden. The latter point is partic-
ularly distressing if our goal is a better under-
standing of nuclear many-body systems as op-
posed to simply relating muon capture to other
processes.

B. Present work

The motivation for the present work is to under-
stand the effect of correlations on total muon cap-
ture rates in terms of a more microscopic theory.
This necessitates the use of a realistic nucleon-
nucleon interaction to obtain the correlated wave
functions to be used in the formalism. Techniques
exist for incorporating realistic correlations in
the nuclear many-body wave function and in this
paper we shall employ these techniques to study
the effect of correlations on total muon capture
rates in. the closure approximation. It is realized
that in order for our results to be useful in in-
creasing the understanding of the effects of cor-
relations, particular attention must be paid to
several technical aspects associated with adopt-
ing the linked cluster expansion and the Bethe-
Goldstone (BG) equation which is used to obtain
the correlated nuclear wave functions. We shall
not be primarily interested in obtaining detailed
fits to experimental total capture rates. Instead
we focus our attention on the xaQO of muon cap-
ture matrix elements obtained using correlated
wave functions (for a. given average neutrino en-
ergy) to capture matrix elements obtained using
the usual shell model wave functions (assuming

the same average neutrino energy). Considerable
emphasis in this study is given to the effects on
the predicted capture rates of the intermediate
state spectrum and the Pauli operator adopted in

solving the BG equation. We also discuss the cor-
rections required due to the fact that Hartree-
Foek single particle wave functions have not been
used as the elementary uncorrelated basis func-
tions.

In the next section we list the formulas needed
for our discussion of the capture process. In par-
ticular, formulas required to calculate various
muon capture matrix elements in the closure ap-
proximation. a,re given.

In Sec. III we present the techniques used to in-
troduce correlations in the nuclear wave functions
and describe the calculation of the BG wave func-
tion. Our results for calculations on He and ' 0
are presented and discussed in Sec. IV. The auth-
or's assessments of the limitations of the calcula-
tion presented in this paper and suggestions for
further investigations are included at the end of
Sec. IV.

II. MUON CAPTURE MATRIX ELEMENTS

The basic process under consideration is the
absorption of a negative g meson from an atomic
orbit on a proton in the nucleus resulting in the
creation of a neutron and a neutrino, i.e.,

+ N(A, Z) -N*(A, Z. —I) + v,
where N* represents a state of the daughter nu-
cleus. The formula for calculating the total muon
capture rate A~, on a complex nucleus may be
written in the form

xIG„'M„'+3G, 'M, '+ (G~
' —2G~G, )M~ '1+A'„, .

(2)

In Eq. (2) the symbol A'„, represents recoil cor-
rections to the capture rate (-10% in "0),' G„, G~,
and G, are "effective" coupling constants, and

(I y I'),„,, is the square of the muon atomic wave
function averaged over the nucleus. The muon
capture nuclear matrix elements M„', M,', and
M&' are defined by

dv
X

4w
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where for

M„', O(i) —= 1;

)lf ', O(i)=—v o, v=—

and the muon rest mass energy Iv„e =-m&e' is re-
lated to the neutrino energy Sv~e via

'ffE~c =S&~~c +E~ —E~

+(small atomic, nuclear Coulomb,

and n-P mass difference effects) .

g 0,'(v„) b g O,.(v„) a

If the capture process is associated primarily
with excitation of nuclear states concentrated in

an appropriately narrow energy region (depending
on the variation of f (v„) and (b~ O(v„)~ a) with &,)
then one can ignore the final state dependence in

f(v„) and O(v„) and use closure on the states
~
b):

The kets ~a) and ~b) denote, respectively, the
initial and final nuclear many-body states.

