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Nucleus-nucleus cross sections and the validity of the factorization hypothesis
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We use an impact parameter representation of the scattering amplitude to predict
nucleus-nucleus and nucleon-nucleus total, reaction, and elastic cross sections at inter-
mediate and high energies. We investigate the question of factorization for these quanti-
ties and find that factorization holds to 20% if the radii of the projectile and target nuclei
do not differ by more than 50%. This fact and the gross violation of factorization when the
nucl. ei are very different in size are interpreted in the context of a simple geometric model.
The dependence of composite particle cross sections and factorization ratios on the size
of the elementary nucleon-nucleon cross section o'~z is investigated. It is shown that
strict functional factorization for total and reaction cross sections in the impact param-
eter scheme only applies in the limit of a "weak" 0'&~, for which a single scattering approxi-
mation is valid, This situation is not realized in practice, and nucl. eus-nucleus cross
sections are instead found to be cIose to a geometric limit for all but the lightest nuclei.
The energy dependence of nucleus-nucleus cross sections is found to be negl. igible above
100 MeV /particle.

I, INTRODUCTION

There has recently been considerable interest
in the study of high energy nucleus-nucleus colli-
sions. " It has been suggested' that such compos-
ite particle interactions might shed some light on
fundamental questions of particle physics, in addi-
tion to extending our knowledge of nuclear physics.
If such a viewpoint is to be taken, it is important
to first understand in some detail just what fea-
tures of nucleus-nucleus cross sections are pre-
dicted by the conventional methods of nuclear theo-
ry. It is the goal of this paper to provide such a
backdrop of theoretical results based on the famil-
iar models of nuclear physics, without recourse
to the more elaborate concepts of particle physics
such as Regge poles and cuts and, in particular,
the Pomeron. In this approach, nuclei are de-
scribed as spatially extended spherical distribu-
tions of hadronic matter, with a radius and sur-
face thickness obtained from electron scattering
experiments. We thus assume that a geometrical
description of nuclei is valid, even at high ener-
gies. The other ingredient in this approach is the
elementary nucleon-nucleon cross section, which
is also taken from experiment. Once these input
quantities are specified, the nucleus-nucleus cross
sections are calculated by using an impact param-
eter representation of the scattering amplitude.
This part of the calculation follows mell-estab-

lished methods for obtaining composite particle
cross sections. '' The virtue of such an approach,
if it is correct, is to permit a simple and intuitive-
ly appealing discussion of nucleus-nucleus cross
sections in terms of two simple geometrical pa-
rameters, namely

x = min(Z„/Jl „Z,/Z „),
+&~Nw/~~8 ~

where A and B are the atomic numbers of projec-
tile and target, R„and A~ are rms nuclear radii,
0~~ is the elementary nucleon-nucleon cross sec-
tion, and 0» is a geometric limit of the total
cross section.

The factorization ratios defined by

where 0» refers to the elastic, reaction, or total
cross section for the A + 8 reaction, are also of
interest. ' ' We have numerically evaluated such
ratios for a wide variety of nucleus-nucleus reac-
tions, in order to see under what conditions the
factorization hypothesis r = 1 is numerically valid.
Order of magnitude deviations from r = 1 are ob-
served in some cases, but are understandable in
terms of a simple geometric limit

rG (1+x)'
16'
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Note that r~» 1 for x«1, i.e. , when the target
and projectile vary greatly in size. The fact that
r = 1 to within 20% for many reactions does not
necessarily imply that high energy concepts such
as the Pomeron are required for the description
of such reactions. If x= 1, values x= 1 are also
produced by the simple geometrical model of Eq.
(1.3). In order to substantiate a, given high energy
model, it seems likely that unless the total cross
sections and factorization ratios deviate signifi-
cantly from the dictates of geometry, one must
look at more detailed properties of the nucleus-
nucleus interaction. In all likelihood, these gross
features will be explainable within the framework
of conventional nuclear physics, at least in the do-
main of energy presently accessible. A short re-
port of the work described here is given in Ref. 8,

II. NUCLEUS-NUCLEUS SCATTERING AMPLITUDE

ly. We assume that f„„=f». In writing Eq. (2.2),
we make the zero range approximation for the
nucleon-nucleon interaction. This seems justified
in the present case, since the range of the nucleon-
nucleon force (&1.4 fm) is small compared to the
radii of most of the nuclei we consider. The er-
ror we introduce is partially cancelled by using
densities obtained from electron scattering exper-
iments without correcting for the finite size of the
proton. In this approximation, the phase shift

y AB(b) is thus a separable product of an energy
dependent factor oBr„(E) and a thickness function
T(b) which contains all the information on the geo-
metrical properties of the colliding nuclei.

