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The Bethe-Faddeev equations are set up in matrix form and solved for the *H nucleus. The two-body
g matrix is derived from a revised version of the Brueckner-Bethe-Goldstone formalism. Application to
the Reid soft core potential indicates that this interaction yields an eigenvalue very close to the

experimental binding energy of *H.
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I. INTRODUCTION

Calculations using the Brueckner-Bethe-Gold-
stone formalism have yielded very encouraging
results on nuclear matter and finite nuclei. The
literature on this subject has become extensive,
and excellent reviews of the early work are avail-
able.'™ The goal of such procedures is to perfect
the accuracy of the calculations until definitive
conclusions can be reached concerning the validity
of specific nucleon-nucleon interaction operators.

The purpose of this paper is to investigate a
method for calculating the ground state binding
energy of the three nucleon system which com-
bines the g matrix formalism with the Bethe-
Faddeev®'? equations, and which can be extended
to heavier nuclei. In order to attempt precise re-
sults for 3H, some elementary alterations of the
established procedures are made, which appear
to be appropriate for such a light nucleus.

II. FORMALISM

The nonrelativistic Hamiltonian for the three-
body system with general two-body forces V;; is
given in the familiar form,

H= Z T;+ Z Vii=Tem. - (2.1)
i i<j
Let us start by rewriting this Hamiltonian as
H=Hy+W-H" 2.2)

where we use the following definitions:

Hy=(#2m) Yy p%+ 9. U, (2.2a)
i i
W= Wy=3 (Vy-Uy) , (2.2b)
i<j i<j
Ui:%cuzmriz , (2.2(:)
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and

Zl]ijzéwzmz: (;i"A-l F,->2
i

i

- (Wm/24) 3 =T

i<j

(2.2d)

The form of Hamiltonian has been previously em-
ployed in perturbation calculations®*® on light nu-
clei. It does not represent any distortion of Eq.
(2.1), as one has simply rearranged terms.

The two-body g matrix can now be defined by

gijEWij*'Wij%gij ’ (2.3)
where

Q_ —__In)n|

e Zﬂ: o (Ho‘H—_f)'m') . (2.3a)

The prescription for /e used here differs from
that given by the linked cluster expansion. The
value of E in Eq. (2.3a) is given as the energy
eigenvalue which we seek. Consequently one is
generating the Brillouin-Wigner perturbation
series, which in the case for ®H does not differ
significantly from the Block-Horowitz’” expansion
for open shell nuclei. We must then continue to
generate the remaining terms in the Brillouin-
Wigner perturbation series, a point which must
be kept in mind for the remainder of this paper.

First we must compute the matrix elements of
g;; - It is notpractical to do this entirely by the
usual procedures. The difficulty is that W;; re-
tains U;; as well as V};, and Uj; is a very long
range potential. Hence if one attempts to com-
pute a correlated wave function corresponding
to W, directly from the Bethe-Goldstone equa-
tion, the wound function does not heal properly.
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This difficulty is nontrivial and actually essential
(in one form or another) to any attempt at pre-
cision when one is perturbing harmonic oscillator
orbitals into nuclear wave functions. Oscillator
wave functions have a Gaussian assymptotic form,
while the nuclear wave functions doubtlessly are
closer to an exponential dependence at large nu-
cleon-nucleon separations. A correction for this
must appear somewhere in the formalism.

As a first step in deducing g;;, we solve the
Bethe-Goldstone equation without U;; in reference
spectrum® approximation (@ set equal to unity):

y=p+et Vyy (2.4)
and then calculate
(elgfilery=Col Vyly) . (2.5)

Next one constructs the set of matrix equations,

/ Q 1)\ ,
gii=8h+& (‘”"‘)gu

e e
R 1\] ™ e
= [l_gij ?'E)} 8ii s (2.6)
where
e'=E -H,+H;™ +QU;;Q . (2.6a)

Equation (2.6) corrects the g matrix elements
for the neglect of the Pauli principle in Eq. (2.4).
Furthermore by inserting the term QU;;Q into e,
one inserts an infinite sequence of -U;; terms be-
tween any two V; terms:

1,

e @

e’ " e+QU;Q

9.9, 0.,0,0,9 .. @
e e e € e e

The only remaining correction is to include all
diagrams which begin or end with a -U;; term; so
the final expression for g;; becomes

Q -1 7 Q -1
8ij = <1+Uijg> £ij <1+E’Un

-u, (1+%UH>-1 . 2.8)

