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Microscopic study of the variable-moment-of-inertia model for rare-earth nuclei*
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Based on the microscopic cranking model, the moment-of-inertia parameter Jo and the force constant
Cv«associated with the variable-moment-of-inertia model are calculated microscopically for rare-earth
nuclei. Higher-order effects representing quadrupole and hexadecapole centrifugal stretching, proton and
neutron Coriolis-antipairing effects, and fourth-order cranking correction are included. The present
calculations are able to reproduce the trend and the magnitude of both Jo and CVM, fairly well with
discrepancies ranging from 10 to 40%%uo.

NUCLEAR STRUCTURE Bare-earth even-even nuclei, calculated moment of in-
ertia and force constant. Variable-moment-of-inertia model, cranking model.

Coriolis-antipairing effect, fourth-order cranking, centrifugal stretching.

I. INTRODUCTION

It is now well established that the quasirotation-
al spectrum plays a central role in the excitations
of even-even deformed nuclei. " The general fea-
tures of the quasirotational states are as follows:
(1) their spins and parities follow the sequence of
0', 2', 4",6', . . . , and (2) their energies deviate
from the I(I+1) rule as the spins increase. Re-
cently, it was discovered that at very high angular
momenta, the rotational energies of some nuclei
may exhibit anomalous behavior, the so called
back bending. ' ' We shall not discuss the back-
bending phenomenon in this paper, but shall limit
our calculations only to those states with moder-
ate high spins. There exist many two-parameter
formulas which fit very well the energy levels up
to spin I-12. Among them we may mention the
centrifugal stretching model of Diamond, Stephens,
and Swiatecki' (which was later extended by Sood'),
the fourth-order cranking model of Harris, ' the
variable moment-of-inertia, model (VMI model) of
Mariscotti, Scharff-Qoldhaber, and Buck, ' and the
EXP model of Draper. ' Recently the VMI model
has also been extended to high spins by several
authors to deal with the back-bending phenome-
non. ' " Compared to the phenomenological fits,
the microscopic calculations of the nuclear rota-
tional energies, " "on the other hand, have only
moderate success in reproducing the experimental
data. For example, the authors of Refs. 11-15
(Udagawa and Sheline; Chan and Valatin; Bes,
Landowne and Mariscotti; Sano and Wakai; Krum-
linde) took into consideration the centrifugal
stretching and the Coriolis-antipairing effect"

(CAP effect) and obtained fairly good agreement
with the experiment. However, other calcula-
tions" "have shown that the fourth-order crank-
ing contribution is as important as the CAP effect
and the inclusion of the former makes the theoret-
ical results much worse. Indeed, Marshalek's
calculations" showed that in general the calculat-
ed values of the B coefficient associated with the
I'(I+1)' correction term in an expansion of the ro-
tational energies is about a factor of 1.5 to 3 too
large compared with the experimental data in the
rare-earth region. The calculations by Ma and
Rasmussen" were likewise only able to produce
results of the right order of magnitude; however,
the quantitative significance of their results is sub-
ject to some uncertainty due to the use of a simple
basis where the single-particle angular momentum
is kept as a good quantum number. More recently,
several authors" "have done Hartree-Fock-Bogo-
liubov variational calculations to study the back-
bending phenomenon at high spin states, which,
however, will not be discussed here. In summary,
the above situations indicate that the microscopic
calculation of the rotational energy deserves much
further study.

The present calculations are based on the crank-
ing model of Inglis. " We follow closely the formu-
lations of Ma and Rasmussen" [hereafter referred
to as (I)], and make use of the single-particle wave
functions of Nilsson et al."with the inclusion of
both quadrupole (e,) and hexadecapole (e,) deforma-
tion. Since it has been shown that most of the two-
parameter formulas are related to each other, ' "'
we shall calculate specifically the parameters as-
sociated with the VMI model and the 8 coefficient
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connected with the I3(I+1)' term.
The following section will briefly review the for-

mulations developed in (I), the detailed calcula-
tions and formulas are given in Sec. III, and the
last two sections will give the results and discus-
sions.

II. REVIEW OF MICROSCOPIC THEORY

The VMI model' can be expressed as follows:

, f(f + I)
E1 3 CVMI (~1 ~0)

~r

az,

where E, and J, are, respectively, the energy and
moment of inertia of the excited state with spin I.
The force constant C~«and the ground state mo-
ment of inertia J, are the two parameters which
can be determined by a least-squares fit to the ex-
perimental energy levels. The VMI model is able
to give very good fit for states up to spin I-12.
Recently Saethre et al."have improved the fitting
by using a three-parameter and a four-parameter
cranking model formulas. The two-parameter VMI
model has been shown' to be mathematically iden-
tical to the Harris fourth-order cranking model.
In addition, Klein, Dreizler, and Das' have proved
that the VMI model and cranking model are equiva-
lent to all orders.

The microscopic derivation of the VMI model
has been given in (I) and will be briefly outlined
below. One first expresses the total energy of a
rotating system as

(2)

where the potential energy is expressed approxi-
mately as a sum of harmonic terms, each of which
represents contributions from various collective
degrees of freedom denoted here by x;. C,. is the
spring constant associated with the ith degree of
freedom. The second term is the kinetic energy.
The rotational solutions are obtained by minimiz-
ing Eq. (2) with respect to various x; at a given
value of spin I. In the present calculation we in-
troduce as collective degrees of freedom the quad-
rupole and hexadecapole shape deformations e, and

&4 involved in the centrifugal stretching effect, the
proton and neutron pairing correlation parameters
v~ and v„ involved in the Coriolis-antipairing ef-
fect, and a new collective variable q = cu' involved
in the fourth-order cranking correction where cu

is the angular velocity. Thus, we define [see (I)

for details]

(XIq X3y X3y X41 X5j (E'3q f41 V3q V5q 'g) q

(C„C„C3$C41 C5j (C„,C4„C,~, C,„,C5) . (3b)

We have not included the asymmetric degree of
freedom (y shape vibration), since its contribution
is rather insignificant as was shorn'n by the calcula-
tj.ons of Marshalek.