The total, reaction, and elastic cross sections
are given, respectively, by

o =4m (I —e '"""»'"cos[2 Rey (b)])b db
Jp

Since we are primarily interested in high energy
nucleus-nucleus collisions, we work in the impact
parameter representation, in which the elastic
scattering amplitude F„B(q) for nucleus A incident
on nucleus 8 assumes the form

FAB ('q) t ~AB
&0

Z ( bq)(
"exABh' —1)t)db. (2. 1)

The amplitude F„Bof Eq. (2. 1) can also be viewed
as the optical limit of the Glauber theory. '9 "
Eq. (2.1), q' =2kAB'(I —cos8) is the four-momen-
tum transfer squared, k» is the nucleus-nucleus
relative wave number, and y» is the nuclear
phase shift function given by

(2.2)

where

P -=Ref„„(E)/Imf„„(E)

GAB —2 1T ( 1 e -4 Im x A B(b)) I) d I) (2.5)

E T R
+AB +AH ~AB '

Another quantity of interest is the slope 5» of
the elastic diffraction peak. This we obtain from
the elastic scattering differential cross section
dv/dt for small t = —q' via the equation

(do'„,/dt) F„,(t) '. . .„,,
(do„,/dt), F„,(m0)

(2.6)

kAB

2(F (0) ~'

x [ImFAB(0) ReGAB —ReFAB(0) ImGAB],

(2.7)
(e2ix AB(b& 1)t)3dt)AB

0

By making a Taylor expansion of F»(t) about t =0,
we obtain

&{&)=J( pr J r(r p„(r —r')p (r'). ' (2.3)

The 5' weighting in t"» enhances the contribution
of large impact parameters and thus 5» is sensi-

&x„B(E) is the nucleon-nucleon total cross section
and pA and pB are the projectile and target densi-
ties normalized to A and 8, respectively, and

f»(E) is a spin and isospin averaged nucleon-
nucleon forward scattering amplitude taken at the

energy per particle E of the projectile in the lab
system. We have~

fBB(E)= ~f.i, + (1 ~)f»

X = (Z„NB + ZB NA)/A B,
(2.4)

where Z and N are proton and neutron numbers
and f„~ and f» are the neutron-proton and proton-
proton forward scattering amplitudes, respective-

Lab kinetic energy (GeV) 0.» (mb) 0&& (mb)

0.10
0.52
0.65
0.80
0.90
1.05
2.1
4.2
7.0

25.0

68.0
35.22
38.45
39.61
39.61
40.39
43.14
42.06
41.3
38.9

32.0
34.03
42.90
46.76
47.34
47.50
44.45
41.17
40.0
38.90

1.87
0.550
0.443
0.144
0.0017

—0.073
—0.292
-0.330
—0.320
—0.154

TABLE I. Nucleon-nucleon cross sections and P
values as a function of energy.
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TABLE II. Nuclear density parameters. TABLE III. Calculated cross sections and elastic
slopes at 1.05 GeV/particle.

Nucleus

p
3He

'Be
12C

1N
160
18p

Nucleus

4He
24Mg

"si
32S

4'Ar
4'Ti
5sNi

ssZn
90Zr
'"sn
140 C
'97Au
208pb

0.445
-0.188
-0.122

0
0

-0.02
-0.185

0
-0.086

0
0
0
0.32

0.327
0.587
0.57
0.59
0.61
0.56
0.499
0.625
0.57
0.575
0.51
0.53
0.54

1.01
3.13
3.21
3.20
3.39
3.82
4.35
4.35
4.86
5.32
5.82
6.38
6.40

0
0
0.33
0.67
1+33

1.67
1.60
2.00

a (fm) R0 (fm)

