PHYSICAL REVIEW C

VOLUME 11,

NUMBER 1 JANUARY 1975

Two-body photodisintegration of *He and *HT

B. F. Gibson
Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

D. R. Lehman
Department of Physics, The George Washington Univevsity, Washington, D. C. 20006
(Received 19 August 1974)

Cross sections for two-body photodisintegration of *He and ®H are calculated in electric-
dipole approximation. The calculation is performed within the context of exact three-body
theory with the two-nucleon interactions represented by s-wave spin-dependent separable
potentials fitted to the low-energy nucleon-nucleon scattering data. The two~body photo-
disintegration amplitude is expressed in terms of the half-off-shell nucleon plus correlated-
pair amplitudes, a method applicable to any weak-process disintegration amplitude. The
numerical results indicate: (1) The 3He and *H 90° photodisintegration cross sections are
essentially identical in shape, being only slightly displaced at low energy due to the dif-
ferent thresholds, when both initial and final states are treated consistently. (2) The
3Hely, d)p 90° differential cross section has a peak value of approximately 95 pb/sr.

[NUCLEAR REACTIONS Photodisintegration of 3He and ®H; exact three-body cal—]
culation; separable potentials; charge-dependent interactions.

I. INTRODUCTION

The work of Barbour and Phillips on the low-
energy (E, =40 MeV) two- and three-body photo-
disintegration of ®*He, delineates the important
physical aspects of these processes.' For two-
body photodisintegration, their exact three-body
calculation, which has as input separable, s-wave
spin-dependent charge-independent interactions
fitted to the two-nucleon effective-range parame-
ters, demonstrates the importance of treating the
continuum p-d final state exactly. Compared to
neglecting the p-d rescattering, the exact result
predicts a peak value for the total cross section
~25% larger. They also find that the spatially
mixed-symmetric S component, simulated short-
range correlations, and changes in shape and as-
ymptotic form of the spatially symmetric S com-
ponent (all in the ground state) cause variations
in the total cross section of 10% or less; there-
fore, within the precision of present experiments
they can be considered unimportant. The essential
picture of the two-body photodisintegration of 3He
below E, =40 MeV is that of an electric-dipole
transition from the dominant, spatially symmetric
component of the ground state to a p-wave proton-
deuteron final state.

Within the above framework, Barbour and
Phillips point out an apparent discrepancy between
the sets of two-body photodisintegration data avail-
able up to 1969. They postulate a *He ground-state
wave function having the analytical form of one ob-
tained from a separable-potential model; however,
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the binding-energy parameter is set to the experi-
mental value and the spectator function is repre-
sented by a double-pole form with one free param-
eter. The free parameter is determined by fitting
the ®He charge radius, this being assumed to be
the relevant physical quantity due to the emphasis
placed on the asymptotic region by the electric-
dipole operator. Their results with this ground
state and the exact final state described above
(note that the wave functions are not eigenstates
of the same Hamiltonian due to the ad hoc nature
of theground state) agree with the total-cross-sec-
tion data of Fetisov, Gorbunov, and Varfolomeev,?
but not the data for the 90° differential cross sec-
tion of Stewart, Morrison, and O’Connell® or Ber-
man, Koester, and Smith* which lie ~20% below
the calculated curve at the peak. Barbour and
Phillips then conclude that since their ground state
gives a reasonable fit to the *He charge form fac-
tor out to four-momentum transferred squared
~3 fm~2, the 90° two-body photodisintegration data
are incompatible with the charge form factor.
Since the work in Ref. 1, there have been a num-
ber of new experiments. The first was a radiative
proton-deuteron capture experiment® which indi-
cated possible structure in the equivalent (con-
verted by detailed balance) 90° photodisintegration
cross section at E,~ 20 MeV. A number of exper-
iments followed in an attempt to verify the appar-
ent structure in the 90° cross section. Two of
these were radiative capture experiments,®"”
three were electrodisintegration experiments®-'°
where only the deuteron is detected with the re-
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30 B. F. GIBSON AND D. R. LEHMAN 11

sults converted to equivalent photodisintegration
cross sections by application of the virtual-photon
approximation, and one was a photodisintegration
experiment.'’ In only one of these experiments do
the data indicate possible structure,® but at a low-
er energy—E, ~ 14 MeV—than the original capture
experiment of Ref. 5. In fact, the consensus sup-
ports no evidence for structure in the low-energy
90° photodisintegration energy spectrum. More-
over, the above experiments serve another pur-
pose: They provide data concerning the apparent
normalization discrepancy pointed out by Barbour
and Phillips between the previous total cross sec-
tion measurements and 90° data. Nevertheless,
the new data do not resolve the conflict. The new
data fall into two groups: (1) The electrodisinte-
gration data®''° and the Halbert ef al.’ capture data
support the larger peak value of the Fetisov et al.?
total cross section measurements; (2) the photo-
disintegration experiment of Ticcioni ef al.'* and
the capture data of Chang, Diener, and Ventura®
agree with the early 90° results.®** A more recent
capture experiment by Matthews et al.'? designed
to check the normalization at one photon energy
point, E,=16.1 MeV, falls into the second group.
The point these data seem to raise concerns the
validity of the virtual-photon approximation in con-
verting the electrodisintegration data to an equiv-
alent photodisintegration cross section—a question
which falls mainly in the theoretical realm.
Recent theoretical effort on the two-body photo-
disintegration process has centered on extending
the work of Barbour and Phillips. Barbour and
Hendry'® add the electric quadrupole amplitude
and find its effect on the total cross section to be
negligible for £, < 40 MeV. Hendry and Phillips**
include the tensor force in obtaining the exact
final state and construct, in a manner similar to
Barbour and Phillips,'® a *He ground-state wave
function including a D-state component. As the
percentage deuteron D state takes on the values
0,4, and 7% with the percentage D state in *He
being 0, 4.03, and 7.71%, respectively, the peak
of the 90° two-body photodisintegration cross sec-
tion decreases from ~120 ub/sr to ~100 pub/sr
compared to the 90° measurements which favor a
peak value between ~85 to 90 ub/sr. The Hendry-
Phillips calculations also include a proton-deutron
Coulomb correction which, if removed, would
raise their values by 7%. They also argue that a
complete separable-potential calculation, i.e., in-
cluding tensor forces and short-range effects,
cannot be expected to give a peak value much less
than ~105 pub/sr. To support this contention, they
point out that the *He — p +d vertex may be over-
estimated by separable-potential models. Using
a related quantity as a gauge—the residue at the

triton pole in the center-of-mass »n-d scattering
amplitude, they calculate with their ad Zoc ground-
state wave functions a value for the residue
R=-4.6fm™, whichthey comparetoR=~3.2+0.4
fm ™' extracted from experiment by Locher.'®