In the first-order approximation, Eq. (2) can be
reduced to Eq. (1) through a normal coordinate
transformation and one obtains"

1 (aJ(x;))
~to

where x;, is the value of x, at the ground state;
thus II, =0. The moment of inertia J(x, ) can be ex-
pressed as

Z(x, ) =Z,(x„x„x„x,) +2C „(x„x„x„x,)q . (5)

The first term is the ground state moment of iner-
tia which can be calculated by the well known
cranking formula of Inglis and Belyaev":

m &o tX Ct

where l II& is the deformed single-particle state
with z denoting the appropriate quantum numbers,

is the magnetic quantum number along the sym-
metry axis, U„and V~ are the probability ampli-
tudes in the presence of the pairing interaction,
and E is the quasiparticle energy.

The Inglis and Belyaev cranking formula (6) is
based on the independent quasiparticle approxima-
tion. However, a recent calculation by Meyer,
Speth, and Vogeler" showed that the two correction
terms arising from the particle-particle and par-
ticle-hole interactions nearly cancel each other.
It has also been shown by Rich" that correction
due to particle-number conservation is also small.
Thus it seems that the use of the cranking formula
(6) is rather well justified numerically.

The second term of Eq. (5) represents the fourth-
order cranking correction which was first studied
by Harris' and the fourth-order cranking constant
C„can be expressed as'

where the ground state P, is the quasiparticle vac-
uum state, g and g„are two-quasiparticle states,
and the intermediate state IlI~ can be either two-
quasiparticle or four-quasiparticle excitations.
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The corresponding energies are denoted by $p

8„,and 8~. The prime on the summation indicates
that the ground state is excluded from the sum-
mation.

It is obvious from Eq. (5) that

—=2CBJ
Bg

Thus, the contribution of the fourth-order crank-
ing in Eq. (4) is simply 4C „while the contributions
of the other degrees of freedom are given by

C] Bxq (~;o

The 8 coefficient associated with the I'(I+ 1)' term
in the angular momentum expansion of the rotation-
al energy

eluding (15Z)'" or (15K)"' states above and below
the proton or neutron Fermi level. The pairing
gap parameters A~ and 6„ thus obtained are given
in Table I.

The energy of a quasiparticle can be expressed
as

Z~ = (e~ —X)(U~' —V~') +2Ua VaG Q Ui V, ,
I )0

(12)

2 I [(e, —X)'+v'] "'
I

'

where c„ is the single-particle energy and X is the
chemical potential. Following (I) we parametrize
the probability amplitudes fU~, V,) by introducing
a pairing correlation parameter v

E = +BI'(I+1)'+CI'(I+1)'+ ~ ~
I(I + 1)

r 2J

can be expressed as

(8)
TABLE I. The quadrupole and hexadecapole deforma-

tion parameters c2 and e4 are taken from Ref. 23. The
energy gap D& and D„are calculated with pairing
strength G as given in Eq. (11).

8 BCvMI Jo = -1 . (1O)

III. DETAILED CALCULATION AND FORMULAS

A. Single-particle basis and the pairing problem

The deformed single-particle basis used in the
present calculations is chosen to be identical to
that of Nilsson et al." The diagonalization is car-
ried out over the sapce of 11 shells for protons
and 12 shells for neutrons. The values of e, and

e4 of each nucleus are taken from the work of Nils-
son et al. and are listed in Table I.

The pairing strength G is chosen to be a smooth
function of A. as suggested by Nilsson et al.

N-Z
go +gl

go =19.2 MeV,

g, =7.4 MeV,

with plus sign for protons and minus sign for neu-
trons. They also put in a linear surface depen-
dence of G, which may be important for large de-
formation. The BCS equation is then solved by in-

The value of the force constant CvM,
' or the B co-

efficient indicates the degree to which the spectrum
deviates from the I(I+1) rule. Both Eqs. (4) and

(9) show that the contributions from various de-
grees of freedom are all positively added.

A simple relation between C&«and 8 can be ob-
tained by combining Eq. (4) with Eq. (9), which

yields

Nuc leus

'"Sm
154sm

154Gd

'"Gd
'"Gd
'"Gd

160D

162D
164D

162Er
164Er
166Er
168Er
170E

166~

170~b
172~
174yb
176gb

"4Hf
Hf

78Hf

Hf

180~
182~
184~
186W

1840s
"'Os
188~s

E2

0.202
0.227

0.206
0.233
0.245
0.255

Q.245
0.256
0.264

0.242
0.254
0.261
0.272
0.273

0.246
0.255
0.265
0.270
0.266
0.258

0.258
0.256
0.250
0.243

0.236
0.232
0.216
0.197

0.213
0.198
0.178

—0.036
—0.039

-Q.Q29
—0.030
-0.024
—0.015

—0.015
—0.006

0.003

—0.007
0,001
0.010
0.020
0.031

0.004
0.014
0.025
0.037
0.048
0.053

0.034
0.043
0.052
0.063

0.050
0.060
0.061
0.060

0.053
0.055
0.055

(MeV)

1.114
1.024

1.101
1.020
0.980
0.948

0.988
0.945
0.910

0.989
0.941
0.898
0.847
0.807

1.002
0.956
0.902
0.845
0.799
0.785

0.915
0.879
0.844
0.808

0.870
0.828
0.793
0.777

0.750
0.665
0.592

&n
(Me V)

0.975
0.888

1.001
0.935
0.895
0.849

0.934
0.880
0.836

0.969
0.906
0.861
0.815
0.786

0.926
0.883
0.835
0.799
0.739
0.661

0.822
0.734
0.672
0.561

0.699
0.602
0.735
0.790

0.690
0.780
0.819
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If v =A (the energy gap 6 is the equilibrium value
of v at ground state), Eq. (12) reduces to the fam-
iliar BCS result

z, = [(~„-~)'+ ~'] "' (14)

In what follows we shall vary v to calculate the
corresponding derivatives of moment of inertia as
well as the pairing spring constant for a fixed pair-
ing strength 6 as given by Eq. (11). For )/tA, the
BCS gap equation no longer holds and Eq. (14) is
not valid. Thus, it is important to use Eq. (12)
rather than Eq. (14) as the expression for the
quasiparticle energy.