R (fm)

0.8
1.77
2.41
2.42
2.47
2.48
2.75
2.77

R (fm)

1.71
3.03
3.13
3 ~ 12
3.47
3.60
3.73
4.08
4.26
4.64
4.86
5.32
5.49

Reaction A+B

n+ Pb
e+90Zr
12C+ 208pb

N+208P

co+ 58Ni

160+208 pb
12C ~90Zr
"N+90Zr
m+ "O
"Ar+2"I b
16O ~90Zr
12( ~ 58Ni

14N+ 58Ni

n+ "C
"O+"Ni
90 Z r + 208pb

Ar+9 Zr
208pb

12C+160
14N 160
90Zr +120Sn
4 Ar+5 Ni
3He+e
14N ~12C

0.312
0.399
0.450
0.'452

0.458
0.501
0.576
0.578
0.622
0.627
0.641
0.662
0.665
0.692 .
0.737
0.776
0.802
0.845
0.898
0.902
0.918
0.922
0.966
0.996

0~+ (b)

2.58
1.66
3.39
3.46
1.28
3.70
2.32
2.38
0.68
4.81
2.58
1.85
1.90
0.56
2.07
5.86
3.49
6.40
1.10
1.14
4.86
2.89
Q.26
Q.98

1.78
1.72
1.82
1.82
1.70
1.82
1.77
1.78
1.58
1.83
1,78
1.76
1.77
1.55
1.77
1.85
1.79
1.86
1.67
1.69
1.84
1.78
1.35
1.67

19,24
12.43
25.37
25.93
9.57

27.71
17.31
17.77
5.31

36.06
19.20
13.76
14.14
4.47

15,44
44.12
26.06
48.28

8.27
8.56

36.51
21.57
2.51
7.38

tive to the behavior of p„and p~ in the surface and
ta.il regions.

In addition to the cross sections, we are also
interested in the factoxization ratios r» defined
by

+AB ( A O)B/OAAOBB

AB (O A 8 ) /O AAO 8 B

AB ( AO)B/O AAO BB

&~B =(&»)'/l ~JBB

(2.8)

The factorization hypothesis, as usually formulated
in high energy physics, refers to the ratio r~~ of
total cross sections; strict factorization means
r„~ =1. One of the main purposes of the present
paper is to investigate to what extent the factoriza-
tion hypothesis applies to real nucleus-nucleus
collisions. In the simple geometrical picture
which we have outlined above, all of the quantities
x» are on the same footing. Qualitatively, we

find that the degree to which factorization is satis-
fied is much the same for each of the quantities

T, R, E, b'xs

p(r) = C(1+ ak'g') e ' ~ (3.1)

where k =I3(2+5o)/2(2+3o)] "', g =r/A, A is the
rms radius, and C is a normalization constant.
For the other nuclei a three parameter Fermi dis-
tribution is employed":

p(r) =C(1+we'/A, ')/[1+e'" Bo"']. (3.2)

The parameters n and A of Eq. (3.1) and the pa-
rameters w, A„and a of Eq. (3.2) are tabulated
in Table II. The rms radius 8 corresponding to
the parameter A, is also shown in Table II for
densities of type (3.2).

p„~
= p». At O. l GeV, o'„„and p were ca,lculated

directly from NN phase shifts, " including s, p,
and d waves. In this case, P„~

= 1.18.
For the nuclear densities p~ and p~, we employ

parametric representations obtained from ana, lyses
of electron scattering data" and assume that the
mass and charge distributions are proportional.
For the light nuclei 'He, "C, "N, and "0, we use
a modzfxed Gauss&an form"

III. NUCLEON-NUCLEON AMPLITUDE

AND NUCLEAR DENSITIES IV. CROSS SECTIONS AND ELASTIC SLOPES

The values of o~„and P» which we use are shown
in Table L. The values for 0.52 &E»„-7.0 GeV are
obtained from Ref. 13 and the values at 25 GeV
from Ref. 14. In each of these cases, we assumed

In Table III, we show a selection of our numeri-
cal results for 0», v~~, and b» at 1.05 GeV per
particle. The reactions are ordered according to
the parameter x=min(A„/AB, AB/A„), where A„
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=z '+z"
AB A B (4.1)

and AB are the rms radii of the colliding nuclei,
listed in Table II.