Equations (2.6)-(2.8) are solved simply by setting
up matrices for g;;, U;;, @, e, and ¢’ in an oscil-
lator basis. All indicated operations are then per-
formed by standard procedures of matrix multipli-
cation and inversion.® All matrices are of infinite
order, and consequently must be truncated at some
finite order. Truncations of this type are the only
approximations made in this study. The conver-
gence of such a procedure has previously been in-
vestigated by Sauer,'® who demonstrates that even

though matrices like that for QU;;Q (in his paper
it is actually @7Q) diverge, only a relatively low
order in the matrix is needed to obtain an accurate
value for the first few terms in the inverse. In
this investigation we have verified his conclusions.
This method may have application beyond the ex-
ample given here, in that it shows how an interac-
tion with both short and long ranged components
may be treated in the g matrix formalism. There
is a catch, however, and rather a big one. By in-
troducing long range components into W;;, one
may also have induced sizable three-body correla-
tions. Therefore a construction of the g matrix
such as we have above should never be attempted
unless one also intends to solve the Bethe-Faddeev
equations:

T3=g12+g12§(T1+T2) (2.9)

(and cylic permutations).

Our method of solution for Eq. (2.9) is very sim-
ilar to the method of solution for Eqgs. (2.6) and
(2.8) described above, and involves exactly the
same approximation. One already has g,,, @,
and e in matrix form, ready to apply the needed
operations.

The basis, in all of our matrix solutions, is set
up very easily. We use the Jacobi coordinates:

and
- 1 - -
R="7o (T, +T,+T,) . (2.10)

The orbital part of the basis then has the form
(bnlmn'l’m’:¢n1m(ﬁ)¢n’l’m’(z)¢ooo(ﬁ) . (2'11)

Quite naturally one wants to keep the center of
mass motion in the Os state, where it makes very
little trouble. One can then replace H;™ every-
where above by just 3%w. The ¢,; are just the
oscillator functions. The basis is completed by
first vector coupling the & together to obtain a
basis where the total number of oscillator quanta
(N=2n+2n'+1+1'), the total orbital angular mo-
mentum (L), and the orbital symmetry ([A]) are
good quantum numbers. Then one must vector
couple the result to spin-isospin vectors to obtain
a final basis which is antisymmetric under the in-
terchange of any two nucleons, and consistant with
the absolute quantum numbers of 3H. The process
has been previously described in detail by Aguilera
Navarro, Moshinsky, and Yeh."

An additional simplification is now possible.
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Since we consistently deal with an antisymmetric
basis we have

812=813=823=8 (2.12)

and

T, =T,=T,=t . (2.13)

Equations (2.12) and (2.13) hold so long as we
clearly imply that g and / stand for the matrix
elements of the operator, and are therefore just
sets of numbers. It is also important to note that
the three-body basis defining @ is used not only
in the Bethe-Faddeev equations [Eq. 2.9)] but also
in the Pauli correction to the two-body g matrix
[Egs. (2.6) and (2.8)]. Thus we consistently em-
ploy a “Brillouin-Wigner” Pauli operator, as op-
posed to the Brueckner definition of Q.

A pedantic point should be made here. When one
employs the three-body Pauli operator @, the
states P=1- @ are not all antisymmetric. Cer-
tainly one must prohibit scattering into such states,
and this must be accounted for in Eq. (2.6) when
one sets up the matrix for 1/e. Consequently the
Pauli corrected g matrix in this paper includes an
“antisymmetrization correction” which is general-
ly included in higher orders of the conventional
Brueckner-Bethe-Goldstone calculations.

Once this correction is included, the three cou-
pled Bethe-Faddeev equations reduce to just one
equation:

t=g+2g§t
Q\ -1
= <1—2g;~) t. (2.14)

The energy eigenvalue for %H is then given by
solving the implicit equation:

E = {000l Hy+3L(E)| @gg00) — 3H1w . (2.15)

III. RESULTS

The first question one must answer in perform-
ing the calculations is that of truncating the basis.
We attempted several experiments. For example
one can include only the [A]=[3] S states up to a
rather high value for the number of oscillator
quanta (N), or suppress all the P states. We
found such approximations often to be misleading.
It is very hard to put a value on the contribution
of a particular state because of the importance of
cross terms in the matrix inversion process.
Thus, for example, the contribution made by add-
ing on a particular state to the basis depends very
strongly on which states have gone before it. The
final procedure we decided on (and presented here)
is very straightforward. One simply takes all
states corresponding to a particular number of

oscillator quanta, and proceeds to include higher
N until one has convergence.

Results for the Hamada-Johnston (HJ)'? and
Reid'® soft core (RSC) interactions are shown in
Tables I and II. Values listed for N=0, of course,
include only two-body correlations. All numbers
are subject to a maximum computational error
of 30 keV, which could be removed by performing
the calculation in double precision.