The objectives of our paper are threefold: (1)
to present an alternative method (from that of
Barbour and Phillips) for performing the exact
two-body 3He photodisintegration calculation;
(2) to consider the effect of charge-dependent
two-nucleon interactions on the photodisintegra-
tion predictions including differences to be ex-
pected between *He and *H; and (3) to emphasize
that the photodisintegration calculations and the
residue calculations are sensitive to the form of
the spectator functions in the separable-model
ground-state wave function. We present our three-
body formalism in Sec. II and apply it to *He(®H)
photodisintegration in Sec. III. Sections IV, V,
and VI contain our results, discussion, and con-
clusions, respectively. Two appendices are in-
cluded to describe our numerical methods and to
give the relationship between the residue at the
triton pole in the #-d scattering amplitude and the
asymptotic normalization constant of the #-d tail
in the trition ground-state wave function.

II. FORMALISM

In this section, we develop the formalism for the
disintegration of a three-body nucleus by an inter-
action which can be treated perturbatively, e.g.,
disintegration by the electromagnetic or weak in-
teraction. Explicit in our treatment will be the as-
sumption that the two-body nuclear interaction can
produce a two-body bound state.

Consider the total Hamiltonian

) (1)

where H' is the interaction to be treated perturba-
tively and H is the nuclear Hamiltonian composed
of kinetic energy and pair interaction operators,
i.e.,

Hiotal =H+H’

H=H,+V (2)
with
3
Vad V=Vt Vs Vo= Vo4 Vo 4 Vyy (3)
a=1

Specifically, the nuclear Hamiltonian will be as-
sumed to have eigenstates corresponding to a
three-body bound state, a scattering state of a
particle plus bound pair, and a scattering state of
three unbound particles. For these states, respec-
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tively, we have

H|¥p)==Ez|¥g), Ez>0; (4)
(2) (2) P°
HI‘I’OL"'E>=E&" l ‘I’an'}.’)> 5 Ea" =2ma —€gn>s
€an>0;  (5)
- — PP Va
HWo5)= B i), B =g 5

(6)

where, for example, the subscripts in Eq. (6)
mean particle @ moves relative to the center of
mass of pair By (@ #B+Y #a and each can take on
the values 1 to 3) with relative momentum P, while
By move relative to each other with momentum E,
and 7 describes the remaining quantum numbers
of the state such as spin and isospin. The reduced
masses are given by my= My (Mg +M,)/ 335 Mo,
and Lo =MgM, /(Mg +M,), where M, denotes the
mass of particle a.

In this paper dealing with two-body photodisinte-
gration of *He and 3H, we are concerned only with
two-body disintegration amplitudes

Ay, 1, ) =(U5 B [¥p) (1)

where the superscript (-) denotes the outgoing
state which asymptotically corresponds to an in-
coming wave. The two-body scattering state is a
solution of the equivalent equations (7>0; E =p*/2m,,
- 60(11)

(=) . (=)
[Werz)= | an) - Ga(E =) 3 Vol ¥aup)  (8)

B#a

and
[Wors)= | Ber3) = GE i) T Vol @), (9)
B#a
with the resolvent operators defined as
Gal@) = (Hy+ Vo =2)™" (10)
GR)=(H-2", (11)

and | ®4,3) denoting the asymptotic scattering
state composed of particle @ moving freely rela-
tive to the By bound pair. If Eq. (9) is written in
terms of the distortion operator

Q=0 (E-in)=1-G(E-) ) Vs (12)

B =

and substituted into Eq. (7), we obtain
Ag(a, n, D) =(@orz| QCH | T5) (13)

where 07 =(8$)". The crux of this development
is that a Faddeev-type equation can be written for

Qéf) :

QW =@ =1- 3 VG(E +in)

B;éol
=G, "HE +in)G(E +1in) (14)
=1- )" VsGsGs™'G (15)
B=a
(+)
=1- " V3GpQp . (16)
B=o

Equation (16) can then be written in terms of the
two-body T operator

3
QY =1-3" B.5TsG 08" @
B=1
since
Ts(2)Go(2) =V Gs(2) , (18)

where By =1 — 045 and Gy(2) = (H,—2)*. When Eq.
(17) is substituted into Eq. (13), a set of coupled
(integral) equations for the two-body off-shell dis-
integration amplitudes is obtained. This was the
route followed by Barbour and Phillips in their
treatment of *He photodisintegration.! However,
we shall use Eq. (17) to express Eq. (13) in terms
of the half-off-shell particle-plus-correlated-pair
scattering amplitude. One way in which this can
be achieved is by iterating Eq. (17) to obtain

3 3
+ 9 D 0aTsGedpy TyGo—+**+ ,  (19)
B=1 y=1

then grouping terms as
3 3
Q57=1-3" Bay = 3 5a8T6Godsy
y=1 B=1

+= )T, G, (20)

and recognizing the parenthetical expression in Eq.
(20) as G,™'X,,, where X, is the transition opera-
tor that connects particle-plus-correlated-pair
states.!” Therefore,