%e shall concentrate on the evaluation of the
matrix elements M„', M~', and M, ' using the
closure approximation, since our primary inter-
est is the effect of correlations on the total cap-
ture rate. The matrix elements under considera-
tion may be written in the form (J; =0 assumed
hereafter)

A

The "average" neutrino momentum v appearing
in Eq. (8) should be determined from Eq. (5) by in-
serting for 8, a representative vat. ue of the "nar-
row" band of energies where the strength is con-
centrated. Gf course one can also treat v as an ad-
justable parameter, in which case one would be
able to guarantee a fit to the total capture rates.
Our approach is to adopt a value of v consistent
with previous studies of partial transition rates
and then to see how, for this fixed value of v,
correlations in the ground state wave function al-
ter the predicted total capture rate. Earlier in-
vestigations on closed shell nuclei either based
on %signer super-multiplet theory' or using the
results of particle-hole shell model calculations, '"
have predicted that over 90$& of the muon capture
strength should be associated with final nuclear
states

~
b) located in the giant dipole resonance

region (for "0 this implies analog states of ex-
citation energy -23 MeV~3 MeV). Actually adopt-
ing values of v consistent with assuming the cap-
ture strength is concentrated in the giant reso-
nance region leads, for capture on "G, to a pre-
dicted capture rate 1.5 to 2 times greater than ex-
perimentally observed [if a simple closed shell
model 4(ls)+12(IP) ground state is adoptedI. ~

Similar overestimates result if one simply sums
the partial transition rates obtained from assum-
ing a closed shell ground state and using a parti-
cle-hole model (with residual interaction diagonal-
ization) for the final nuclear states.

In what follows we list more explicit formulas
for evaluating expression (8). It is convenient to
separate the sum over i and j in Eq. (8) into two

parts: i =-j andi xj. The sum i, =j (which yields a
one-body operator that is a projection operator
for protons) is easily carried out for the muon

capture operators, yielding

to reduce Eg. (6) to the form

f(v)

ZforM„', M, ', andM'.
&ay

For i wj the actual two-body matrix elements that

must be evaluated are of the form

fE~l ~l z~lzgsz~ El~ l~ l z~ gz~ sz~ &

'

2 &2 B~lgl zgtz~szg g g zg zg z
V

(10)

where for

M„

Mp

M~,

0„=1;

O„—,o., e2

In Eg. (10) we have assumed, for definiteness, a

single particle shell model for the target nucleons.
The sum over A. and B is over levels occupied in
the ground state. The factor of 2 appearing in Eq.
(10) would not normally be present if one takes the
expectation value of a two-body operator such as
the mutual interaction energy g;,, V„., but is pres-
ent here because the restriction i&j is not present
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M '= —(2 —2e ")
V (1la)

while for "O(ls, IP")

M„' = [B —Be '"(1+y')]
V~

(11b)

in Eq. (8). Assuming a closed shell ground state
and adopting harmonic oscillator single particle
orbitals, one can easily evaluate Eq. (10). Com-
bining the results with Eq. (9) for i =j yields (M„
=M~'=M, ') for 'He (Is~)

Here y=(~vb) and b=(N/M~e)U' is the usual oscil-
lator constant. Equations (lla) and (11b) yield
what we shaB refer to as the muon capture matrix
elements in the closure approximation using un-
correlated wave functions.

We wish to transform expression (10) to a form
where one may replace the simple shell model
wave functions by correlated wave functions ob-
tain. ed from solving the BG equation. It is there-
fore useful to rewrite Eq. (10) in a form where
the wave function depending on. the relative coor-
dinate r =x, —~, appears explicitly. We obtain

Q (&~I&~za4wszw&s4I geiz, sos I T,"72 '[o'(r) x«'(o)]:I&~4fzg4~sgz e s~gs4ssgs&. .„
=- Q [(-1)'] -2-, 1 l(sINZ, J-l~„f„~,f„l-)I'(~fsgll[O'(r)xo"(o}] ll o~fsg}.„„, (12)r (2L+ 1)(28+1)"'

nAl A

ng fg
nl Ã4
SLg 2'

where the bracketed expression (nlNZ, I, ~n„l„nels, I.) is a standard Moshinsky bracket. Since we are con-
sidering only J'=0 nuclei, the rank of the operator appearing in Eq. (12), i.e., [0"x0 ']", must have k= O.

The particular form for the operator appearing in Eq. (12) depends on whether one is evaluating M„', M, ',
or Mp".