Several points are to be noted about the results
of Table III, which are very similar to our results
at other incident energies:
(a) The reaction cross sections os» are generally
quite close to a geometric limit m(Rso +A~~o)'

where Aso =(-,')"'A„ is the equivalent spherical
radius" (i.e., the radius of a, uniform distribution
having the same rms radius) and A~ is the rms
radius. This corresponds to our most naive ex-
pectation on the basis of two colliding black
spheres.
(b) The ratio of total cross section to reaction
cross section is generally of order 1.7-1.8, ex-
cept for collisions between two relatively light
nuclei. This is close to the geometric limit of 2.
(c) The elastic slopes f» are close to the limit
5g/1 = g(R g +As ), wlllcll oils would expect oil tile
basis of the black sphere model, for which

do/s/df j~(QA»)
(do»/dt) g o QR»

with x,' =-,'r, '. In Fig. 1, we show the calculated
total cross sections at 2.1 GeV. The points cor-
respond to the reactions listed in Table III. The
solid curve represents the geometrical approx-
imation of Eq. (4.2), with r, adjusted to correctly
reproduce the cross sections for the heaviest nu-

clei. Since r, is of the order of 1 fm, we expect
r, = (-', )"'= 1.29 fm, which is close to the value r,
=1.27 fm used in Fig. 1.

%le have also calculated proton-nucleus cross
sections as a function of energy. Note that our
proton-nucleus calculations can either be regarded
as the folding of the extended proton density of Ta-
ble II together with a zero range interaction or as
the folding of a point proton together with a finite
range Gaussian interaction. This latter interpreta-
tion is to be preferred, but the numerical calcula-
tions are identical. Some typical results are given
in Table IV for a proton energy of 800 MeV. This
table may be of some qualitative interest to exper-
imentalists engaged in intermediate energy proton-
nueleus scattering at the Clinton P. Anderson Me-
son Physics Facility (LAMPF). We note that one
only approaches the geometric limit o„s/o"„s =2
for heavy targets. Thus for light targets, we ex-
pect the scattering to be more sensitive to the

= (R'„' +A,q)'/4.

If we assume that AA=r, A."'„ then in the geo-
metrical limit we expect

or 2 ~ R(~1/3 + Al/3)3 (4.2)

TABI E IV. Proton-nucleus cross sections and elastic
slopes at 800 MeV.

Reaction +AB / +AB
T R bA (fm )

p +~He

p +Q
p+8I i
p ~ape

p +$2C

p ~f4@

p + j.80

p ~ $80

p+ Mg

p +2'Si

p y32S

p+ "Ar
p+"Ti
p+58Ni
p+ "Zn
p +90 yr
p + 120g

p + j,40ce

p +"'Au
p +208pb

0.093
0.108
0.174
0.223
0.267
0.289
0.340
0.361
0.449
0.498
0.554
0.637
0.715
0.785
0.943
1,068
1.285
1,414
1.723
1.815

1.18
1.24
1 20
1.28
1.33
1.38
1.36
1.38
1.41
1.43
1.44
1.47
1,51
1.55
1.54
1.60
1.63
1.66
1.70
1.70

1.38
1.37
2.38
2.50

2.71
3.25
3.33
3.98
4.34
4.86
5.42
5.83
6.18
7,565
8,26
9.83

10.69
12.91
13,62

i . I

7 9
&lyly+ alger

FIG. 1. Total nucleus-nucleus cross sections o'~~ at
2.1 GeV per particle, as a function of A~ ~+B ~ 8. The
points correspond to the calculations listed in Table III.
The solid curve represents the geometrical approxima-
tion of Eq. t'4. 2).
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whole nuclear volume, and hence, cr~~ ~B for rela-
tively small B. For heavier targets, the stronger
absorption restricts the proton's interaction to the
surface region, and hence, c~re ~B'" for large B.
These features are indicated in Figs. 2(a) and 2(b);
one sees clearly the change from a volume to a

0.5

(a)

0.4

surface reaction as we increase B.
The energy dependence of the cross sections in

the region 0.1-25 GeV/particle is shown in Fig. 3
for three typical reactions. They are nearly con-
stant in spite of large variations in P. This lack
of sensitivity to P arises because o.» is sufficient-
ly large to force all results to lie close to the geo-
metric limit. Equivalently, if the optical potential
is very absorptive (close to the black sphere limit),
there is little sensitivity to the real part of the po-
tential, within reasonable limits. A quantitative
criterion for a "sufficiently large" a„„will be dis-
cussed in Sec. VI.