Does the procedure converge as N is increased?
The binding energy changes by nearly 1 MeV when
one goes from N=4 to N= 6, which does not (at
first glance) instill confidence. There are several
points to be considered, however. First, let us
note that it is not possible to rigorously establish
convergence of a series without examining its an-
alytic properties. Even if the basis states in N=6
had made a very small contribution to the energy,
that in itself would be a poor reason to conclude
that the calculation has converged.

The contribution of the N=6 basis states is far
less impressive when one considers the size of the
function space involved. There is one state with
N=0 (not in @), 4 states with N=2, 10 with N=4,
and 19 with N=6. Thus when one goes from N=4
to N=6 one goes from a function space with 14
states in @ to a function space with 33 states in
Q. Since the size of the basis has more than dou-
bled, an increase in binding is not too surprising.
Furthermore, the comparatively small change in
energy at N=2 is characteristic of calculations in
an oscillator basis, as noted by other authors.®

In the course of this work we have generated g
matrix elements up to N=22. Examination of
these matrix elements as a function of N indicates
that the trend established in the numbers pres-
ented here will continue for higher N, and the re-
mainder is small.

As a final check on the revised g-matrix formal-
ism presented in Sec. II one may calculate the
binding energy of 2H. Although this is a most
elementary application, it can be valuable as the
result can be compared both with an exact answer
and a variational procedure that has also been ap-
plied to 3H.

TABLE I. Binding energies (in MeV) for the Reid
soft core potentiai.

fiw (MeV)
N 8 10 12
0 4.16 4.57 4.59
2 5.32 5.51 5.45 .
4 7.10 7.36 7.37
6 8.21 8.37 8.35
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TABLE II. Binding energies (in MeV) for the Hamada-
Johnston potential.,

Fw (MeV)
N 8 10 12
0 3.96 4.23 4.09
2 5.01 5.03 4.81
4 6.62 6.73 6.58
6 7.56 7.63 7.50

One minor problem arises when applying the
formalism to 2H. The appropriate energy denom-
inator to be used in Eq. (2.6) is clearly

e'=E ‘—QTrel Q

after correcting for the Pauli effect and the ~U;
insertions. Now one could start the procedure
either by using a plane wave propagator in Eq.
(2.4):

€, =E-T rel
or with the oscillator propagator:

- cam.
e,=E-H,+H; .

Both procedures are correct in principle, since
one always will use Eq. (2.6) to restore the right
energy denominator. If one starts with e, one
finds excellent convergence toward the exact re-
sult, however, and if one starts with e, conver-
gence is poor. This point was previously reported
in some detail by Sauer,'® and we will not dwell
on it here. The same option is open in the 3H cal-
culation, and can be used as an additional check
on convergence. In the triton we found that e’
differs only very slightly from either the plane
wave or oscillator propagator, and the choice is
left to mathematical convenience.

Using e, in Eq. (2.4) the g matrix elements gen-
erated by Eqs. (2.6) and (2.8) yield accuracy to
nearly two significant figures for N=2 (E=-2.14
MeV), and three good figures for N=10 (E =-2.22
MeV). We have verified that the RSC potential
yields an exact eigenvalue of ~2.226 MeV, by di-
rect interaction of the Rarita-Schwinger coupled
differential equations.

This convergence rate may be compared with the
work of Jackson, Lande, and Sauer,?? who have
performed a variational calculation on the deuter-
on by expanding the trial wave functions in an os-
cillator basis. They find that N=20 is needed to
obtain £=~1.5 MeV, and N=48 is required to get
E=-2.1 MeV. Thus the g-matrix approach is
seen to exhibit a great advantage over a varia-
tional calculation in the same oscillator basis.

IV. COMPARISON WITH OTHER CALCULATIONS
AND WITH EXPERIMENT

The experimental binding energy of °H is 8.48
MeV. The results of Sec. III imply that the RSC'3
interaction yields a very close fit to experiment
(probably to within about 200 keV), while the HJ'?
potential yields an eigenvalue which is only about
600 to 900 keV short. Unfortunately one can come
to no definite conclusion as to which two-body po-
tential is best due to the uncertain magnitude of
relativistic effects and three-body forces.

Several other calculations'*~?? have been per-
formed on ®H using the RSC and HJ potentials,
generally yielding binding energies between 6 and
8 MeV. The best variational calculation for the
HJ potential was performed by Delves and Hen-
nell,'® who obtained an upper bound of —6.55+ 0.25
MeV with a corresponding lower bound of —41.2
+20 MeV. Our estimated eigenvalue is well with~
in these limits. In order to obtain the lower bound
Delves and Hennell calculated (H?) with their trial
wave function, and the value of this parameter is
therefore available in their paper. This value for
(H?) can be used to make a crude estimate of the
effect on the energy eigenvalue that might be at-
tained by introducing additional variational flex-
ibility into the trial wave function. Define:

@'=¢+AHop , (4.1)