For M„'

e'"'' = g i [(2A. +l)4wj"'j~(vr)Y~O(Q-, ), k=O-A. =O,

0'(r) =(«)'"j.(~)I'.(Q-, ), o'(o) =1 .
(13a)

For M, '

—,'e'"'o, ~ o, = Q i O2X+1)4w)"'j ),(vr)y~, (Q, )[(-v 3/3 [o,xo,]'], k=0- A. =O,

0 (r)=(4m)'~'jo(vr)YO(Q, ), 0 (cr)=(-1/v3 )[cr, xo2]o .
(13b)

For Mp

e'"' .e&2~= p f'[(»+I)«]"'i.(~)I'..(Q-, )[-(1/~~)[o,xo, ]'+(l)"'[o,xo,].'},

For A. =O

0'(r) = (4w)'"j,(v r)y, (Q-, ),
0'(o) = ——[o,xo,]' .

v3

For +=2
[0'(r) x 0'(o)]' = —( mB/)3""j,(vr)Y', (Q;)[o,x o,]'

(13e)

It is important to note that for correlated wave
functions the matrix element (nlS8~~ 0)~nlSJ) will
be a function of g = I+ 5 so the sum over 8 in ex-
pression (12) cannot be trivially performed. In
the simple single particle (uncorrelated} picture
the contribution of the operator given by expres-
sion (13e) for M~' vanishes and one immediately
obtains M~' =M, '.
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III. CORRELATIONS AND THE BETHE-GOLDSTONE

WAVE FUNCTION

A. Linked cluster expansion

8
,
—— A

8

To obtain the simple results in the preceding
section we assumed that the ground state wave
function was a Slater determinant of single parti-
cle (SP) harmonic oscillator (HO) wave functions.
The ground state expectation value of a sum of
two-body operators could then be written as a
simple sum over (relative) two-body matrix ele-
ments. We now want to extend our calculations
to allow for the existence of 1p-1h and 2p-2h cor-
relations in the ground state wave function. Our
approach is based on the linked cluster formalism
for calculating ground state expectation values. "
The expectation value of a two-body operator is
given as a sum of Brueckner-Goldstone diagrams.

The diagrams shown in Fig. 1 can be summed
by replacing matrix elements of the operator be-
tween uncorrelated two-body wave functions by
matrix elements calculated between correlated
(BG) wave functions. Tha, t is,

&e jo„jc' )-&e Io„le
where 0 ~ is defined in the SP basis by

( ) C, ~ Q.~CAB, .SC'.a

Here 4 is a two particle HO wave function; Q,„
projects into unoccupied SP states (Q„=O if a or
b is occupied); &uA =EA+EB is the starting energy
of the two nucleons interacting; E,+E, is the en-
ergy of the intermediate (unoccupied) two particle
state; and G is the nuclear reaction matrix.

It is possible to include a selected class of high-
er order diagrams by normalizing the BG wave
functions. The lowest order (in G) diagrams of
this class are shown in Fig. 2. These diagrams
are needed to ensure correct normalization of
the number of pairs'3 in the nucleus and will turn
out to have an important effect on our results.

The diagrams shown in Fig. 3 are the lowest
order diagrams needed to account for the fact
that our unperturbed ground state is a Slater de-

FIG. 2. Lowest order diagrams included by renor-
malizing the BG wave functions.

terminant composed of HO SP wave functions rath-
er than SP wave functions determined through a
Hartree-Fock procedure. These 1p-1h diagrams
cannot be included by modifying the correlated
two-body wave function and must be calculated
separately. Thus in our results we will refer to
the 2p-2h contributions as those which are ob-
tained by the replacement

(C, jgj@ )
( ABI I AB)

AB AB (@ f
q, )

and the 1p-1h contributions as those which are ob-
tained by directly evaluating the diagrams in Fig.
3. The latter contribution turns out to be of some
importance for ' 0 but not for He.