B. Derivatives of the moment of inertia

We shall calculate the derivative of the moment
of inertia Jp with respect to the pairing correlation
parameter v while the average particle number n
and the pairing strength G are held fixed. One ob-
tains

where jo is given by Eq. (6) and the average parti-
cle number n is given by

2 V~ =n. (16)
lt &0

It then follows

(U, v, —U, v„) (U, '- v, ')(U, U, +v, v, )/z,l&~li. l-f) I'
aV P ~I„=~ ~ l

+~+
')

2U) V (U))),V— V),Ur) G ~ (
2 2)2

E +Elt l m&0

=2+ ' (v, ), —&, I )
I

2(/v(UU, + )v)/z,
p G)I p-Q k + l

(17a)

+ ' ' ' ' ((/'-v, ')-4(r)'—g(/, *,v*((/'-v')
Il m&p

( =-g —,'[U, 'v, '(U,'- v, ')] g U, 'v„'.
A&O lt&p

(17c)

Note that in &aking the derivative, the quasiparti-
cle energy is given by Eq. (12). After the deriva-
tive is taken, its value at v =6 is then evaluated.

The derivatives of eJp with respect to the deforma-
tion parameters e, and e4 are calculated by finite
differences. The mesh point interval is taken to
be 0.02 for both e, and e4.

The various derivatives of the moment of inertia
are listed in Table II. The derivatives with re-
spect to pairing are quite stable over the rare-
earth region of nuclei. For example, with respect
to the neutron pairing, the derivatives fluctuate
around -(36+ 10) MeV ', while the derivatives
with respect to proton pairing are roughly equal
to -(19+3) MeV ' for nuclei in the region of A
-165 and -(11+2)MeV ' for those in the region
of A-187. The derivatives with respect to the de-
formation, on the other hand, are quite different
as one goes from one nucleus to another. In the
case of quadrupole deformation (e,), the deriva-
tives are largest at the beginning of the rare-earth
region and generally decrease towards the end of
the region; while in the case of hexadecapole de-
formation (e,), the derivatives are strongly nega-
tive at the beginning of the rare-earth region and

change to positive values near the end. A negative
value for the inertia derivative with respect to
hexadecapole deformation (e,) has some interest-
ing consequences. The equilibrium value of E4 at
a given spin I in first-order approximation is giv-
en in (I) as

I(I+1) sJ
(18)

where e~ is the hexadecapole deformation at
ground state. In the beginning of the rare-earth
region, the values of both e~ and the inertia de-
rivative with respect to e4 are negative; thus, as
the spin goes up, the hexadecapole deformation
will increase in magnitude which is just the famil-
iar stretching effect. However, for nuclei in the
middle of the rare-earth region, the values of e~
become positive while in most cases the inertia
derivatives with respect to q4 still remain nega-
tive. Thus, as the spin goes up, the hexadecapole
deformation will actually decrease.

Equilibrium values of quadrupole deformation e,
and of pairing parameters v~ and v„at a given spin
I can also be determined by equations similar to
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Eq. (18) which then yield the quadrupole stretch-
ing and the Coriolis-antipairing effect.

respect to the pairing correlation parameter v

C. Pairing spring constant

The ground state energy can be expressed as
2

8 =pa 2V' —G(plI V, —Gp V,
'

k&o k&o k&0

k&l &o

~a ~a'~r'~i Q Ua' ~a'
A&0

(19)

where the first three terms are the BCS ground
state energy, and the last term approximately ac-
counts for the fixed-particle-number correc-
tion.""The pairing spring constant C, can be
obtained by taking the second derivative of So with

(2o)

Evaluation of the derivatives of 8o with respect to
X and v are straightforward by using Eq. (19). The
derivative of X with respect to v can also be easily
obtained in terms of Eq. (16). The proton and neu-
tron pairing spring constants C~ and C„„ascal-
culated by Eq. (20) are given in Table III.

It is interesting to note that inclusion of the
fixed-particle-number correction in the ground
state energy will in general increase the pairing

TABLE D. The moment of inertia and the inertia derivatives, where D; = I'{8/ex;)2 Jp] „. .
xgp

Dg2 Dg4 DPP DP„2JP 2 Jtl 2 JP 2 JexP
Nucleus {MeV ) (MeV ) (MeV ) {MeV ) (MeV ) (MeV ) (MeV ) (MeV «)

"'Sm
'"Sm

154Gd

1560d
15&Gd
1600d

1600

«62ny

164Dy

. «62Fr
«64Zr

«66Zr

«6&Er

170Er

Yb
«6&m

«70+
172~
«74~
«76~

174Hf

176Hf

178Hf
180Hf

«80~
«82~
«84~
«86~

131
126

94

148
134
102

85
108

154
135
118
124

89
49

141
108

53
15

63
21
69
89

—236
-235
-176
-150

-169
-137
-116
-147
-109
-87
-35

-96
—68
—19

7
4

11

—11
-17

7
35

52
65
74

—16.68
—20.17

-15.51
-18.49
-19.88
-20.98

—19.48
-20.55
-21.25

-16.15
-17.25
—18.22
-19.04
-19.93

-14,94
—16.52
—18,14
-19.70
—21,11
—21.87

-13.18
-13.38
-13.68
-13.88

-8.69
-8.94
-9.91

—10.87

-32.35
—46.17

—29.85
-41.16
-37.59
-40.19

-35.24
-38.17
-43.05

-32.72
—36.35
-41.23
-36.48
-40.27

-35.08
-39.72
-36.34
-39.98
-41.15
-31.59

-37.80
-45.53
-35.14
-33.54

-36.56
-35.55
-28.92
-22.25

13.62
17.16

13.26
16.33
17.45
18.20

16.55
17.60
18.33

15.07
16.38
17.41
18.74
19.59

14.16
15.54
17.20
18.75
19.78
19.90

14.90
15.38
15.74
16.18

12.34
12.90
12.88
12.55

24.84
35.19

23.14
32.00
33.27
35.40

30.63
33 33
35.84

27.S9
31.41
34.00
35.11
36.77

29.59
32.27
33.76
35.96
36.83
35.45

34.40
38.19
36.42
39.02

35.26
37.84
31.00
24.76

40.38
54.97

38.22
50.75
53.26
56.28

49.53
53.48
56.88

4$.21
50.17
53.98
56.54
59.19

45.94
50.20
53.51
57.45
59.44
58.12

51.77
56.25
54.77
57.96

49.98
53.28
46.07
39.18

46.8
73.0

46.6
66.6
74.8
79.4

68.6
73.8
81.2

58.6
65.4
73.8
75.0
75.6

57.8
68.4
70.8
75.8
78.4
72.8

65.4
67.6
64.0
64.2

57.6
59.6
53.6
48.6

184ps
"'Os
18&p

4S
79
86

62
68
68

-9.25 -36 92
-10.75 -29.99
-12.97 -22.67

11.92
12.62
13.29

34.35
28.53
22.64

48.58
43.20
37 ~ 72

49 4
43.0
37.4
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spring constant by about 20%, hence, reducing the
CAP effect. Some of the examples are given in
Table IV.