V. FACTORIZATION RATIOS

0.3

LQ

b
CL

In the geometric limit, the cross sections and
elastic slope all vary as (A„c +Asst)2 and hence,
all the ratios r will be close to the limit

0.2 ro = (1+x)'/16x'. (5.1)

Ql

5.0—
(b)

8
B

12 16

In Fig. 4, we plot the calculated ratios r as a func-
tion of x at 1.05 GeV. " The limit x~ is shown for
comparison, and is seen to provide a semiquanti-
tative account of the calculated results. Note that
for small x, the deviations from strict factoriza-
tion are quite large. However, if —, & x & 1 (i.e. ,
the nuclei do not differ in radius by more than 50%),
the deviations from strict factorization are seen to
be &20%. This is essentially the region of x con-
sidered by Fishbane and Trefil. '

In Table V, we show the values of r for proton-
nucleus interactions at 800 MeV. As x becomes
smaller, order of magnitude deviations from
strict factorization occur. As in the case of the

13—
T I I I I IIII I I I I I IIIT I I I I IIII

1.0— 90Z~+ 208 pb
~ ~ 0 ~

40
I

80
I l

120 160 200
B

Cl 7—

PIG. 2 (a). Calculated proton-nucleus total cross
sections 0&z at 800 MeV l.ab energy for light targets
(I3 ~ 16). The heavy dots correspond to the calculated
reactions listed in Tabl. e IV. The solid straight line is
a visual fit to indicate dependence on the total number
of nucleons of the target. The dashed-dot curve is an
extension of the fit to heavy targets while the dashed
curve is an attempt to fit the light targets to a S ~~

dependence. (b) Calculation of o&n at 800 Mev lab
energy for medium and heavy targets (B & 16). The
heavy dots correspond to the calculated results listed
in Tabl. e IV. The solid curve is a visual fit to the
heavy target results.

5—)E
l6O 90 Z

4

eeI—
I

O. I

a+ o

I I I I III I I ~~l IIIII
I.O IO

ENERGY PER PARTICLE {GeV)

I I I I I III
IOO

FIG. 3. Predicted energy dependence of nucleus-
nucleus total cross sections in the energy range 0.1-25
GeV per particl. e. The points correspond to the ener-
gies and elementary cross sections listed in Table I.
Three typical reactions have been chosen from Tabl. e III.
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TABLE V. Proton-nucleus factorization ratios at
800 MeV.

6.0 I J I [ I
/

I )
I"

[ I [ I [ I J l~'/ I ) I ( I

EI b= I.05
I f

F'/ I f I [ I [ I

GeV/ NUCLEON—

Reaction

p +3He

p +A
p+ Ll
p +9Be
p +12C

p +14N

p +16p

p +180
p+ Mg

p +28Si

p +32S
p+4'Ar

+48Ti

p+ 8Ni

p+"Zn
p+90Zr
p + 120sn

p + 140Ce

p +197Au

p + 20&pb

0.452
0.468
0.332
0.331
0.324
0.323
0.291
0.289
0.264
0.256
0.256
0.233
0.222
0.215
0.196
0.186
0.172
0.165
0.150
0.146

1.14
1.24
1.42
1.82
2.27
2.55
2.77
3.03
3.74
4.16
4.46
5.25
6.28
7.44
8.17

10.15
12.48
14.50
18.31
19.14

1.24
1.34
1.67
2.08
2,49
2.70
3.00
3.20
3.82
4.15
4,42
5.03
5.78
6.59
7.33
8.58

10.23
11.55
13.98
14.56

0.80
1.05
0.88
1.55
2.38
3.02
3.10
3.70
5.01
5.93
6.46
8.28

10.90
13.98
15.00
20.83
27.10
33.09
44.59
46.88

1.67 1.36
1.55 1.33
2.36 1.78
2.18 1.79
2.10 1.83
2.06 1.84
2.37 2.05
2.36 2.06
2.63 2.29
2.75 2.37
2.96 2.37
3.17 2.66
3.35 2.83
3.55 2.95
4.09 3.33
4.44 3.57
5.15 3.99
5.65 4.23
6.69 4.86
6.98 5.06

ra(x) & 1 for all 0& x& 1 (5.2)

and rc =1 only for x=1. An experimental ratio
r & 1 wou1. d then indicate the failure of the simple
geometric picture.