3
Q) =1-3" G Xay Ty G, , (21)
y:l
where

Xap(2) = Gol@)8en = 3, Xay ()T (2)3,8G,(2) (22)
Y
or

Xog(2) = Go(2)8as = Go) D By Ty ()X y5(2) .
Y

(23)
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The three-particle dynamics of the continuum state now reside in the transition operators X,, and the

two-body disintegration amplitude is written

3
Az(ay n, 5) =<¢an;l H/ l \IIB> - Z <q>0(nEI GO-I(Z)XOC}’ (Z)T7 (Z)Go(Z)HI I \IIB> ’ (24)
Y=1
r
with 2 =p2/2my— €y, + 1. where
The utility of expression the two-body disintegra- N N 2(p) -1
tion amplitude in terms of the transition operator Tan(8) =" <1+ 2 f d®p -—g”—2->
. . 2Ua 2Uq 2 ~p?/2Uy
that connects particle-plus-correlated-pair states 2
will become clear in the following section, but al- and (26)
ready it is evident that the three-particle dynamics Zan(D) = <§igan> ) @7

have been separated from the disintegration pro-
cess due to H'. In effect, the continuum three-
body problem need only be considered once for a
given excitation energy to handle all weak disinte-
gration processes. As will be shown in the second
paper of this series, this is, of course, also the
case for three-body disintegration processes.
Moreover, we emphasize that this approach is
completely equivalent to that of Barbour and Phil-
lips, and corresponds to using the exact three-
body eigenstates in computing the amplitude of Eq.

(7).

III. APPLICATION OF THE FORMALISM TO
THE TWO-BODY PHOTODISINTEGRATION OF
*He AND *H

A. Spin-dependent charge-independent interactions

The application of Eq. (24) to the two-body photo-
disintegration of *He and *H requires knowledge of
Ty (2) and H'. The two-nucleon transition operator
in the three-particle Hilbert space T,(z) will first
be taken to be representable as an attractive s-
wave spin-dependent separable form. We shall

write
t

Tot(z) == Z Igan>T(xn (Z)<gtxnl (I SI><SI l )otn ’
n=s (25)

permit us to write Eq. (24) as

The lower-case letters s and ¢ stand for singlet
and triplet spin, respectively; the upper-case
letter S(I) is the total spin (isospin) obtained by
first coupling the spins (isospins) of particles S
and ¥, and then coupling their resultant spin (iso-
spin) to the spin (isospin) of particle @ to form the
total S(I); and A, represents the strength of the in-
teraction. The momentum dependent form factors
Zan(p) determine the ranges of the interactions.
This form of the two-nucleon interaction corre-
sponds to a separable, nonlocal potential which,

if it can support a bound state of binding energy
€,, yields for the bound-state wave function

(Xal =NLgal 6P (= €);  €,>0, (28)

where N, is the normalization constant to assure
(Xl Xn)=1 and G(2) is the free-particle resolvent
for two particles [in contrast to G,(z) which is the
free-particle resolvent for three particles]. Then
the state of interest to us becomes

2
(éangl =N2<gotn5' Go <ﬁ— 'Ean> (29)
o

with (gx,Dl =(gusl{(P|. Equations (25) and (29) along
with H'=H ., (to be specified in more detail below)

’2

3 t
Ay, 1, D)=, | (arbl 6N [+ 3 3 [ d3p'<ganﬁlxas(z>lgﬁnlﬁ'mn'(z-ﬁn—ﬁ—)(gsnlf-ﬂ Co( Mo [ 3) |,

B=1 n'=s

where the spin-isospin projection operator is
suppressed in the second term, [ d3'|p’xp’|=1
has been used, and 2z =p?/2my — €4, +27.

The next step in applying the formalism to the
two-body photodisintegration of *He and *H is to
utilize the fact that the nucleons will be treated
as three identical particles of mass M. We obtain
symmetrized expressions from Eq. (30) as follows:

(30)

3

Mzn(zy B)E\/—%_ Z A2(ay n,‘ﬁ) (31)
o=1

t
=B, B)+Y [ @Y ElX@)|F)

3 72 .
X Ty <z-— 4PM )Bn,(z,p’) s

(32)
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where 2z =3p*/4 M — €, +in and the deuteron binding and

energy €;=7*/M=2.225 MeV. The amplitudes ap- s 3

pearing in Eq. (32) written in off-shell form (i.e., (’f)lX,,,,,(.z)lﬁ’):l > D (Zunb| Xopl2)| 254D
Z in general not equal to 3p%/4 M- €; +in and |p| 3 e B

not necessarily the same as |p’|) are (34)

The off-shell three-particle transition amplitude

3
B,(2,P)=NyVI D H - -
(2, D) =NVE D (gunb| Go(2)H o | ¥5) (33) (Pl X, (2)| D) satisfies the integral equation

a=1

J

B )= 2 E)+ 3 [ 0% B X572 - ) | 2w @I 35)

r

tegration amplitude is now clear on the basis of
Eqgs. (32) and (35). This can be made even more
vivid by representing these equations graphically
as in Fig. 1. Figure 1(a) illustrates our method

where

3 3
(Bl Zu 5123 D Baaad| Cole)| 200 -
a=1 B=1

1

(36) and Fig. 1(b) the method of Barbour and Phillips.*
Equation (35) is derived from Eq. (22) using the The point to note is that by our method all two-
definition Eq. (34). body disintegration processes are obtained by
The method we use to obtain the two-body disin- solving the same equation [Eq. (35)] for the three-
N N N
t
n
= +
M2 Z Bn' Xnn'
3He n He .
N N n’ N N
t
= 3
Xnn' oy ><nm
ZrzzrrrA e b —
n’ n N m n
(a)
N N n
t
n = +Z n’
M, L M,
3He n 3He n’ N
N N n
[IEAVAV4Y
M, M,
3He n 3He N N

(b)

FIG. 1. Comparison of the equations used to obtain the two-body disintegration amplitude in this work, (a), with those
of Barbour and Phillips, Ref. 1, (b). The wavy line represents the disintegration mechanism (e.g., in the case of photo-
disintegration a photon) and the cross-hatched double lines are to indicate that a particular correlated pair plus nucleon
(N) are off shell. In the case of *He photodisintegration into proton plus deuteron, N =proton and n=triplet or the plain
double lines represent the deuteron.



34 B. F. GIBSON AND D. R. LEHMAN 11

particle continuum dynamics, while the type of
process is governed by the Born amplitude B,(z, D).
In contrast, Barbour and Phillips solve an integral
equation for the off-shell amplitude M,"(z, ) and
use this amplitude in the same equation with the
external variables on-shell to obtain by an integra-
tion the on-shell amplitude M,"(z =3p?/4 M - €, D).