A simple formula for C„based on the continuous
model is given in (I) which reads

C„= 2p+ —1 —pG,
2

(21)

where p is the average nucleon orbital level den-
sity. The spring constants given by Eq. (21) [see
Table I of (I)] are somewhat larger than those giv-
en by the present calculations by about 5 to 15%
in the case of protons and 10 to 25% in the case
of neutrons. In view of the tremendous numerical
work involved in Eq. (20), the simple formula Eq.
(21) is indeed a very useful approximation.

TABLE III. The spring constants associated with
various degrees of freedom.

22 44 IJP Pn
Nucleus (MeV) (MeV) (MeV ') (MeV ')

C~
(MeV 3)

152S
"4sm

'~Gd
'"Gd
158Gd

Gd

160D
162D

164Dy

760 1205
966 1519

725 1222
899 1453

1019 1556
1092 1620

989
1108
1215

1450
1592
1711

3.67
3.74

3.72
3.75
3.78
3.81

3.36
3.36
3.4o

3.88
3.27

3.93
3.50
4.18
4.13

4.18
4.19
3.50

27.32
37.68

23.61
31.48
24.81
28.44

1

23.79
27.36
33.25

162Fr
164Er
166Er
168Er
170Er

926
1043
1175
1205
1181

1318
1503
1663
1780
2005

3.73
3.66
3.62
3.58
3.57

4.22
4,24
3.59
4 40
4.18

19.27
22.38
27.44
17.75
23.34

166Yb

'"Yb

172Yb
'74Yb

"6Yb

956
1064
1097
1113
1220
1275

1390 3.93
1517 3.83
1645 3.66
1714 3.46:--

1710 334
1709 3.39

4.27
3.69
4.40
4.25
4.o3
5.20

21.21
26,56
19.49
25.66
30.56
19.89

D. Shape spring constant

The shape spring constants C» and C44 associat-
ed with the quadrupole e, and hexadecapole c4 de-

formation degrees of freedom can be obtained sim-
ilarly by taking the second derivative of the ground
state energy Sp with respect to En and 6'4.'

8'g,
«44-~ ~ ~

E'4
(22)

TABLE IV. The first four columns list pairing spring
constants with and without fixed-particle-number correc-
tion (PBCS and BCS). The fifth and sixth columns give
separately the two- and four-quasiparticle contributions
to the fourth-order cranking constant.

In applying Eq. (22), the ground state energy ho is
calculated according to the Strutinsky average pre-
scription as described in Ref. 23 by Nilsson et al.
The C» and «44 are then obtained by finite differ-
ences with the mesh point interval taken to be 0.02
both for c, and e4,' the results are listed in Table
III.

The curvatures C» and C44 at the ground state
deformation are due to contributions from the liq-
uid drop energy part, the shell correction part,
and the pairing energy part, which make up the
potential energy surface. The shell correction
part gives the largest positive contribution and in
fact determines, to the larger extent, the deforma-
tion of the ground state nucleus. The pairing ef-
fect tends to smooth out the level density and thus
acts against the shell effect. It provides a nega-
tive contribution to the curvature. The liquid drop
energy part in general gives a small positive con-
tribution.

The Strutinsky normalization replaces the
smooth part of the eigenenergy summation by the
liquid drop energy. Due to the inadequacy of vol-
ume normalization of the single-particle potential
well, the former has a much stronger curvature
than that of the liquid drop part, as is obvious
from the fact that its value would be infinite at q,
= 1.5 (which is of course quite far away from the
ground state deformation of e, -0.25), whereas the
liquid drop energy would be finite. Hence, one
would expect the value of curvature calculated in
a scheme with the employment of Strutinsky nor-
malization to be smaller than the value calculated
without it. This is indeed borne out by our de-

'7 Hf

'78Hf

Hf

1032 1637
1178 1643
1243 1603
1300 1600

4.1o
4.2O

4.29
4.39

4.56
3.71
4.92
2.19

20.90
31.15
21.16
14.27

Nucleus
C» (MeV 1)

BCS PBCS
C „(MeV ) C& (MeV 3)

BCS PBCS 2QP 4QP

180W

182W

184~
186~

184~
186OS
188p~

1238 1600
1280 1595
1255 1450
1175 1225

1280 1663
1225 1488
1188 1325

4.15
4.18
4.37
4.60

2.45
2.06
1.77

4.76
2.49
5.25
5.37

3.06
5.14
5.36

18.34
12.16
15.29
12.46

13.53
16.28
13.12

'"Sm
'"Gd
162D

166E

' "I-rf
180~
184p~

3.17 3.74
3.21 3.78
3.07 3.36
3.09 3.62
3.18 3.66
3.44 4.10
3.32 4.15
2.45 2.45

3.07 3.27
3.43 4.18
3.50 4.19
3.36 3.59
3.60 4.40
3.70 4.56
3 4O 4.76
2.89 3.06

49.8 -12.2
35,2 -10.4
37.7 —10.4
37.7 —10.3
28.8 -9.35
30.0 -9.06
27.3 —8.97
22.3 -8.76
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tailed calculation which shows that the Strutinsky
normalization generally reduces the values by
about 20%.