B. Calculation of the Bethe-Goldstone wave function

Two problems arise in trying to evaluate the
BG wave function from Eq. (15). The first prob-
1.em is that the unoccupied SP state energies E,
and E, are not unique. We have chosen our basis
states to be defined by HO wave functions. How-

ever, we are free to define the zero of our HO po-
tential in any way we l.ike in an attempt to improve
the convergence of the linked cluster expansion.
Thus we will define the single particle energies
by

E „=E„""—C = (2n„+I„—B )kv —C

where C is an arbitrary parameter.
It is important to understand the relation be-

tween the constant C, the starting energy e~,
and the energy gap between occupied and unoccu-
pied states. For example, the 1P nucleons in "0
are bound by -10 MeV so u~ =E~+E~ = —20 MeV
for jAB)=j(IP)'). lf we choose C=0, the energy
needed to scatter both nucleons into the 2s-1d
shell is given by Vive —(-20 MeV) = 110 MeV for

8 A) IB A

a I~ '&A ajar "+

FIG. 1. Linked cluster diagrams summed. by replacing
uncorrelated wave functions with conventionally nor-
malized BG wave functions. The solid lines represent
muon capture operators, while wiggly lines represent
C matrix interactions.

FIG. 3. Hartree-Fock contributions to the capture rate.
The operator--- x represents (-U'") .
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kw =12.8 MeV. If we choose C =38'v (a value which
yields reasonable binding energies in Brueckner
calculations"'"), the energy needed for a 2p-2h
excitation into the 2s-1d shell is reduced to -30
MeV, a value much closer to the usual shell mod-
el choice of 2A~. A similar argument for 4He fav-
ors a choice of C = 2k~.

We do not attempt to specify an exact value of
C since we are not treating the occupied state en-
ergies exactly (e.g. , we neglect spin-orbit split-
ting and Coulomb effects), and there are still a
number of uncertainties in binding energy calcula-
tions about the "best" choice of intermediate state
spectrum. Thus we will present our results for a
number of values of C. However, we do wish to
emphasize that the choice of C =25~ for 4He and
38~ for "O is clearly consistent with our present
understanding of nuclear many-body calculations.

The second difficulty in evaluating Eq. (15) for
the BG wave function is purely technical in nature.
The sum over unoccupied states extends to very
high energies due to the s trong shor t-range nature
of realsitic nucleon-nucleon interactions. Thus it
becomes much more convenient to work with an
approximate BG wave function which is defined to
separate in relative and center-of-mass (RCM)
coordinates and to be diagonal in center-of-mass
HO states. This approximation has been used
quite extensively in binding energy calculations
and shown to be satisfactory. " However, as we
will discuss in detail later, muon capture cross
sections are more sensitive to fine details of the
calculation than are total binding energies. Thus
the approximations we now make to transform into
RCM coordinates are probably the most serious
problem with our calculations. We will return to
this question when discussing our results.

Since our basis states and intermediate state
Hamiltonian already separate into RCM coordin-
ates and are diagonal in center-of-mass HO states,
the desired transformation to RCM coordinates
can be carried out if we replace the exact Pauli
operator Q by an approximate Pauli operator.
There are two common approximations for Q
which could be used. The first is the Eden-
Emery" Pauli operator Q,:,: which replaces the
sum in Eq. (15) by a sum over all two particle
states with energy greater than some chosen en-
ergy. For example, QI:~, (X) excludes all two par-
ticle states with 2n, +l, +2n, +l, = 2n+l+2N+1. ~ g.
The major advantage of using Q, .-„, , aside from its
obvious truncation advantages, is that Q„~t is di-
agonal in both the RCM and SP representations.
The Eden-Emery Q has a major problem, how-
ever, in that it cannot distinguish between 1p-1h
and 2p-2h excitations and thus one cannot treat
the intermediate s tate energies correc tly. "

where

X (p+I ~
I gCJ (18)

E~+ EJ3 —ENI, + 2C

The relative BG wave functions are obtained using
the Barrett, Hewitt, and McCarthy (BHM) method, "'
adapted to calculations in the relative coordinate
system. For relative S states we included inter-
mediate states up to n'=36, while for higher par-
tial. waves n'=24 was sufficient. The Pauli opera-
tor was set equal to 1 for n'~ 6, which should
cause no appreciable error. Note that for tensor
coupled partial waves, where l'=l and 28 —l, up
to 72 HO states are included in the BG wave func-
tion.

When relative HO wave functions are replaced
by BG wave functions, a number of complications
are introduced into the formalism of Sec. II. In

general, since the radial matrix elements now de-
pend on relative g, M, ' and M~' are no longer
equal. to M„'. Moreover, since the total spin S
of the nucl. eus is no longer zero, M~' is not equal
to M, '.