7

where A is a variational parameter. To compute a
new approximation to the energy, one just needs
(¢ |Hlp), (¢l H?|p), and (p|H?| ). The expec-
tation value of H? is not available, but can be ap-
proximated by

(plH®| @)~(o|H| o) 0| H?| @) . (4.2)

Equation (4.2) becomes exact in the limit when
¢ is an eigenfunction of H, and thereby one esti-
mates a lower limit on the magnitude of the new
variation with this approximation. We can then
write

(¢’ H| ¢

E 5_7_,__/_ - H 4.3

s, (¢|H| o) (4.3)

which after variation of A and use of Eq. (4.2) be-
comes approximately,

(elH? @)~(o|H| p)?
oE= AlH| p)

<=0.7TMeV . (4.4)

The inequality in Eq. (4.4) is set by the fact that
we have used the smallest value of (H?) within the
error bars of Delves and Hennell. As a conse-
quence it would certainly appear that there is no
disagreement between our eigenvalue estimate
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for the Hamada-Johnston potential and the varia-
tional calculations.

Hennell and Delves'” compute a variational up-
per bound for the RSC potential of -7.75+0.5 MeV.
A value for (H?) has not yet been reported, prob-
ably because of the large error estimated in (H) .
We note, however, that for both the RSC and HJ
potentials we estimate an eigenvalue on the order
of 1 MeV lower than the best bounds computed.
Thus, at least, one has consistency.

All calculations for the RSC potential involving
solution of the Faddeev equations (not to be con-
fused with the Bethe-Faddeev equations examined
in this paper) seem to yield results near -7
MeV.14716:21:22 1 averne and Gignoux'* construct
a solution by direct integration of the Faddeev
equations in configuration space, retaining only
the 'S,, 3S,, and D, partial waves in the interac-
tion. They obtain an eigenvalue of —7.0 MeV,
which is then shifted to —7.18 MeV when the
8P, 1.2 'D,, and D, partial waves in the interac-
tion are included by perturbation theory. This
latter value is just out of the error bars (-7.75
+0.5 MeV) defined by the variational investiga-
tion.""

Laverne and Gignoux'* point out two possible
sources of error in their calculation. The first
is the size of the discretization grid, which is
also the source of the large error bars in the
variational estimate. The second point is the
truncation of the Faddeev amplitudes included
in the numerical integration procedure. The
latter seems most serious to the present authors.

When one expresses the nuclear interaction
(37 Vi;) in terms of the Jacobi coordinates defined
in Eq. (2.10), one finds partial waves correspond-
ing to very high values of the angular momentum
from terms like

(5 .

->

oF .

Thus when one expands the wave function for H?®
into a series of functions like those in Eq. (2.11),
one must find corresponding components with very
large values of /! and !". Analysis of the Hennell-
Delves trial wave function into Jacobi coordinates
reveals such terms, particularly from that part of
the wave function that exhibits short range corre-
lations. Consequently the Faddeev solutions must
be regarded as a very powerful method of calcula-
tion, however when one truncates the Faddeev
amplitudes one is clearly dealing with a wave
function of limited variational flexibility.

V. CONCLUSIONS

The only approximation made in the present
method is the truncation of the basis defining the
Brillouin-Wigner Pauli operator . The basis is
needed to construct the matrices required for the
inversion and multiplication operations implied by
Egs. (2.6), (2.8), and (2.14). All of the operators
to be inverted produce “band matrices.” Band
matrices diverge along the main diagonal, but
converge rapidly as one considers matrix ele-
ments away from the main diagonal. Enlarging
the dimension of such matrices has a small ef-
fect on the elements of the inverted matrix for
small quantum numbers.

Sauer'® has carefully tested this band matrix
theorem for operators of the same general form
as those present here. The approximation is con-
sistently very accurate, even when one inverts
matrices of relatively small dimension. In the
present calculation only one matrix element must
be produced accurately [the one in the first row
and the first column displayed in Eq. (2.15)]. It
must be noted that the present calculation puts
considerably more strain on this theorem than
those cases tested by Sauer, in that one performs
about 3 times as many operations of matrix inver-
sion and multiplication.

The calculation reported here is not variational.
Therefore, it could in principle produce too much
binding energy, although this is certainly not the
trend which appears to be established in all of our
calculations. More work is obviously needed be-
fore one can assert that precision to two signifi-
cant figures in the eigenvalue is attained. Varia-
tional calculations with improved accuracy and
additional variational flexibility could prove most
useful, as well as extension of the current work
to larger N and further investigation of the Faddeev
equations.

The authors also intend to use the general form-
alism for heavier nuclei, the purpose for which it
was originally devised. It may be worth noting
that the computer programs for this calculation
require only 18 min of processor time on the com-
putational facility available to us, to produce one
column in Table I.
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