The last major step in our application of the
formalism involves the details of B,(z,D), or
equivalently, the specification of H'=H,,, [see Eq.
(33)]. It is a well-established fact that the two-
body photodisintegration of *He is mainly an elec-
tric-dipole transition,'® so we take

1 3
H'=He =3¢ 37 @)1 =0, (37)
i=1

where the T; are the nucleon center-of-mass coor-
dinates, € is the photon-polarization unit vector,

e is the electric charge, and 7% is the third (z-
component) isospin Pauli matrix for particle:. In
this work, we include only the dominant component
of the 3He ground-state wave function, namely, the
2S,,» Spatially symmetric one. The ground state of
3He can then be written

[¥p) =¥V (x'n"=x"1") , (38)

where ¥y is the symmetric spatial part, x'(1,23)
[’ (1, 23)] is the spin-3 [isospin-3] function ob-
tained by first coupling the spins [isospins] of nu-
cleons 2 and 3 to spin [isospin] zero, and x”(1, 23)
[n”(1, 23)] is the spin-3 [isospin-3] function ob-
tained by first coupling the spins [isospins] of nu-
cleons 2 and 3 to spin [isospin] one. Combining
Egs. (37) and (38), we get

(39)

In Eq. (39), T and p are the standard Jacobi vari-
J

two-body *He photodisintegration amplitude

ables for three identical particles, e.g.,

T=%,-T,, (40a)
5 =;1 - é(;z +—f3) =%—f1 ’ (40b)
n° is the isospin-3 function for three nucleons,
and
£I=__1_.(Xlnll+xllnl) (413.)
V2~ ’
1 .
"_ Tyl "
g—\/z—()("l x'n") . (41b)

With Egs. (39)-(41), it is then easy to obtain
B,(z,D) for the two-body photodisintegration of
%He. The final-state spin-isospin projection in
Eq. (33) is x”"n’ and since the deuteron wave func-
tion is s wave, we get

- _—QMNZ 3 g;(k)[g'ﬁm‘l’g(ﬁ,ﬁ)}
Bz D)= V6~ fd k 3pP/4+RE=-Mz

(42)

where 50, =—1in §7., . The electric-dipole operator
connects the 2S,,, ground state with a 2P continu-
um state.

Using the fact that the p-d (or #-d) final state in
the 3He (®H) electric-dipole photodisintegration is
pwave, we specialize Eqgs. (32), (35), and (36)toa
practical form by defining

B,(z,p)=¢€"p®, (2, p) (43)

and using the partial-wave decompositions

B X ()| B)= 3 @ + VXL (b, 3 2)P, B+ )
(49)

Bl Zuw @[5)=3" @F +1)ZL,0(0, 1'; )P, (B ') .

J=0

(45)

Py(cosb) is the Legendre function for angular mo-
mentum J. After some algebra, we get for the

aM

t w 3p'2
Mie, B =2-p|@u(e, o edn 3 [ o apxllo, 0007, (2 - B0) e, 1) (46)

1]

E-paMmi(z,p) .

(47)

We note that ® (z, p) is present in Eq. (46) and that it can be obtained in the same manner as ®,(z, p), i.e.,
project with x'n” in Eq. (33) to obtain the same result as Eq. (42) except g,(k) is replaced by g,(k¥). The
amplitudes X3,(p, p'; 2) and X},(p, p’; 2) are obtained from the coupled integral equations

aM

t © /2 ’
X, 830= 240,052 81 3 [ 0 2ot 5 297 (2 -3 180,073 20, e
m=s ~ 0
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where

J 7. - t PJ(x)gjl(qz)gn’(q,z)
Zrm’(p,p ,z)“cnn’ f_ldxp2+p/2+pp/x_Mz ’

(49a)
F=3p*+p'* +pp'x (49b)
=P +3p" P+ pp'x (49¢)
and use was made of the relation
Zywr (b, 1'52) = Zyn, B3 2) (50)
The coefficient matrix is
[Co)=(Crt G o[ * % (51)
Csr Cs -1 i

Once the amplitude M:(z, p) has been obtained
from Eqgs. (46)—(51) (see Appendix A concerning
our numerical methods), it can be related to the
two-body differential cross section in the standard
way':

272 (3P P
d0'=7/z—5-Ey | fm:z <W—M ,p)

where E, is the photon energy, 6 is the center-
of-mass angle of the outgoing nucleon with re-
spect to the incident photon direction, and p; is
the density of final states

2
Sinzepf 9 (52)

B. Spin-dependent charge-dependent interactions

The generalization of part A of this section to
spin-dependent charge-dependent interactions oc-
curs through Eq. (25). Instead of the summation
in Eq. (25) including singlet and triplet terms with
no distinction between the n-n, n-p, and p-p sin-
glets, it now-distinguishes the various singlet
pieces. The completely symmetric part of the
%He wave function in momentum space generalizes
to

s (&, D) =W 4@ L y® (53a)

W_opn gntp(k)urt;p(p) +%grfp(k)uZp(P) +§‘gpp(k)upp(f))
r=h, B +3p? + ME,

(53b)

as given by Gibson and Stephenson’® (for °H, every-
where exchange p—#).2° When the n-p singlet

and p-p singlet interactions are taken to be identi-
cal, Eq. (53b) reduces to the standard charge-in-
dependent form of Sitenko and Kharchenko.?* The
generalizations in Eqs. (46) and (48) follow direct-
ly from changing the 3}%.,. The coefficient matrix

for the case of two protons and a neutron becomes

L1 _1
Ctt Csnpt Csppt 4 -2 =2
3 1 1
[Cn n’] = ctsnp csnps"p Cs”s"p = T4 4 2
C C. C,
ESpp SmpSpp SppSpp -2 F o0

(54)