The transition from r&rG for small x to r=rG
for x close to unity can be understood in terms of
the following identity. '

nucleus-nucleus results in Fig. 4, the proton-nu-
cleus factorization ratios of Table V exhibit two
evident features: (a) the ratios r (except for P+o.)
exceed ra; (b) the values of r are always greater
than unity. Observation (b) is a direct consequence
of (a), since ra has the property

4.4—

1,2-
I.O 0.6 0.2 1.0 0.6 02 1.0 0.6 0.2 1.0 0.6 0.2

FIG. 4. Factorization ratios r T, r+, r~, and r of
Eq. (2.8) at 1.05 GeV per particle as a function of the
relative size parameter x. The points correspond to
the reactions listed in Table III. The solid curves
represent the geometrical limit r of Eq. (5.1).

situation when A is a very light nucleus ('He or
n) and B is a considerably heavier nucleus. The
failure of strict factorization is accentuated by
the fact that AB rAB sin e AB already con-
siderably exceeds unity for small x. As nucleus
A becomes larger and comparable in size to
nucleus B, we get 5„=5s-5, and hence, r„s/
r„s=1+0(5'), i.e., the corrections linear in 5

cancel if 5„=5s. Thus, we see that r»/res-I
at the same time that r„B-1. It should be noted
that a similar cancellation between terms linear
in ~A and &B also occurs in the opposite extreme,
where both A and B are very light nuclei. This
provides an explanation for the fact that r, r~,
and r are close to unity for the reaction 'He+ &,
even though the individual cross sections are
relatively far from the geometric limit.

C 2/
AB =rAB YAH /yAAyBB

/ Gy AB ~AB/ AB

(5.3)
VI. FACTORIZATION RESULTS AS A FUNCTION

OF THE ELEMENTARY NN CROSS SECTION

r„ /rG =(1 —5„) '(I 5 )-', (5.4)

where &A&0 and &B&0. If we consider the case
where the A.B and BB cross sections are close
to the geometric limit, and AA is relatively far
from being geometric, we have &B «A and hence,
r»/res&1 from Eq. (5.4). This is indeed the

AB efers to rAB& rAB& or rAB, and oAB
the appropriate geometrical limit. In the situation
where A is a smaller and lighter nucleus than 8,
we have yAA&y»&y». Introducing the definitions
y»=y»(1 —5„) and y» =y»(1+5s), we have

XAB ABaNN/aAB 1

T G (5.1)

where o~as=2w(Rso+Rsso)'. In a real situation,
o'„„ is known and hence y» is fixed for a given
reaction. For the cases in Table HI, y» ranges
from 0 3 for 'He+'He to 150 for ' 'Pb+" Pb How-
ever, it is of some interest from the point of view
of elementary particle physics to study how the
composite particle cross sections and factoriza-
tion ratios depend on y for fixed x.

The previous discussion has been expressed in

terms of a single geometrical parameter x. Another
parameter which enters the theory is
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For p=o„we have

(1 —e '(-"
) b db,

cross section v~~B vanishes to first order in 0~~.
To second order, we have

AB 2 I T..(b)j'bdb. (6.9)

(1 e -"(-'&)bdb, For the exponential and Gaussian approximations
of Eqs. (6.4) and (6.6), we find, respectively:

bAs = (2II/(I„) (l e-A(b ) )b3do

(6 "-)

~AB AB/
(6.10)