For HO wave functions we have

y„', (r, o) = (I/~)R„, (x)Yg ~, (cr, 0;),
where 8„, is the radial HO wave function and

Y'g~, (o, Q-, )= Q (lS;m, m~~gM~)Y'P&Xg& . (21)

The second approximation for Q is slightly
more difficult to use but it does treat the differ-
ence between 1p-1h and 2p-2h excitations correct-
ly on the average. We use Wong's' GA(0) approx-
imation for Q in which matrix elements of Q be-
tween RCM states no longer have the values 0 or
1 but are given by the overlap of the particular
RCM states with allowed 2p-2h states. The matrix
elements of Q are averaged over the allowed total
relative angular momentum for a given relative l,
and matrix elements off-diagonal in center-of-
mass states are ignored. With this choice for Q,
which is commonly referred to as an angle-aver-
aged Q or Q«, the energy denominators can be
treated correctly and one can distinguish between
1p-1h and 2p-2h excitations. We will present re-
sults obtained with both approximations in order
to show the sensitivity of our results to the Pauli
operator. However, it is the results obtained us-
ing Q« that we consider more reliable.

With the above approximation on the Pauli oper-
ator Q we can now define a relative BG wave func-
tion as

4~(nlS8NL; (u„) = q„„g + Q „„, G„,„,(u)„)
Q(n'l'NL)
co„—E„)
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In this case the right-hand side of Eq. (12) can be written as

nAl A

ng lg
n l NZ
8 TL8

(l+S+r odd)

—1" 2L+128 1—"—I(«&&, L In&l&n, l„L)i' (Sii 0"(o)ii S)(«ii 0'(r) ji «) .
S l

(22)

(22)

Because the sum over 4 can be easily performed, considerable further simplification is possible. How-
ever, for the case of correlated wave functions we obtain

O'J~, (r, o') = (1jx)[u, (r)Y~z, (o, 0-, )+w, (r)Y~z, (o, 0;)]
l'=l+ 2 if 8=l +1,

and the right-hand side of Eq. (12) becomes

n~ l ~
nl NZ

8 2'LJ
(l+8+ 7' odd)

X
l Sg g (l Sg g, 'l' S O'I

(nlii0 (r)//nl)+2& ].(nl//0 (r)iinl')+ 3 &(nl'i/0 (r)iinl')
s l ~ &s 1 .) &s l .)

Since the u's and w's depend on Q, further simplification is not possible. We have employed Eq. (24) to
calculate muon capture matrix elements using correlated wave functions.

Finally, we list the expression needed to evaluate the 1p-1h diagrams shown in Fig. 3. We have

(24)

bM'(Ip-Ih)= — Q Q (-1)r (2L'+1)(2S'+1)[1—(-1)-" 'r
]4(2l„+1)

nan AlA L 'S'r'

x&n'lKZ, Ln n ElIn'&(nlZ, Z, I', In„t„n 1., I

')(n'llew

(vv) In. l )
I

I 1
Q (2T+1)(2L, +1)(28+I) Q

n l n l +AA aa nClc nn'l

LSJT mg

x(n'LXZ, L i n, l„nolo, L)(nlXZ, Li n„l„nolo, L)

x(n'LXZSJT
i 0 i nlXZSST), „„-4(2l„+1)(n,l „iU

""
i n„l„) (25)

IV. RESULTS AND CONCLUSIONS

A. Results

All of the results presented are calculated using
the Hamada- Johnston nucleon-nucleon potential
and bound state SP energies:

E„=—20 MeV for 'He,

Z„=-30MeV, Z~=-10 MeV for "G .
Coulomb effects and spin-orbit splitting have been
neglected because of the large uncertainty in un-
occupied state SP energies.

We would first like to demonstrate the sensitiv-

ity of our results to various parameters and ap-
proximations used in the calculations. Thus in
Table I we show the reduction factor

fl = [M„'(osc)-M„'(BG)] /M„'(osc) (26)

obtained for "G using various values of the energy
parameter C and a number of approximations on
the Pauli operator. The results presented in Ta-
ble I were obtained using an oscillator parameter
S~ =12.8 MeV and average neutrino momentum
v =0.5 fm '. It turns out that the reduction fac-
tors for M„', M, ', and M~' (but, of course, not
the total capture rate) are roughly independent of
both v and @co.
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TABI~E I. Reduction factor in M, obta1ned for 0
using various values of C and different approximations
to the Pauli operator. h(a =-12.8 MeV, P =0.$ fm ~.

