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particle*
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Relativistic and retardation corrections of lowest order are evaluated for the photoabsorption
Thomas-Reiche-Kuhn (TRK) sum rule of a particle bound in a potential. It is found that the

retardation corrections partially cancel and the remainder is canceled by part of the relativistic

corrections. The latter corrections depend on the Lorentz-transformation properties of the potential. The
complete integrated photoabsorption cross section including first-order relativistic corrections, is found
to be equal to the high-energy limit of the Cornpton amplitude calculated by Goldberger and Low, a
result which is the dispersion-relation form of the TRK sum rule. A heuristic derivation of the latter
results is presented.

Following the pioneering work of Kramers' and
Kronig' on the effect of causality on the index of
refraction of a medium and the suggestion of
Kronig' that the effect of causality on the S ma-
trix may be important, Gell-Mann, Goldberger,
and Thirring' derived the analytic properties of
the forward scattering amplitude of photons on

any system. They used the strong requirement of
microcausality in the form that the Green's func-
tion of the physical system must vanish when the
arguments have a spacelike separation. Their
result, that the forward scattering amplitude is
analytic in the upper-half plane of the photon-en-
ergy variable ~, allowed them to write a disper-
sion relation for the amplitude in the usual way.

Because an unsubtracted dispersion relation for
the non-spin-flip amplitude (the only one in which
we are interested) is inconsistent with the low-
energy theorem for Compton scattering and the
optical theorem, and because of convergence dif-
ficulties, they wrote a once-subtracted dispersion
relation:

(d
Ref(~) =Ref(0)+ +P,',', d~'

0

The symbol P denotes the principal value integral
and the optical theorem for photoabsorption has
been used to eliminate the imaginary part of f.
Of particular interest is the co-~ limit, if the
integral in Eq. (1) converges:

Our purpose is to examine the relationship (2)
for the special case of a single particle bound in

a potential. The dynamics wil. l be treated semi-
relativistically, that is, including (~/c) correc
tions to the usual nonrelativistic dynamics. This
will allow us to calculate Re[ f(0)] and 1'o,b, ,

while the remaining quantity Re[f (~)] will be
taken from the work of Goldberger and Low. '
It shoul. d be noted that because our treatment is
semirelativistic it is not possible to neglect the
effect of pair production in the static field of the
potential (virtual pair production and annihilation
are already included in the A'/2m "seagull" term).
For this reason, the scattering amplitude of Eqs.
(1) and (2) is really the amplitude for scattering
of light by the particle bound in the potential (our
"atom") minus the amplitude for light scattering
in the static potential field in the absence of the
bound particle. This is fully discussed by Erber. '

Our model is a Dirac particle of mass m bound
in a potential V, +PV„, where V, is a world-scalar
potential and V, is a vector potential (e.g. , a Cou-
lomb potential). We also introduce the vector
electromagnetic potential A.

Bpi =Hg=n (p —eA)+—P(m+ V, )+ Vg .

Performing a Foldy-Wouthuysen reduction' we find
to order (1/m)' [reckoning a potential as (1/m) for
a weakly-bound system] and defining w=p —eA

Ref (™)=Ref (0)—
21r' o~b, ((d )d(d (2) (4a)

This sum rule for photoabsorption now depends on
the difference of the real part of the scattering
amplitude at infinite and zero energies. The lat-
ter amplitude is easy to calculate and is known
from general principles, while the former is dif-
ficult to calculate. '

~&2 &4
H'= rn + —,+ V, + V„+,v~ V„—

8 2 g; [~, V].}

, g [V(V„—V)xTr+2eV, VxA]+H „+H„
4m

(4b)
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plus additional terms of order (1/m') independent
of V which vanish for constant A and which will
not be needed. The quantities II „and H„are
the usual magnetic and electromagnetic spin-orbit
interactions. ' For a spinless particle a similar
form results, without the spin-dependent terms
and the V2V„ term.

The integrated photoabsorption cross section
can be written in the form

is obtained from Eq. (4b) by using J, =- —5H'/5AlA 0

=z[H„r]; one obtains

m m 2m' 2m'

Using this current operator one easily finds' the
unretarded contribution to S (denoted So)

S.=&ol[r ~, [H„r e]]lo&

S = z o b, ((d)d(d
2n' a o

=—-&ol, (p e)'+, + —,v l o& .
m m3 2m m' (lo)

I &&I e J(k, ) I 0& I
', (5)

(6)

Because &u„ is a quantity presumably of order (1/
m) we can expand the exponential and keep terms
of second order in the expansion. In these "re-
tarded" terms we use the nonrelativistic current
operator and include the spin (magnetic) part. We
obtain