IV. RESULTS

In our calculations of the two-body photodisinte-
gration 90° differential cross sections for *He and
®H, several sets of two-nucleon parameters have
been used to generate the three-body ground-state
and continuum wave functions. All sets are ob-
tained by requiring the separable interactions to
reproduce various values for the two-nucleon ef-
fective-range parameters. Table I lists these pa-
rameters along with the corresponding two-nucleon
scattering lengths and effective ranges.?? The
binding energies for the three-body ground states
predicted on the basis of several different combi-
nations of these interactions are given in Table II,
along with the charge radii computed from the spa-
tially symmetric part of the corresponding wave
function. For completeness, we have included the
normalization constant N, the values of the pa-
rameters obtained in fitting the spectator functions
u(p) to the analytic form const./(1 +a@p?+Bp*+¥p°),
and C2, the square of the asymptotic normalization
constant for the nucleon-deuteron tail in the
ground-state wave function. (See Appendix B for
the definition of C and its computation.) We give
the same information for two wave functions where
the triplet two-nucleon strength parameter has
been weakened slightly to reproduce the experi-
mental *He and ®H binding energies. This adjust-
ment partly simulates the effect of the tensor com-
ponent of the triplet two-nucleon interaction which
we have not included. Also shown in Table II are
the wave functions of Barbour and Phillips which
they label 1.2®

The first computation carried out was to assure
that our results were consistent with those of Bar-
bour and Phillips. To this end, we used their *He
ground-state wave function given in Table II plus
two-nucleon parameters in the final state which
were identical to theirs for the triplet, set III in
Table I, and only slightly different for the singlet.
The parameters they used for the two-nucleon
singlet correspond to a=-20.34 fm and 7,=2.7 fm,
whereas ours were n-p singlet set II in Table I.
This slight deviation from their singlet parameters
makes essentially no difference in the final result,
since the calculation is not sensitive to small
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TABLE I. Parameters for separable interactions.

Strength Inverse range?® Scattering length Effective range

Interaction A (fm™3) B (fm™) a (fm) 7y (fm)

s wave n-p triplet® I 0.3815 1.406 5.423 1.761
o 0.220 1.15 5.68 2.09

oI 0.391 1.418 5.397 1.747
s wave n-p singlet I 0.1445 1.153 —23.715 2.74
I 0.148 1.15 —21.25 2.74

s wave p-p singlet 0.1534 1.223 —17.823 2.794
s wave n-n singlet 0.1323 1.130 -17.0 2.84

2 The standard s-wave form for the functions g,(p), Eq. (27), is used, i.e., &n(®)
= @2 + 3"2) -1,
b The deuteron binding energy is 2.225 MeV.

changes in the final-state parameters. There are kinematics to reflect the difference in the *He and
small differences between our result and theirs H photoreaction thresholds, everything else re-
which are probably attributable to numerics. We maining the same; (2) the differences which occur
shall not show the comparison since it has already when the ground-state wave function is obtained
appeared in the paper by Chang, Dodge, and from an average of the singlet and triplet two-nu-
Murphy on the *He(y, d)*H reaction between 10 and cleon interactions (mixed-symmetry component
21 MeV, 10024 identically zero) as opposed to distinguishing the
In our first set of new computations, three com- singlet and triplet strengths; (3) the result of arbi-
parisons are made: (1) the effect of changing the trarily changing the binding-energy parameter

TABLE II. 3He and °H ground-state wave functions.

Binding  Charge

energy radius N,y Spectator function parameters
Wave function ? Interaction set (MeV) (fm) b c? (fm™1) © Const. o B Y
Symmetric Average of n-p 9.33 1.75 2.67 0.3235 1.0 3.670 1.469 0.1620
Tabakin triplet and
singlet sets II
Tabakin n-p triplet 10.1 1.74 3.32 0.2268 1.0 4.255 1.930 0.1538
and singlet 0.4907 2.989 1.170 0.0984
sets II
Charge dependent  #-p triplet I 10.34 1.65 2.60 0.3163 1.0 4.142 1.651 0.1037
M n-p singlet I 0.3207 2.730 0.7838 0.0655
n-n singlet 0.2965 2.690 0.7582 0.0650
Charge dependent  n-p triplet 8.49 1.74 2.58  0.3063 1.0 4.617 1.801 0.1208
A=0.3608 fm™3
SH n-p singlet I 0.3520 3.181 0.8879 0.0815
(adjusted) n-n singlet 0.3249 3.129 0.8545 0.0809
Charge dependent  n-p triplet 7.71 1.77 2.39 0.3159 1.0 5.035 1.830 0.1272
A=0.3589 fm™!
3He n-p singlet I 0.3485 3.403 0.8662 0.0868
(adjusted) p-p singlet 0.3272  3.207 0.8090 0.0788
Barbour-Phillips oo 8.49 1.63 3.84 0.3611 1.0 5.464 2.545 0.3103
I-°H 0.3097 3.949 1.067  0.0748
Barbour-Phillips e 7.71 1.87 3.26 0.3721 1.0 6.151 2.888 0.3532
I-*He 0.3095 4.310 1.170 0.08214

2 The charge radius, C?, and N; are computed from the spatially symmetric component of the wave function, except
for the charge radii of the Barbour-Phillips wave functions which include the mixed symmetry component.

b We assume the proton charge radius is 0.8 fm and the neutron charge radius is zero. Barbour and Phillips take the
proton charge radius to be 0.848 fm and the neutron mean-square charge radius to be —0.1258 fm?. The experimental
charge radii of *He and °H obtained by Collard et al., are 1.87+0.05 fm and 1.70+0.05 fm, respectively (Ref. 25).

¢See Eqgs. (53).
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from the theoretical value to the experimental val-
ue. These results are presented in Fig. 2 where (1)
is seen by comparing curves I and II, (2) by com-
paring I and II, and (3) by comparing IIT and IV.
The ground-state wave functions used in calculat-
ing these curves are given in the figure caption
while the charge-independent final -state two-nu-
cleon parameters remained the same throughout
and were n-p triplet and singlet sets II.