On comparison with Table I of (I), our present
results for C» are about 40 to 100% larger. The
first reason is that we are currently using a finer
set of grids, ~, =0.02, as compared with ~, =0.05
used in the older calculation. Thus, the new cal-
culations are less likely to suffer from the problem
of anharmonic effects in the potential energy sur-
face which, in the present case, will tend to re-
duce the effective value of the curvature. The sec-
ond and probably the main reason behind the dis-
crepancy is that the older calculation used a sur-
face-independent pairing force, whereas the new
calculation has a pairing force dependent on the
surface area. For most properties of the nucleus
near the ground state, this difference does not pre-
sent significant discrepancy. But for such higher-
order effect as the curvature, we find it does make
a difference. When we calculated the pairing ener-
gy contribution, we found that the new calculation
with a surface-dependent pairing force gives a
smaller negative value than the old calculation,

and the change is sufficient to account for the dis-
crepancy between the two results. A detailed dis-
cussion was made by other authors"' "on the
choice of these two versions of the pairing force.
We have not pursued the question regarding which
is the more appropriate form of pairing force to
be used. However, as will be seen later, the con-
tribution of centrifugal stretching effect to the VMI
force constant is very small when compared with
the contributions from Coriolis-antipairing and
fourth-order cranking effects, so that either choice
of the pairing force will have little effect on our
final results and conclusions.

E. Fourth-order cranking constant C„

The evaluation of the fourth-order cranking con-
stant C„given by Eq. ('7) is rather tedious, since
now one has to calculate the contributions from the
four-quasiparticle intermediate states as well as
those from the two-quasiparticle states. Fortu-
nately, we are able to reduce Eq. (7) to a sum of
quadratic terms; as a result, the numerical work
is considerably simplified. We shall quote the fi-
nal result below while the derivation will be given

in the Appendix.

UV —VU UV U Vc, =-4 Q Q «, +z, ) Q&f li. le&&Pli. le'&
mp&0 t t & ta' q p

mq = mp-I
mq'= mp+ 1

(Pl Iq))(( Ijlq&(U, V. —UU ),(U, V —V,, U..))*, .
(z, +z,)(z,. +z, )

tq
mq=mp+ 1

mq= m p-1
mqI = m p+ 1 (U, v, , —v, U, , )(U, U, + v, v, )

mp= mp»0 tp, tp~ e

mq= mphil

(Uy U, —'Vq U )(UqU, + Uq U )

)
(23)

where mp is the magnetic quantum number of the
particle in state ~P&, t~ denotes the quantum num-
bers other than mp, and Ep is the corresponding
quasiparticle energy. The first two terms repre-
sent the contributions from four-quasiparticle in-
termediate states while the last two terms repre-
sent those from two-quasiparticle intermediate
states, as can readily be seen from the form of

I

the products of the V, V coefficients. The fourth-
order cranking constants C„calculated in ierms
of Eq. (23) are listed in Table III. Our calcula-
tions show that the two-qua, siparticle contribution
is always positive while the four-quasiparticle con-
tribution is always negative. Furthermore, the
former is generally about three to four times larg-
er than the latter in magnitude. Some of the ex-
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amples are given in Table IV.

IV. RESULTS AND DISCUSSIONS

A. Moment of inertia

The ground state moment of inertia J, is calcu-
lated according to Eq. (6). In addition, we have
followed Nilsson and Prior" and increased the cal-
culated values by 5% which represents approxi-
mately the effects of the coupling between the
shells N and Ã+2, due to the j„operator. This is
because the Nilsson wave functions of Ref. 23 are
expressed in the stretched coordinates and the j„
operator in these stretched coordinates will give
rise to a term which will couple the shells N and
17+2. The results are listed in Table II and plot-
ted in Fig. 1. From Fig. 1, it is seen that the
trends of the experimental moment of inertia are
well reproduced by the calculations. The calculat-
ed magnitudes, however, are generally too small
by 10 to 40%, the average discrepancy being 25%.
This disagreement in magnitude seems to be some-
what too large compared to a similar calculation
by Nilsson and Prior" where the calculated Jp are
generally 10 to 30% too small, the average dis-
crepancy being 20%. But it should be pointed out
that in the present calculation, the single-particle
states and the parameters G, e„and e4 are all
taken directly from the works of Nilsson et al."
without any readjustment. One may, for example,
obtain very good agreement with the experimental
data by choosing gp =18.0 MeV instead of 19.2 MeV
in Eq. (11). We shall return to this question at the
end of this section.

Nucleus E22 %44 +v p Xv n

CVMI CVMI

4C„(C»c.)
'"Sm
"4Sm

13 15 18.98 67.45 109.53 224.0 59'5

7 12 27.20 163.11 150.73 360.0 229

i54Gd

'"Gd
i58Gd

'"Gd

13 11 16.16 56,68 94.46 191.3
8 10 22.78 121.15 125.94 287.9
3 5 26.13 84.55 99.24 217.9
4 4 28.85 97.89 113,76 248.5

338
245
215

i60Dy
i620
i64D

4 5 28.25 74.28 95.15 206.7 219
4 3 31.43 86.97 109.44 234.8 195
2 2 33.23 132.55 132.99 302.8 238

'"Er
164Er
i66Er
i68Er
i70Er

'«Yb
i68Yb
i70Yb
i 72Yb

74Yb
i 76Yb

4 17.48 63.43 77.07 168.0
2 20.29 77.95 89.50 193.7
1 22.96 118.26 109.76 254.0
0 25.35 75.57 70.98 173.9
0 27.80 96.92 93.36 220.1

2 14.19 71.98 84.83 179.0
1 17.79 106.91 106.23 235.9
0 22.48 75.03 77.96 178.5
0 28.05 93.90 102.64 227.6
0 33.33 105.01 122.26 262.6
0 3523 4801 79 57 162 8

255
197
240
110
132

255
258
160
213
108
128

"4Hf

Hf
'80Hf

0 10.60 78.40 83,61
0 10.66 139.57 124.61
0 10.90 62.80 84,66
0 10.97 128.56 57.06

177.6
276.8
159.4
196.6

215
170
135

73

i80W

i82W

i84W

i86W

1 0
0 0
1 1
2 1

4.55 70.13
4.79 126.76
5.61 39.81
6.42 23.04

73.35 149.1
48.65 180.2
61.16 108.6
49.84 82.3

188
98

102
93

TABLE V. The force constant CvMI and the separate
contributions from various higher-order effects. The ex-
perimental values of CvMI

' are taken from Ref. 7. We
define K„,. —:(8/Bx; J0) /C;. All units are in MeV 8.