J (k) =—p+&8 + [p, k r}
m 2m

gxk — (p, (k r) }— (oxk)k r,
2m 4m ' 2m

where the second term (4J) is the unretarded cur-
rent from the relativistic corrections of order
(1/m'). The third term is the (retarded) E2 and
Ml contribution, the next term is the magnetic
Ml term while the last two are retarded E1 terms
(plus other multipoles which do not contribute).
Calculating those parts of Eq. (5) which involve
retardation terms in the standard way' we find

s„,=-&ol, (k r)'(~ v)'v, l o&

+(ol, (e p)'+, (k r)'(e v)'v, l o&,

where Vo = V, + V„and the two terms are the re-
tarded El and E2 contributions [the M1 parts
vanish as does the spin-orbit contribution men-
tioned below Eq. (4b)]. The unretarded current

where ~„ is the energy of the state l Ã& relative
to the state

l 0), i.e., the eigenvalues of H with A
=0 (denoted H, ), Zis the photon polarization vector,
k„ is the photon momentum corresponding to an
energy ~„(k„=cd„k), and in terms of the current
operator Jg

In oxder to check the consistency of our calcula-
tion, we also calculate the Compton amplitude at
zero photon energy, which is known to vanish for
this model4 because of general principles. This
amplitude is the sum of the "seagull" contribution
and the part due to virtual excitation of the particle
in the potential. By means of a standard calcula-
tion the latter contribution to f can be shown to be
given by SD. The seagull piece is determined in
the standard way to be

f„,=-&ol '- 2

&A A

=-(Di(z —') sr io&

=-(Ol[r Z, [H„r Z]]lO& .

Thus fsG is the negative of So and their sum, which
is the zero energy Compton amplitude, vanishes,
as it must.

There is considerable cancellation among the
various parts of S(S„, and So). The potential terms
cancel in S,„, . The remaining term cancels a part
of Eq. (10) and the complete result from Eq. (2) is

=S -=S„, +S, = [m+&p'/2m)+(V, &]

(12)

Note that V„does not contribute to S. The result
(12) for f (~) was originally derived by Goldberger
and Low from first principles [see their Eqs. (2.15)
and (2.18) for the case of a spin-0 particle and the
analytic results 3.2 and 3.4 for the special case of
a spin- —, particle in a 1/r potential, which can be
shown to agree with (12)]. In an early paper, ' the
result (12) for the sum rule was worked out for
the special case of a vector potential. We see that
to the order we have worked it out, Eq. (2) is self-
consistent, our sum rule results equalling the

f (~) calculated by Goldberger and Low.
The relationship (12) is unlike the original as-

sumption of Gell-Mann, Goldberger, and Thirring,
which was that S should be just 1/m. We can rath-
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er easily see why this assumption was unjustified.
The relativistic increase of mass with velocity
seen in Eq. (4b) means that the Compton amplitude
should be I/E=1/m —P'/2m' rather than just 1/m,
since the bound particle is moving with a velocity
= p/m when struck by the photon. Another way of
stating the result is that the effective mass of a
particle with a momentum-dependent Hamiltonian
is given by I/m, « = 2(s/H')H'jA o=l/m —p /2m'
—V/m' which gives the kinetic mass increase
term and an additional term proportional to the
scalar potential. This term, which is also seen
in Eq. (11) was originally discussed in a simi1ar
context by Lipkin and Tavkhelidze. 'o In Eq. (3)
we see directly that (m+ V) can be regarded as
an effective mass. When a reduction is made of
Eq. (3) in powers of (1/m), one effectively expands
in terms of the quantity m+ V, . The contribution
of V, to the magnetic moment interaction is ex-
plicit in Eqs. (4b), (v B/2m) (V/m). For all
these equivalent reasons one expects V, to enter

into the Thompson cross section. Indeed, both
p'/2m and V, corrections appear in the relativis-
tic corrections to the nuclear magnetic moment
operator and the pion-absorption pperator fpr
the reason just mentioned.

In summary, we wish to make four points.
(1) The potential parts of the retardation correc-
tions cancel out but the kinetic part of the retarda-
tion results remains. (2) The relativistic correc-
tions are probably at least as large as the retarda-
tion corrections. For a barely-bound particle,
interacting with a scalar potential the complete
correction cancels, the relativistic correction
just cancelling the retardation term. For a par-
ticle interacting with a vector potential, the rel-
ativistic correction is 2.5 times as large as the
retardation correction. (3) The relativistic cor-
rections depend on the dynamical details. (4) Be-
cause of the results of Ref. 1 the various pieces
of the dispersion relations (2) can be calculated
and are consistent with each other.
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