Next, we investigated the differences to be ex-
pected between *He and *H; initially using the Bar-
bour-Phillips *He and *H wave functions, and after
that, with our charge-dependent (adjusted) wave
functions. Figure 3 displays the results obtained
with the Barbour-Phillips wave functions where
curves I and III are for *He and curves II and IV
for *H. The final-state parameters are n-p triplet
and singlet sets II for curves I and II, and the
charge-dependent combinations made from #-p
triplet and singlet sets I combined with either the
p-p or n-n singlet parameters depending on wheth-
er the initial state was *He or 3H, respectively.
Thus, besides being able to compare differences
between *He and °H by comparing either curves I
and IT or III and IV, respectively, we can estimate
the effect of using charge-dependent two-nucleon
interactions in the final state by comparing either
curves I and IIT or II and IV. In Fig. 4, we display
our curves obtained with the charge-dependent fi-
nal-state parameters and the *He and *H charge-
dependent (adjusted) wave functions. This repre-
sents our best estimate of the difference to be ex-
pected between the *He and *H two-body photodisin-
tegration cross sections.

™
100~ /l\ =

do/d) 90° (p.b/sr)
2]
o

40| —
20 —
o | 1 1 L | 1 |
10 20 30 40
E, (Mev)

FIG. 2. Two-body 90° photodisintegration cross sec-
tion for () *He(y,d), symmetric Tabakin ground state,
an *Hy, d), symmetric Tabakin ground state, (II)
$He(y,d), Tabakin ground state, and (IV) °He(y, d),
Tabakin ground state with binding-energy parametédr
arbitrarily set to the experimental value. The two<nu-
cleon final-state parameters are the same throughout;
i.e.,n-p triplet and singlet sets II. '

120~

100~

do/dQgge (pb/sr)
(2]
7

E, (Mev)

FIG. 3. Two-body 90° photodisintegration cross sec-
tions with the Barbour-Phillips ground states. Curves I
and IIT are *He, while II and IV are H. The two-nucleon
final-state parameters are n-p triplet and singlet sets
1I for curves I and II, and the charge-dependent sets
made from z-p triplet and singlet sets I combined with
either the p-p or n-z singlet parameters for curves III
and IV, respectively.

The difference between our fully charge-depen-
dent calculation and the Barbour-Phillips calcula-
tion for *He is displayed in Fig. 5 along with the
available *He(y, d)p data. The curve with the high-
est peak is the same as curve I in Fig. 3 which is
obtained from the Barbour-Phillips *He ground
state. The point tc note is the region of agreement
with the experimental data for the two different
curves.

The final result we present concerns the makeup
of the full photodisintegration amplitude. Barbour
and Phillips have already pointed out that treating
the nucleon-deuteron continuum state exactly, as

120~ —

00

80

do/dfgqe (pb/sr)
S}
o)

FIG. 4. Two-body 90° photodisintegration cross sec-
tions for (I) 3He and (I) 3H obtained with the same charge-
dependent final-state parameters as in curves III and IV
of Fig. 3 along with the 3He and °H charge-dependent (ad-
justed) wave functions.
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FIG. 5. Comparison of fully charge-dependent calcula-
tion (curve I, Fig. 4) and the Barbour-Phillips calcula-
tion (curve I, Fig. 3) with the available 90° *He(y, d)p
data. The data are from @) Ticcioni ef al., Ref. 11,

(A) Berman ¢t al., Ref. 4, and (+) Stewart ef al., Ref. 3.

we have done throughout, leads to an increase at
the peak in the predicted cross section of ~25%
compared to neglecting the interaction between the
nucleon and deuteron or using the experimental
nucleon-deuteron phase shifts to represent this in-
teraction. This raises the question of what mecha-
nism is responsible for this enhancement. One at-
tribute of our method for dealing with the photo-
disintegration amplitude, Eq. (46), is the ease with
which we can handle this question. Utilizing the
fact that 7, in Eq. (46) has a pole representing the
deuteron bound state, we break M £(3p%/4M

—v?/M, D) into its basic parts:

2 2 2 2
Mé=€-£{[1+z'8"31"2 pxi(po.0i 35 1))

M

3p? 2
)

+ off-shell triplet + singlet term}. (55)
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The first term represents the “Born” amplitude,
i.e., no interaction between the nucleon and deu-
teron in the final state, and the second term is the
correction to this due to the on-shell p-wave nu-
cleon-deuteron rescattering. The third and fourth
terms represent off-skell contributions to the nu-
cleon-deuteron rescattering. In Table III, we list
the contributions of these various pieces of the
amplitude as a function of incident y-ray energy.
The values given are for the *He ground state of
Barbour and Phillips with the parameters men-
tioned in the second paragraph of this section.

V. DISCUSSION

The four main aspects of comparing *He and *H
two-body photodisintegration are the different
thresholds, the different binding energies, the ef-
fect of charge-dependent nuclear interactions, and
the effect of the Coulomb interaction in the *He
case. When the *He and °H ground-state wave
functions are identical, completely spatially sym-
metric %S, ,, forms (symmetric Tabakin in Table
II) and the two-nucleon interactions in the final
state are charge independent, the effect of requir-
ing different thresholds is apparent. In Fig. 2,
curve II for °H peaks ~1 MeV later and ~5% higher
than for *He, curve I. This remains the case when
the three-nucleon bound states are identical, but
obtained by dropping the mixed-symmetric S com-~
ponent (Tabakin in Table II). The small difference
between the symmetric Tabakin, curve I, and the
Tabakin, curve III, is mainly attributable to their
different binding energies, but indicates that the
completely symmetric Tabakin wave function is a
good approximation to the symmetric part of the
Tabakin wave function. When the ground-state
wave functions are designed to have the experimen-
tal binding energies and to predict the experimen-
tal charge radii,? the relative location with respect
to excitation energy of the cross-section peaks re-
mains the same, but the *He cross section now
peaks ~6% higher than *H. This effect, depicted by

TABLE III. Contributions to two-body photodisintegration amplitude (fm®°) [the over-all factor eMN, has been re-

moved from the amplitudes, see Eqs. (42) and (46)].

