Symmetry coefficient and the isospin-spin dependence of the single-particle potential

K. M. Khanna and P. K. Barhai

Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi, India

(Received 27 June 1974)

The symmetry coefficient a_x for nuclear matter with a given neutron excess has been calculated within the framework of the independent particle model using two effective interactions determined in an earlier paper. The interactions referred to as Set 1 and Set 2 have been found to give $a_z = 44.89$ MeV and $a_r = 43.16$ MeV, respectively. The isospin-spin dependent part of the single-particle potential U_1 has also been estimated using an explicit expression due to Brueckner and Dabrowski. The corresponding values of $U_1(k_F)$ are 158.48 and 102.64 MeV for the interactions of Set 1 and Set 2, respectively. These values of a_r and $U₁(k_F)$ compare reasonably well with those obtained by others.

We have calculated the symmetry coefficient a_{τ} using the two effective interactions.¹ The rearrangement contribution $\Delta \epsilon_R$ to a_τ has been calculated using the approximations of Brueckner and Dabrowski² (BD). Since the isospin-spin dependence of the single-particle potential is closely related to the symmetry coefficient a_r , we have also calculated the isospin dependent part of the single-particle potential U , using an explicit expression due to BD.

For the neutron excess parameter $\alpha = (N - Z)/A$, the symmetry coefficient a_r is the coefficient of α^2 and, including the isospin flip term³ S, is given by

$$
a_{\tau} = \frac{1}{6} \frac{\hbar^2 k_F^2}{m} + \frac{1}{6} k_F \left(\frac{\partial U}{\partial k_m} \right)_{k_m = k_F} + S \,. \tag{1}
$$

For the interactions¹ of set 1 and set 2, S can be calculated. The value of $U(k_m)$ for the interaction of set 1 is

$$
U(k_m) = [-83.32 + 36.91(k_m/k_F)^2] \text{ MeV}, \qquad (2)
$$

and for the interaction of set 2 is

$$
U(k_m) = [-101.38 + 52.68(k_m/k_F)^2] \text{ MeV} . \tag{3}
$$

Equations (2) and (3) and the values of S when substituted in Eq. (1) will give an explicit expression for a_{τ} .

Since our interactions have intrinsic dependence on k_F , we must also add to Eq. (1) the rearrangement part of the symmetry coefficient $\Delta \epsilon_R$. Following BD, the rearrangement part of the symmetry coefficient is

$$
\Delta \epsilon_R = \frac{1}{2} (\Delta_0 \epsilon_R + \Delta_1 \epsilon_R), \qquad (4)
$$

where

$$
U_R(k_F) = 2Ck_F^{5}/9\pi^2 , \qquad (5)
$$

$$
\Delta_0 \epsilon_R = -\frac{2}{3} U_R(k_F), \qquad (6)
$$

$$
\Delta_1 \epsilon_R = 14Ck_F^5/27\pi^2 \,. \tag{7}
$$

The above expressions for both the sets of interac-

tions remain the same except for C , which is different.

For $k_F = 1.35$ fm⁻¹ which corresponds to the saturation density for the interactions, $¹$ the kinetic</sup> energy part of a_r is 12.77 MeV, $U(k_m)$ = 12.30 MeV $S=9.51$ MeV, $\Delta_0 \epsilon_R = -\, 8.24$ MeV, $U_R(k_F)=12.37$ MeV, $\Delta_1 \epsilon_R = 28.84$ MeV, $\Delta \epsilon_R = 10.30$ MeV, and consequently taking into consideration the effect of $\Delta \epsilon_R$, a_{τ} = 44.89 MeV for the interactions of set 1. For the interactions of set 2, $U(k_m) = 17.56$ MeV $S=6.62 \text{ MeV}, U_R(k_F) = 7.44 \text{ MeV}, \Delta_0 \epsilon_R = -5.96 \text{ MeV},$ $\Delta_1 \epsilon_R = 17.36$ MeV, $\Delta \epsilon_R = 6.2$ MeV and thus $a_r = 43.16$ MeV.