Now let us examine the case of a "weak" ele-
DlentRx'y cx'oss s6ctlon 0'gg. %6 CRQ then expand
the exponential factor in Eq. (6.2) for all b. Since
in most cases T(b) is a monotonically decreasing
function of b sllch all expaIlslotl 1s vallcl 1f 6(0)
«1. Consider an illustrative example for which
the nuclear densities pA, e(&) are simulated by
Gaussian functions with the correct rms radii

where g» =A.Bo „„/B„s. From (6.10), we get

~AB
(ye/ 1

AB

(6.11)

where &Ae = (1+&')'/4&' and &Aoe is given by Eq.
(5 1)

The corresponding elastic slopes

pA, (~) =c„,e A. e"-',

CA ~ e =(&A, s/&)

&
~') A, e"=RA. e =(-.'&A. e)"

With the choice (6.3), we have

(b)
«AB e- KAeb 2

&A +&B
(6.4)

The requirement 6(0)«1 is then equivalent to the
condition

(6.5)

where o„e =2II(RA'+Re'). Similar results hold if
we assume that T(b) has exponential behavior for
lRl ge ~. Fol examples lf

T(b) =——n'e "',
(66

the condition (6.5) is replaced by y»/2«1, where
p» is given by Eq. (6.1). Using Eq. (6.2) and the
normalization condition f,"T»(b)bdb =AB/2II, we
obtain

AB

—', &A'B

for the exponential and Gaussian cases, respec-
tively, where b„e =-,'(R„o +Reo)' and bAoe = A'(R„'
+Re'). From Eq. (6.12) we get

(6.13)

It is amusing that the limit rAGB also applies to ~~B

and rAbB in the limit p» «&, even though the total
cross section is much smaller than its geometric
limit, as per Eq. (6.8). From Eqs. (6.11) and
(6.13), we have the following property in the
weRk vga limit:

AB AB RS ~AB (6.14)

Now let us consider the opposite extreme, where
the elementary cross section is strong, i.e.„
b (0)»1. However, we must have 6(b)«1 for
Buff ic iently lRx'ge ~. The impact par Rmeter 1ntegl Rl

can then be divided up into three regions:
QQ b b

(1 —e ' ') b db = b db+ (1 —e ' )b db
0 b0

(o.7)
4(b) b db, (6.15)

for p»«I. This is just the single scattering
approximation to the full multiple scattering seri.es
represented by Eq. (6.2). From Eq. (6.'l), we see
that the condltlon gAB+~1 ls equlvRlent to

(6.8)

In the single scattering limit, the total elastic

where 50 and 6, are determined by the conditions

(6.16)

We now use the fact that 1 —e "&x for all x&Q
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to obtain an upper bound

( — +")bdb& f a(b)bdb .
b

We then have

(1 - e- «»)b db &
bo

b db+ a(b)bdb .

(6.17)

= 2a~ = 2(x ~B = 2 nb ' .AB AB AB

0

we find forUsing Eq. (6 16) to determme bo, we

(6.18)

&~'eI.»(y»/~)] '
O'AB =

~(x~ in(sy„~/d)
(6.19)

v the second term is small comparedFor lal"ge NN,

h estimateto the irs,f' t and we get the rough es im

T, th calculated total cross sec-) For small v», e ca
y'TABv T, and we further have &»tions approach ABvNN, an

(6.14).&~ r' =1, as per Eq.AB ~ an AB AB
lar e devia-c For y» of the order of 1, very arg

m
' f t ' ation occur, particularly

5.4) these situations
m strict fac oriza i
In the context of Eq, efor& . In

»&, i.e., e, th AA cross sectionB~

is very far rom ef the geometric limi an

g
(d) The actual value o y» 'f is 6.73 or e +

closereV article. Thus we are c oser
the "strong" than to the "weak" limi .

ase we are s i refor this ca
h d scription instrict geometric'c limit althoug a e

t From Fig.ualitatively correc . roterms of &AB is qua i
f yT yR gEee wh the calculated values of &,

for the wide rangean d &b lie above the limit ~ or e
. 4 i.e., the ratios &reactions shown in Fig. ; i.e.,of re

m above as we increase y.always approach & from a ove

Gaussian densities respectively.for exponential or Gaussian e
' ', el .

t (6.19) implies that although o„e-
the ratio OAB y vNN-~NN

b t ary amount is dueb a,na.r ir
e have assume nuc ed l ar densitiesto the fact that we

h' h extend toonential or Gaussian tails w ic ewith exponen ia
to~~~~ model with' it . If we use a sharp cu o m.infini y.