E

Born plus

Off-shell singlet

on-shell triplet

Full amplitude

(Me);/) Born On-shell triplet Off-shell triplet
8 $2.711 +0.218 — 20.025 +0.009 —20.037
10 2.403 —0.066 — 70.159 —0.305+ ¢0.018
12 12.047 —-0.197-4¢0.275 -0.511 +20.167
15 21.610 —-0.259~-70.331 —0.595+40.318
20 1.122 —0.254 - 40.280 —0.536 + 20.356
25 10.821 —-0.206-170.208 -0.411 + 20.319
30 20.623 —0.158 - ¢0.153 —0.316 + 20.256
35 20.486 —0.130—-70.115 —0.259 + 20.222

+0.029 +120.490
—0.416 +20.696
—0.691 +£0.494
—0.760 +£0.180
—0.614 -140.078
—0.449-140.174
-0.329-140.180
—0.258 —70.180

+0.218 + ©2.686
—0.066 + 72.244
—0.197+21.772
-0.259 + 41.279
—0.254 + 70.842
—0.206 +70.613
—0.158 + 20.470
—0.130 +0.371

+0.256 + 3.139
-0.177 + 22.960
—-0.377 + ¢2.433
—0.424 + 41.777
-0.332 + £1.120
—0.244 + 20.758
—0.171 + ¢0.546
-0.129 + 70.413
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curves I and II in Fig. 3, is related to the smaller
binding energy and larger charge radius of *He
compared to *H. Charge-dependent two-nucleon
interactions in the final state, which include ap-
proximately the Coulomb part of the p -p interac-
tion, do not alter this result as can be seen by
comparing curves III and IV of Fig. 3. Their effect
is to push both the *He and *H cross-section peaks
to a slightly higher excitation energy. With both
the initial and final states obtained from charge-
dependent two-nucleon interactions, the differ-
ences between the *He and °H cross-section pre-
dictions largely disappear. The two curves in Fig.
4 are almost identical, being only displaced with
respect to each other at low energy due to the dif-
ferent thresholds. Therefore, we do not predict
measurable differences between the 90° two-body
photodisintegration cross sections for *°H and *He.

One might argue that the above prediction loses
some validity due to our representation of the p-p
interaction by the low-energy (Coulomb uncor-
rected) p-p scattering. Moreover, compared to
the Hendry-Phillips'* approximation for including
Coulomb effects in just the final state, we predict
only a 1% reduction in the cross section at the peak
(compare curves I and III of Fig. 3) to their 7% re-
duction. Certainly, an error is made with our ap-
proach, but the results of Gibson and Stephenson'®
indicate that it is not large. It emphasizes the need
for developing within the Faddeev formalism a re-
liable method for including Coulomb interactions.

In Fig. 5, comparison of our charge-dependent
calculation (*He curve of Fig. 4) and the Barbour -
Phillips result (curve I of Fig. 3) with the available
90° two-body photodisintegration data indicates fa-
vorable agreement with the former. The Barbour-
Phillips curve peaks at ~118 ub/sr and the charge-
dependent result at ~95 ub/sr, whereas the experi-
mental data cluster at a value somewhat less than
90 pb/sr. Beyond E, =20 MeV, the Barbour-
Phillips curve agrees with the data. In contrast,
the charge-dependent calculation peaks somewhat
above the data and tends to remain slightly above
the data in the region from 15 to 40 MeV. We con-
jecture that proper inclusion of the tensor force in
our triplet interaction, for both the initial and final
states, would lower our results, as it did in Hen-
dry and Phillips,* and lead to better agreement
with the 90° data.

Why do we obtain a lower value for the peak
cross section than Barbour, Phillips, and Hendry?
Clearly, from the above discussion, the answer
lies wholely within the ground-state wave function,
since the charge-dependent effects in the final state
are small. The ground-state wave functions are
essentially identical except for the spectator func-
tions. The Barbour-Phillips spectator functions

fall off more rapidly in momentum space than the
ones obtained from solving Schrédinger’s equation
(see Table II). This means the Barbour-Phillips
ground-state wave functions contain more low-mo-
mentum components, or equivalently, place more
emphasis on the asymptotic coordinate-space re-
gion; whereas, our spectator functions contain
more intermediate momentum components and thus
emphasize the asymptotic coordinate-space region
less. In fact, we were unable to obtain a good fit
to our numerical tabulations of the spectator func-
tions with a single-parameter double-pole form
like that of Barbour and Phillips.?¢

The strong emphasis on the asymptotic region
by Barbour and Phillips arises from their deter-
mination of the spectator function parameter by
the trinucleon charge radii. This emphasis mani-
fests itself in the large values of C?2 obtained for
their wave functions: C2(*H)=3.84 and C2(°He)
=3.26. Our charge-dependent (adjusted) wave func-
tions yield®” C2(*H)=2.58 and C?(®*He)=2.39 with the
charge radius of *H predicted to be 1.74 fm and that
of *He to be 1.77 fm, which are within the uncer-
tainty of the symmetric average of the experimen-
tal radii (see Table II).?® The point is that separa-
ble-model three-body wave functions can be ob-
tained which do not give values of C? greater than
those obtained from dispersion-theory methods,
while remaining compatible with the charge radii.
Dispersion methods yield C2(*H) values as follows:
(1) forward dispersion relations (2d)*®*—2.4+0.4;
(2) partial-wave dispersion relations®®*—2.6+ 0.4
and 3.4; and (3) conformal -mapping method*°—
~2.8. Kim and Tubis® predict C2(*H)=2.86+0.03
with a triton wave function obtained from the Reid
soft-core potential which predicts that the binding
energy of *H is 6.70 MeV. C2(®He) is more elusive
due to the additional complication of the Coulomb
interaction, but the value of C%(®*He)=2.88 ob-
tained by Kisslinger® with the conformal-mapping
method applied to n-*He scattering is probably the
most reliable. Clearly, our predicted values of
C? are consistent with values extracted from the
experimental data, whereas those of Barbour and
Phillips are considerably larger. This correlates
closely with the difference in the peak values of the
90° cross sections.?®

The last point we discuss concerns the mecha-
nism responsible for the ~25% enhancement at the
peak of the 90° cross section due to final-state re-
scattering. Table III clearly indicates that includ-
ing only the on-shell nucleon-deuteron rescattering
does not enhance the cross section, but actually
decreases it ~10%. Adding the off-shell triplet
does not make a significant difference either. The
enhancement arises solely from the off-shell sing-
let rescattering piece. Pictorially, this piece cor-
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responds to the three-body nucleus absorbing an
E1 photon, then disintegrating into a propagating
intermediate state composed of a singlet corre-
lated-pair plus nucleon which rescatter and emerge
as an on-shell nucleon plus deuteron state. The
large magnitude of this amplitude compared to the
off-shell triplet can be understood by comparing
the X, and X,, equations, Eqs. (48)-(51). Note
that C,,=-3C;;. This leads to ReX,,~—-4ReX,,
and |[ImX,,|~|ImX,, | ~i|ReX,,| in the region
where the major contribution to the integral terms
in Eq. (46) occurs, which combined with ®,< @
and 7,~T,, leads to the dominance of the singlet
rescattering effects when compared with the triplet
rescattering effects.