B. Force constant CvMI

The force constant CvMI
' associated with the

VMI model of Eq. (1) is calculated using Eq. (4)
and the results are listed in Table V and plotted

i84O~
i860
880s

1 1 8.74 111.23 54.14 176.1 180
1 1 14.04 43.71 65.11 124,9 162
2 1 23.82 23.96 52.49 103.3 196

60— = EXP.
~------ ~ CALC

6.0

5.0

Sm = EXP.
~------~ CALC

0

I
0

/

20 C

A
~ H

~'

Yb

Hf

W

Os

'~ 4.0

"O ~.0

M
%20i&

O

1.0

Dy Er Yb
Hf

158 162 164 168 168 174 176 184

A

152
I I I I lgl I 121 I I I I/tl I I I I lgl I I I I I I I

I I I I I gl I IJll I I I I+I I I

152 158 162 164 168 168

A

I I lgl I I

174 176 184

FIG. 1. The moment of inertia J0. The theoretical
values are calculated with the single-particle states and
pairing strength [Eq. (11)l as given by Nilsson et al. (Bef.
23). The experimental values are taken from Mariscotti
et al. (Bef. 7),

FIG. 2. The force constant CvMI . The theoretical
values are calculated with the single-particle states and
pairing strength [Eq. (11)1 as given in Nilsson et al. (Bef.
23). The experimental values are taken from Mariscotti
et al. (Bef. 7). Note the large discrepancies at neutron
number N = 90, 104 and 108.
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in Fig. 2. The contributions to CvM, from various
sources are also given separately in Table V. One
notices first that, except for nuclei with neutron
number N=90 and 92, both quadrupole and hexa-
decapole centrifugal stretching contribute very lit-
tle to the energy deviation from the I(I+ I) rule.
Typically they amount to only a few percent of the
total contribution and hence, in most cases can be
entirely neglected. This result is consistent with
other microscopic calculations and also with ex-
perimental observations. " It is important to note
that the contributions of hexadecapole stretching
are comparable with those of quadrupole stretch-
ing. Hence, they should both be taken into account
in other relevant analyses, such as the study" of
change of nuclear mean-square radius A(r') or the
study of the deviation of the transition probability
from the rigid rotor formula.

It is shown in Table V that the neutron Coriolis-
antipairing and the fourth-order cranking correc-
tions are the two largest contributions and are
comparable with each other. The proton Coriolis-
antipairing term is relatively smaller and amounts
to about 10 to 20% of the total contribution. In gen-
eral, the present results are very different quan-
titatively from those of (I). However, many quali-
tative discussions of (I) are, still valid.

We observe in Fig. 2 that, except for nuclei with
neutron number %=90, 104, and 108, both the ex-
perimental trend and magnitude of the force con-
stant C»„' are fairly well reproduced in general
by the present calculation. In most cases the dis-
crepancy ranges from 10 to 40/p, the average dis-
crepancy for all nuclei (excluding those with N=SO)
is about 34%.

The large discrepancies of the calculated force

TABLE VI. The results of calculation B where neutron levels have been shifted according
to Eq. (24).

8

n n Ijn C~ 2 Jn 2 Jp CvM) -Btheo Bexp
2Jp i

NUcleus (MeV) (MeV ) (MeV ') (MeV 3) (MeV ) (MeV ) (MeV 3) (eV) (eV)

i52S~
i54Sm

0.975 -32.35
0.888 -46.17

3.88
3.27

27.32
37.68

24.84
35.19

40.38
54.97

224.0
353.0

169
77.3

195
14,9

"4Gd
'"Gd
i58Gd

'"Gd

i'60'
i62D

164D

1.001
0.935
0.895
0.849

0.934
0.880
0.836

-29.85
-41.16
-37.59
-40.19

-35.24
-38.17
—43.05

3.93
3.50
4.18
4.13

4.18
4.19
3.50

23.61
31.48
24.81
28.44

23.79
27.36
33.25

23,14
32.00
33.27
35.40

30.63
33,33
35.84

38.22
50.75
53.26
56.28

49.53
53.48
56.88

191.3
287.9
217.9
248.5

206.7
234.8
302.8

179
86.8
54.2
49.5

68.7
57.4
57.9

180
33.8
17.5
11.8
20.7
12.0
12.0

i62E

i64Er
'166Fr

i68Er
'"Er
i 66Yb
i68Yb

'7 Yb
i74Yb

'"Yb

Hf
176Hf

'"Hf
Hf

4 80~
182~
184~
i86~

0.969
0.906
0.861
0.815
0.771

0.926
0.883
0.813
0.786
0.789
0,746

0.825
0.803
0.770
0,721

0.795
0.747
O.749
0.759

-32.72
-36.35
-41.23
-36.48
—44.06

-35.08
-39.72
—37.41
—43.59
-36.41
-29.64

-41,11
-39.93
—32.51
-30.89

-33.53
-31.94
-31.75
-27.90

4.22
4.24
3.59
440
3.48

4.27
3.69
4.38
3.61
4.70
4.95

3.98
4.42
4.62
3.68

4.55
3.84
4.75
4.78

19.27
22.38
27.44
17.75
25.57

21.21
26.56
19.58
27.80
26.46
17,55

22,85
26.53
18.10
13.82

15.19
11.13
14.65
14.91

27.99
31.41
34.00
35.11
38.84

29.59
32.27
35.34
37.86
34.99
33,14

35.61
35.30
33.19
33.48

31.88
32.48
31.09
26.98

45.21
50.17
53.98
56.54
61.35

45.94
50.20
55,17
59.44
57.52
55.70

53.04
53.21
51.38
52.13

46.44
47.65
46.1.8
41.52

168.0
193.7
254.0
173.9
271.7

179.0
235,9
183.8
273,9
211,6
149.8

213,2
208.9
141.5
131.0

128,1
115.7
119.2
109.8

8O.4 4O.O

61.1 19.9
59.8 17.4
34.0 6.74
38.4 10.1

80.4 49.5
74.3 22.9
39.7 12.7
43.9 10.4
38.7 8.31
31.1 14.6

53.9 21.0
52.1 14.7
40.6 15.1
35.5 6.36

55.1 39.9
44.9 16.8
52.4 24.4
73,9 34.2

184OS
'l86OS

"'Os

0.807
0.809
0.814

-32.37
-31,47
-26.63

4.08
4.76
5.09

11.75
15.16
14.92

29.71
27,93
23.84

43.71
42.58
38.99

121.9 66.8 59.2
128,7 78.3 88.2
121.3 105 174
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nuclei (,o,'Er, ,o,'Yb, and,',",Hf) whose calculated
force constants are a factor of 2 too large com-
pared to the experiment. The average discrepancy
for all nuclei (excluding %=90) is now 29%. Thus
the agreement between the theoretical and experi-
mental values of the force constant is comparable
to that of the moment-of-inertia calculations.