~@
, th does not exceed

lies to the elasticThe same reasoning applies o e~AB.
slopes b». We find

VII. CONCLUSIONS

s a er we have presented numerical re-In this paper we ave
sections at in-sults for nuc leus-nucleus cross sec '

These results,' te and high energies. esetermedia e
eikonal representationwhich are based upon the ei ona r

21—

b~ edwin(y, ./~)) '

, b„',ln(3y„, / )

(6.20) 17—

15—

all factorization ratios areThus, for strong 0, , a ac
given by:

Pb

AB
T -y' =JAB-XAbBAB AB

y AB

(6.21)

the eometric limitt that the exact value of the g
e form of the nuclear densities for

The difference between an expon
l' t'

q and a Gaussian tail or pA, Brealisiicq an
metricup a,s a considerab eu le difference in the geome

4&AB fol x && 1.
l lated dependence ofFi . 5 we show the calcu a e

h ho th. (6.1). For definiteness, we ave c
o. + 2. 1 GeV/particle, with densi-n+"'Pb reaction at 2. e

everal features are to e no e .ties of Table II. Severa. e
r e vT all factorization ratios appr

se to the naive geome ri
for exponential T(b), as per Eq.AB~

b

I

I I

I IP 10 IP 10
I I

3 4 10520-4 10-3 10-~ 10- 10

endence of the factorization rat&osFIG. 5. Dependence o

, an r pd on the geometric& p
er

h l l fometric limit of Eq. . 1 .6.21 .geome ' ' ' . . 1
for this case is indicated y
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of the scattering amplitude for composite particles
and on the relatively short range of the basic
nucleon-nucleon interaction, are directly testable
in the initial stages of the experimental programs
at the new generation of facilities such as the
Bevalac, LAMPF, TRIUMF, and SIN. Such studies
can delineate the gross features of nucleus-
nucleus interactions at high energies, and could
confirm that the above elements provide a frame-
work for their understanding.

Within the above framework, we have investigated
the degree to which cross section and elastic slope
ratios as in Eq. (2.8) exhibit a numerical factoriza-
tion property, i.e., are close to unity. We have
shown that this holds to 20/g if the radii of the
projectile and target nuclei do not differ by more
than 50/o. This leads us to the conjecture, with
particular reference to nucleus-nucleus collisions,
that an approximate factorization of cross sections
and elastic scattering slopes is a geometric prop-
erty of the scattering of spatially extended strongly
interacting particles of similar size.

We believe that nucleus-nucleus factorization
ratios will be interpretable in terms of the simple
geometric limit given by Eq. (5.1). Deviations
from Eq. (5.1) can also be understood via Eqs.
(5.3}and (5.4) in terms of the deviations of cross
sections from the geometric limit. Geometrical
behavior follows because the basic nucleon-nu-

cleon interaction is of relatively short range and
is strong, leading to a large absorptive part for
the nucleus-nucleus potential. Because of the
strong absorption, nucleus-nucleus elastic scat-
tering is a peripheral process and the situation
is relatively close to the limit of black sphere
scattering. The simple representation (2.1}for
the nucleus-nucleus amplitude should be applicable
at the energies per particle attainable with present
facilities. However, it is possible that the rep-
resentation (2.1)-(2.3) does not apply at ultrahigh
energies, for which scales of distance other than
the relative size of the nuclei may enter in an
essential way. For example, if the range of the
basic nucleon-nucleon interaction increases with
energy and ultimately becomes very large com-
pared to the radii of the nuclei, while at the same
time O„N does not increase in a similar way, one
can regain' the single scattering result o~~
=ABO ~~. Thus strict functional factorization could
emerge at extremely high energies. ' However,
this is very speculative since in the highest energy
experiments presently avaiable, " the slowly
shrinking PP diffraction pattern goes as do /d&

-exp( —13~ t
~ ), corresponding to a size R =~m„

=0.7 fm. This size is still significantly smaller
than the radii of even the lightest nuclei. Further-
more„ in this energy domain the basic cross sec-
tion has begun to increase. "
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