(6)
(%)

@Er. (7)
(%)

@BE (8)
(%)

@AA

(%)

0
20
30

21
43
68

13
20

10
15
21

+24~ —G C
e

(2v)

If Q is treated exactly (which is noi: possible in
the RCM representation) the second term on the
right-hand sid- of EcI. (2V) vanishes. However,
various approximations for Q yield substantially
d iffer ent nor Dla' j zat ion effec te If we ignored the
normalization we would be making successively
larger errors going from (j«and QH. (8) down to

Q, . (6). If calculations were carried oui: neglect-
ing a, ltogether both Q and the normalization„ the
results could be off by orders of magnitude.

In Table II we present our main results for "0
and He. Again~ our results are pl esented ln

We should first point out that Q, :,: (6) and Q, ,:(V)
are not good approximations to Q for "O. We
have included these results only to show the ex-
treme sensitivity of our calculations to the treat-
ment of the Pauli operator. This sensitivity of A
to both Q and the energy parameter C indicates
that the important correlations are relatively
long ranged a,nd tend to populate low-lying 2p-2h
s t.a.tes.

If the normalization diagrams were not included
in the calculation, the results for different, approx-
imations on Q would show even more discrepancy.
From Eq. (15) we see that

terms of reduction factors for the three matrix
elements M„', M, ', and M~'-. In ea,ch ca,se we
show A„(iM') which is the reduction factor ob-
tained when 2p-2h correla, tions are taken into ac-
count and Bz(M') which also includes the contribu-
tion of 1p-1h diagrams. Note that the reduction
factors are roughly independent of 7t and 4+ a,nd
are substantially larger for ' 0 than for 4He. It;
can also be seen &hat the 1p-1h diagrams of Fig
3 have negligible contribution for He but; are ap-
preciable for '"O.

The results of Table II are presented using what
we consider "reasonable" values for the energy
parameter C. Note, however, that the excitation
energy involved jn a 2p-2h excitation js stj l larg-
er than that used in shell model ca,lculations.
Thus it wouM not be surprising if a more detailed
calculation were able to obtain larger reduction
factors than are presented here.

%hy is it that two-body correlations seem to
produce such large effects in muon capture ma-
trix elements when the momentum transfers in-
volved are relatively small'P It is obvious from Ta-
ble II that the value of the momentum transfer is not
important. It is clear how these effects arise if
one looks at the expression for the M„matrix
element of 'He. Aside from multiplicative fac-
tors we have

M„'(osc) =2 —2&8„(1)Ij,(vr)IA„(r)&

while for correlated wave functions we have

&f. ' =- -' —18 &&'('s, ) I j.( ) I
@('s,.)&/&&'('s, ) I

+('~,) &I

+ f&4 ('s.) I j.(~) I
~('s.) &/&+('&.) I

& ('s.)&] (-"8)

For Pi~=23. .75, v =0.4 fm ', C =2k+ we find

M„'(osc) = 2 —2 (0.8586) = 0.2829

v„'= 2 —I8(o.eev8)/I. I2v]+ I(0.8eI8)/I. 024j —0.2I60

Tllus, while indlv1dual. (normalized) nlatI'1x ele-
ments ofj, change by only 2 or 3%%uq, M„' changes by
-24/o due to cancellattons among te~~~ «»ughly

IABI~T~ fr. Reduction factors fox' M~, .Mg ~ and iV/p calculated without (8() and %'1th (8 z)
the 1p-1h contribution. The results were OMRIBGd using Qp~.

z (.~r„'),(,') Il ys, ') s', (m, ')
Nucleus @~ C ~ (%) (%) (%) (%) (%) (%)

12.8 3 N~ 0.5
140 3 N~ 0 5
14.0 3 A&.a 0.3

21.75 2 Fin 0.3
21.'75 2 fi(v 0.4

31
30
30

]4 14
14 14
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equal. magnitude. It is also obvious that the cor-
relations are much stronger in the tensor coupled
'S, state tha. n in the 'So state.