The above results indicate that the force constant
Cv«which represents the higher-order effects in
the rotational energy calculation is much more
sensitive to the single-particle levels than the mo-
ment of inertia. We have no intention here to do a
detailed searching for better single-neutron levels.
Instead, the emphasis is to indicate that by remov-
ing the discrepancy of the Nilsson neutron levels
around %=104 and 108 (although only in a prelim
inary way), the calculated results of the force con-
stant C»„' can be considerably improved.

constants which occurred at neutron number N=90,
104, and 108 deserve more careful study. Perhaps
the 90-neutron nuclei are so close to being shape
unstable that the present model of stable deforma-
tion may be somewhat questionable. This argu-
ment, however, cannot be applied to nuclei with
N=104 and 108, all of which appear to be good
rotors. We then compare the calculated Nilsson
single-neutron levels around %=104 and 108 with
those deduced semiempirically by Ogle et al."
and are not surprised to find some discrepancies
between them. Consequently, we make the follow-
ing preliminary neutron level shifts:

[512, —,
' ]„+0.055(u

Calculation l3: [510, —,
' ]„—0.05&up for A ~ 170.

[512, —,
' ]„—0.05hu)

C. 8 coefficients
With the above neutron level shifts and assum-

ing further that the wave function and the quadru-
pole and hexadecapole stretching are the same,
we repeat the calculation on the moment of inertia
and the force constant which will be called calcu-
lation 8 while the previous calculation without lev-
el shifts will be called calculation A. The results
of calculation 8 are listed in Table VI. In general,
the results of calculation 8 are similar to those of
calculation A except for nuclei around neutron
number N= 104 and 108. Note in Table VI that the
moments of inertia from calculation 8 change only
slightly over the results of calculation A. On the
other hand, the force constants of calculation 8
are considerably improved over the results of cal-
culation A around Ã = 104 and 108, as can be seen
in Fig. 3. The serious discrepancies of calcula-
tion A which occurred at N=104 and 108 are now
much reduced; in most cases, both the trend and
magnitude of the experimental force constants are
now fairly well reproduced. However, in addition
to the 90-neutron nuclei there still remain three

= EXP.
~-----~ C4LC

150

CALCULATION 8
= EXP.

100
E)

I

Sm6.0 ~----—~ CALC.

5.0

4.0
CV

O
5.0

O 2,0

CALCULATION B Sm

Er
Dy

Vb Hf

Dy
Yb ~.

50

Os

I.O
I I I I lgl I lgl I J I lg I I I I lgl I I I I I I I I

152 158 162 164 168 168 174 176 184
A

I I I t lgl I lgl l I I lgl I I I I lgl I l tel I I I l

152 158 162 164 168 168 174 176 182 186

A

FIG. 4. The B coefficient. The theoretical values are
calculated with the pairing strength as given in Eq. (11)
and with the neutron levels shifted according to Eq. (24).

FIG. 3. Sazne as Fig. 2, except in these calculations
the neutron levels have been shifted according to Eq. (24).

The 8 coefficient associated with the I'(1+1)'
term in an expansion of the rotational energy can
be evaluated either by Eq. (9) or in a more
straightforward way, since we already know Jp
and Cv„, ', by Eq. (10). The results of calculation
8 are given in Table VI and plotted in Fig. 4. The
experimental 8 coefficients are obtained by a
least-squares fit to the first three excited states
by using the first three terms in Eq. (8) with 8,
taken from Ref. 7. It is seen in Fig. 4 that the
trend of the 8 coefficient is fairly well reproduced;
the calculated magnitudes, however, are generally
too large by a factor of 2 to 5. Thus, the agree-
ments are much worse than those of the force con-
stant CvM,

' although both of them represent the
higher-order effects. The reason is easy to under-
stand, because the 8 coefficient depends on the
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TABLE VII. The moment of inertia, B coefficient,
and the force constant calculated with gp

——18.0 MeV in
Eq. (11), the results of Marshalek (Ref. 16) are also
listed for comparison.

Nucleus

This calculation
2 Jp -B Cvm

(Me V ) (eV) (Me V )

Mar shalek
2Jp B

(Me V ) (eV)

'"Sm
'"Sm

55.57
78.02

99.8 476
50.4 934

46.77
72.31

221
37.5

inverse fourth power of the moment of inertia Jp
according to Eq. (10). Our calculated J, are rough-
ly 10 to 40% smaller while our calculated C»„'
are roughly 10 to 40% larger; so combined they
yield the 8 values by a factor 2 to 5 too large.

Because of this J, ' dependence, it seems that
in order to get reasonable agreement for B coeffi-
cient one probably should first fit the moment of
inertia as accurately as possible. We have men-
tioned in the beginning of this section that very
good agreements of the moment of inertia could be
achieved provided one uses a reduced pairing
strength g, =18.0 MeV instead of 19.2 MeV in Eq.
(11). The values of g„B, and C», ' calculated
with gp

= 18.0 MeV and without neutron levels shifts
are listed in Table VII. In addition, the second set
of results of J, and B of Marshalek" which are ob-
tained by adjusting the pairing strength so as to
exactly reproduce the experimental moment of in-
ertia are also included for comparison. Our re-
sults are roughly similar to those of Marshalek
at the middle of the rare-earth region, though dis-
crepancies occur at both ends of this region. Note
also in Table VII that our B values are now im-
proved over those obtained previously with gp

= 19.2 MeV, although they are still too large by a
factor of 1.5 to 3 in general. On the other hand,
however, the force constants CvM,

' in Table VII
are much worse than those obtained previously
with gp =19.2 MeV.