VI. CONCLUSIONS

In summary, the main conclusions from the
previous section are as follows:
(1) The *He and *H 90° photodisintegration cross
sections are essentially identical in shape, only
displaced ~1 MeV with respect to each other due
to the different thresholds, when both initial and
final states are treated consistently.
(2) The peak value of the *He(y, d)p 90° differential
cross section is predicted to be ~95 ub/sr.
(3) Predictions for the *He(y, d)p cross section and
the square of the asymptotic normalization con-
stant for the nucleon-deuteron tail in the ground-
state three-nucleon wave function are sensitive to
the form of the spectator functions in the ground-
state wave functions based on separable potentials.
(4) The dominant mechanism contributing to the
final-state enhancement at the peak of the *He-
(v, d)p cross section is the E1 absorption of a pho-
ton by *He, disintegration into an intermediate
state composed of a nucleon plus singlet correlated
pair, and subsequent rescattering to emerge as an
on-shell proton plus deuteron.
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APPENDIX A: NUMERICAL METHODS

We numerically solved the coupled integral equa-
tions, Eq. (48), for the half-off-shell nucleon-cor-
related-pair amplitudes using standard contour-
rotation techniques.?* The variables p’ and p” are
rotated from the real axis into the fourth quadrant:

p'=p’e®andp”—~p”e~*® The rotation angle & is
limited by the singularity in the inhomogeneous
term, Zi.(p,p’;3p%/AM —-vy?/M), coming from the
energy denominator p2+p'2+pp’x—-2=0. To avoid
this singularity, the rotation angle must be chosen
such that

<I><tan‘l%. (A1)

Having obtained the amplitudes X},.(p,p’e™%
3p2/4M —y%/M), we compute the amplitude
ML(8p?/4M —y*/M, D) from them by rotating the p’
integration in the second term on the right-hand
side of Eq. (46). This is convenient since the
bound-state pole of 7, is avoided. However, this
rotation is possible only if no singularities of 7,
or ®, interfere. It is easy to show that this is the
case for 7,; moreover, that fact is used in solving
Eq. (48). However, the ®, are more complicated.
Using the fact that the spectator functions, i.e.,
the u(p) in Eq. (53b), can be fitted very accurately
with analytic forms of the type

(L+ap®+Bp* +7p®+0p") ™,
we break @, into a sum of two types of terms:
those that require only a % integration (k=|k|)
and those that require both a % integration and an
angular integration [see Eq. (42)]. Assuming
p'—=p’e”*® we found that if the k integration in
those terms which do not involve the angular inte-
gration are rotated 45°, i.e., k—ke™*"/% no singu-
larities are encountered, and the singularities in
the angular-integration terms are avoided by ro-
tating % the same as p’, i.e., k~ke % Thep’ ro-
tation is predicated on the fact that there is no
contribution from the circular arc at infinity. For
the integral in Eq. (46), this can easily be shown
to be the case.

Gaussian and Gegenbauer®® quadratures were
used to do the angular and momentum integrations,
respectively. Care was taken to check the sensi-
tivity to the contour rotation angle and the number
of integration points. With ® chosen to be half its
maximum allowable value, we estimate our nu-
merical error to be less than 2%.

APPENDIX B: RELATIONSHIP OF R AND C*

Near the triton pole, the n-d center-of-mass
scattering amplitude is dominated by a single term:

f z_zﬂz 4ﬂ 2 ]< nd;a,mdmnl Vlz‘SH)Iz
nd 3 q® +4MB,/3 ’

(B1)

where V,, is the neutron-neutron interaction,
(nd;q, mym,| is the antisymmetrized plane-wave
state describing the relative motion of neutron
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(spin projection m,) and deuteron (spin projection
m,) with momentum §, and B, is the binding energy
of the neutron and deuteron to form the triton.
From this expression, we define the residue (c.m.)
at the triton pole as

_(4ME,
R-—<3)21r

X [ | (n 4; g, mamnl Via |3H> Igpinav ],,2 ==4MBy /3 *

(B2)
The amplitude in Egs. (B1) and (B2) can be written
as

(nd; q, mdmnl Vi l °*H)

=—V3b 3 . g (nd; q|*H)
- 2 Tmemi\ 4pg 2 > 4

(B3)

by use of Schrodinger’s equation. The overlap in-
tegral in momentum space is

;1) = [ a%s,(TYE D). (B4)

From Egs. (B2)-(B4), Egs. (53) for °H, and the in-
tegral equations which the spectator functions u(p)
satisfy (see Gibson and Stephenson’®), we can de-
rive an expression for the evaluation of R. The
point to note from the integral equations is that

uf , (¢) has a pole at ¢°=-4MB,/3. In the limit

q®~—-4MB,/3, we obtain

__ (417?/13!3 N2>2

X

J; pEdp [Itt(ilj-;p )u;tm(P ) '*'Its(i /—pr)ufw(p )
2

+ 21,0 1y D V(D)) ' (B5)

where i = (4MB,/3)*/2, It can be shown that the
quantity within the absolute-value bars is a real
number.

A quantity directly relatable to R is the asymp-
totic normalization constant for the neutron-deu-
teron tail in the *H wave function denoted by the
letter C. It is defined as

\I,S(" *) C ﬁ l/ze_-ifq) (y)—l- X” ’
olr, P —_’lﬂ*’” <2ﬂ> o NN n,

(B6)

where ®,(7) is the normalized coordinate-space
deuteron wave function. After Fourier transform-
ing the momentum-space three-body wave function
to coordinate space, we take the |5 | = limit and
extract the asymptotic behavior described by Eq.
(B6). We then obtain

Cc*=|R|/3p. (B7)
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