Following² BD, the single-particle potential U of a nucleon with momentum k_m to a linear approximation in the neutron excess parameter α is given by

$$
U(k_m^{\pm}) = U_0(k_m) \pm \frac{1}{4} \alpha U_1(k_m) . \tag{8}
$$

The relation between U_1 and a_r at the Fermi surface is²

$$
a_{\tau} = \frac{1}{6} \frac{\hbar^2 k_F^2}{m} + \frac{1}{6} k_F \left[\frac{\partial U_0(k_m)}{\partial k_m} \right]_{k_m = k_F} + \frac{1}{2} \left[\frac{1}{4} U_1(k_F) \right].
$$
\n(9)

In Eq. (9), $U_0(k_m)$ usually includes the rearrangement part U_R [see BD, Eq. (56)]. However, in our case, the inclusion of U_R in Eq. (9) will not make any difference as U_R given by Eq. (5) is independent of k_m . Thus it permits us to use $U(k_m)$ given by Eq. (2) and Eq. (3) for $U_0(k_m)$ in Eq. (9). Of course, it does not apply to Eq. (8), where U_R has to be included to get the correct neutron (proton) single-particle potential. The isospin part of the single-particle potential $U_1(k_F)$ for the interaction of set 1 and with rearrangement effects is 158.48 MeV. The values of a_r and $U_1(k_F)$ without reararrangement effects are $a_{r_{\text{av}}}$ =34.58 MeV and $U_1(k_F)_{\alpha}$ =76.08 MeV. Similarly, for the interaction of set 2 and with rearrangement effects, $U_1(k_F)$

264

11

=102.64 MeV. The corresponding values without rearrangement effects are $a_{\tau_{\text{nr}}}$ =36.96 MeV and $U_1(k_F)_{\text{pr}}$ = 52.96 MeV.

 $\overline{11}$

By considering a pure volume symmetry coefficient Green⁴ finds $a_r = 23.52$ MeV, whereas considering also a surface part of the symmetry coefficient, Green finds $a_r = 30.34$ MeV and Cameron⁵ finds $a_r = 31.45$ MeV. Dabrowski⁶ refers to the experimental value of $a_r = 28-32$ MeV. Our values of a_r are somewhat higher than those referred to above.

The value of the isospin dependent part of the single-particle potential $U₁$ is in close agreement with the upper limit of the known values of $U,(k_{F})$. An estimate of the difference between the neutron and proton single-particle potentials due to symand proton single-particle potentials due to sym-
metry effect for a large nucleus like ²⁰⁸Pb can be made using the value $U_1(k_F)$. For ²⁰⁸Pb $\alpha = 0.21$ and $\frac{1}{4}U_1(k_F)$ $\alpha = 8$ MeV, and $\frac{1}{4}U_1(k_F)_{nr}$ $\alpha = 4$ MeV for

- 1 K. M. Khanna and P. K. Barhai, Nucl. Phys. A215, 349 (1973).
- 2 K. A. Brueckner and J. Dabrowski, Phys. Rev. 134, B722 (1964).
- D. W. L. Sprung and P. K. Banerjee, Nucl. Phys. A168, 273 (1971).

the interaction of set 1. These values show that the 1s single particle energies for neutrons and protons in ²⁰⁸Pb should differ due to symmetry effect by about 16 MeV with rearrangement and 8 MeV with no rearrangement. This latter value is comparable to the 10 MeV value as calculated by Moszkowski. ' For the interaction of set 2, we get $\frac{1}{4}U_1(k_F)$ = 5 MeV, which is in excellent agreement with that calculated by Moszkowski. '

At the end we must mention that the agreements attained for a_r and $U_1(k_F)$ are very impressive in view of the apparent sensitivity of these quantities on the nature of the interactions used. The results may improve further if we suitably modify our interactions.

Financial assistance from the Atomic Energy Commision, Bombay, India, is gratefully acknowledged.

- 4A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958); Phys. Rev. 95, 1006 (1954).
- ${}^5A.$ G. W. Cameron, Can. J. Phys. 35, 1021 (1957).
- $6J.$ Dabrowski, in Theory of Nuclear Structure: Trieste Lectures 1969 (IAEA, Vienna, 1970), p. 131.
- ⁷S. A. Moszkowski, Phys. Rev. C₂, 402 (1970).