The M, ' matrix element of 'He is also useful in
examining the effects of normalization. If we ne-
gl.ected to normalize the BG wave function we
would obtain

M„' (unnormalized) = 2 —3(0.9973) + (0.8918)

= —0.10,
a negative muon capture rate. Finally, we can
determine whether the bulk of the normalization
effect is obtained-by calculating the diagrams of
Fig. 2, or if higher order diagrams are a, iso im-
portant.

Consider the 'S, contribution to M„' for He.
The diagrams of Fig. 2 yield

&R»(r) (j,(~)(A~~(r)&(1-&4('S,) ~
4('S, )& j

= 0.8586(—0.127) = 0.109 .

The complete normalization contribution is

&@( Si) lln (&&) I @( $1)& &@(3$ ) ( (~y)~ @(3$ )&&+('$,) I+( $,)&

=0.8849 —0.9973 = —0.1124 .

After also investigating the effect of the diagra. ms
in Fig. 2 on the 'S~ contribution to M„', we find
that M„' is reduced by -27% (for 'He) if only the
diagrams in Fig. 2 are included. As mentioned
on the previous page, including the higher order
diagrams (i.e., the complete normalization con-
tribution) yields a reduction of 24% in M„'.

We now compare the total capture rate obtained
in the closure approximation (with and without cor-
relations) to the experimental results. Adopting
the coupling constant values listed in Ref. 1 and
using the recoil corrections (A~, ) given by Refs. 4
and 19 we obtain for "0 (b =1.8 fm, v =0.425 fm ')

A'„", =(0.98+0.05) x10' s ' (Ref. 20)

= (0.97 + 0.03) && 10' s ' (Ref. 21),

A ~", —- ]..57 x 105 s

A„"," =1.10x10' s

while for 'He (b =1.38 fm, v=0.4 fm ')

A"„", =336+75 s ' (Ref. 22)

=375+46 s ' (Ref. 23),
A~", =375 s

A"" -317 s ' .pc

The latter two results for He include corrections
due to its light mass. '

The effect of correlations definitely improves
agreement with experiment in the case of ' O and
there seems to be no need to drastically alter T
or the coupling constants G~, G, , and G„. The
results for 'He are now in somewhat less agree-
ment with experiment. Again, however, the dis-
crepancy is not serious enough to cause concern
over the values of T or the coupling constants. We
do not wish to emphasize a detailed comparison
with experiment here but would simply point out
that the inclusion of correlations results in a sub-
stantial reduction of the predicted total capture
rate in the closure approximation.

B. Discussion

Adopting the closure approximation and using
the linked cluster expansion to introduce correla-
tions in the target ground s tate wave-func tions,
we have calculated the muon capture matrix ele-
ments M„', M~', and M, '. The sensitivity of the
results to the various approximate treatments of
the Pauli operator, the energy gap between oc-
cupied and unoccupied states, and the inclusion of
diagrams ensuring pair conservation has been dis-
cussed or exhibited. Vfe find that the introduction
of correlations reduces the total capture rate in
'He and "0 and, using those parameter values and
approximations preferred, largely eliminates the
experimental-theoretical discrepa, ney for ' Q.

By varying the intermediate states excluded by
the Pauli operator we found that the bulk of the
reduction results from relatively low-lying 2p-
2h admixtures in the g.s ~ These results indicate
that a standard configuration-mixing shell calcula-
tion using rea, listic forces should also yield a re-
duction factor for the total capture. An earlier
calculation of this type considering only pairing
correlations did not yield a reduction factor. '
Thus it would be of considerable interest to see
what a more detailed shell model calculation
would yield.

The major approximation in our calculations lies
in replacing the exact Q by Q«or Q&, ,: (X). It is
hard to judge the effects of this approximation—
even though it works quite well in binding energy
calculations —and it would therefore be of interest
to carry out linked cluster calculations in the SP
representation. Of course, both this calculation
and the shell model calculation suggested in the
preceding paragraph are practical only because
the reduction effect comes mainly from low-lying
admixtures in the g.s.
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