We seem to be in a very interesting situation.
On the one hand, our calculation with pairing
strength gp =19.2 MeV is able to reproduce fairly
well Jp and CyM, however, it yields very poor B
coefficients. On the other hand, very good Jp and
improved values of 8 (but still too large by a fac-
tor of 1.5 to 2) could be obtained from calculation
with the reduced pairing strength gp 18 0 MeV,
but now the CvM, becomes very poor. We feel that
an accurate microscopic theory should be able to
reproduce both force constant and the B coefficient
correctly. For calculations involving as many ap-
proximations as these, however, we suggest that
the force constant CvM, is a more meaningful quan-
tity to be compared with. The reasons are as fol-
low: (1) Because of the J, ' dependence, the large
discrepancy of the calculated 8 coefficient may be
misleading since it may essentially be a result of
small to moderate deviation in J,. It is also prob-
ably misleading for one to obtain better B coeffi-
cient by adjusting the pairing strength alone in or-
der to reduce the error arising from the Jp ' de-
pendence, because in doing so, the force constant
CyM~ will become unduly worse. (2) It is well known

that the expansion of the rotational energy in terms
of the angular velocity (d' is much better than the
expansion in terms of the angular momentum
I(I+1). Thus, the force constant C«, also ap-
pears to be a more physically significant param-
eter than the B coefficient.

"4Gd
'"Gd
f580d
'"Gd
i 60 D
1620

164Dy

f64 E
166Er
l68E r
170Er

'70Yb
~72Yb

"4Yb
Yb

Hf
178 Hf

52.17
70.69
69.66
73.42

66.06
70.74
78.00

65.54
73.17
71.40
75.56

68.33
73.90
76.61
71.03

73.30
66.44

54.67
46.41

109 403
56,9 711
32.4 382
29.4 427

42.7 407
34.6 433
39.6 733

36.9 340
43.5 623
19.3 251
21.2 346

25.5 278
25.0 373
28.1 485
20.8 265

39.5 570
26.1 254

29.8 133
50.4 117

46.30
66.53
74.96
79.05

68.45
74,02
81,37

65.19
73.96
74,96
75.13

70.82
75.93
77.82
72.46

67.43
64.10

53.48
48.40

160
43.0
26.7
25.4

37.4
33.4
26.0

43.7
33.7
25.0
30.0

31.8
30.0
27.8
27.7

42.6
44.0

68.5
99.1

V. SUMMARY

Based on the microscopic cranking model, the
present calculations are able to reproduce fairly
well the moment of inertia Jp and the force con-
stant Cvw& associated with the VMI model with dis-
crepancy ranging from 10 to 40% in general. On
the other hand, the calculated B coefficients are
quantitatively poor, which resemble the calcula-
tions of Marshalek. " However, as we have men-
tioned, one must use care in interpreting the large
discrepancy of the B coefficient because of its Jp
dependence.

We have taken into account the fixed-particle-
number correction for the potential energy; ob-
viously it will also affect the moment of inertia
and the fourth-order cranking calculations. Ac-
cording to the calculation of Rich,"the fixed-par-
ticle-number correction will reduce the inertia
derivative with respect to pairing by 10 to 20%.
Since the force constant CvM,

' is proportional to



the square of the inertia derivative, this will
cause 20 to 50%%u&& reduction of the Coriolis-antipair-
ing effect, which is in the right direction of im-
provement. We feel that the present approach is
not accurate enough to study nuclear rotation at
very high spin; to do that, the perturbation treat-
ment on M„probably will have to be avoided alto-
gether.
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APPENDIX

We first express the J„operator in the quasi-
particle representation as

~. =~ii+~ao

With

(Al)

&Pl~„lq) =&Pl~. lq&(~, ~. ~, l, ),
&ol~., lpq& =(-»" '"&pl&„l-q&(f, i, —i,~,),

(A2b)

where lo) is the quasiparticle vacuum state. Note
that J, only operates between states with J, compo-
nents differed by +1.

Consider now the contribution of the four-quasi-

particle excitations to the first term in Eq. (7)

c'„(4QP) =
8

2
1

(p~)»
(p'e') & j
(p~e~)»

p ~q ~pl ~~1

&olz, ipq& &pqle Ipq, p'q'&&pq, p'q'Iz Ip,q &&p q IJ lo&
(E~+E,) (Ep+E, +Epi+E, &)(Ep +E )

where (Pq)a l denotes a complete set of two-quasiparticle states IPq) with J, component ng~+m, =+1.
Since for each IPq) there is a corresponding state I qP), the factor —,

' thus accounts for the double counting
of Pq, p'q', and P, q, . Writing the nonzero terms of the above expression explicitly one obtains

& o lz„lpq &2& o
I z„lp'q'& & o I z„lpq&& o lz, Ip'q'&& o Iz„ ipq'&& o le„lp'q&

2 ~ (E,+E,)&(E,, +E,, ) (E,+E,)(E,+E,, )(E,, +Z, )
(p~) + i

(p'~')»
pa~op~ wq'

« I&, I»~&& 0 I&..I»'~'&& o I&..I v) '&« I&..I w'&)
(E,+E,)(E,+E,,)(E,+E,,)

We notice first that the constraintP Wq+P'Wq' can be dropped because the additional terms thus created
will cancel each other. Secondly, the third term may be made equal to the second term by exchanging P'
with q'. lt then follows

&o lz„lpq&'&olz„lp'q''&' l ~ &o lz~lpq&& o le„lp q'&& o le„ lpq'&& ole„lp'q&
(E,+E,)'(E,, +E,, ) 2 ~ (E, +E,)(E, , +E,,)(E,+E,,)(E,, +E,)(p~)» (p~) ~~

(p'e')»

x(E~+Ep, +E +E,). (A3)

The first term in this equation obviously cancels the second term in E&l. (7); we thus defined the full con-
tributions of the four-quasiparticle excitations as

C„(4QP) = C'„(4QP)+second term of E&l. (7)

= second term of E&l. (A3) .
The summation of the second term in E&l. (A3) can be separated into four terms

(pe}~~ (pq) ~ (p~)
& (pa} ~ (p~) j

(p'~')j, (p' ')
& (p. ), (p'~') &
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The first term yields

~ & o lz..lpq&& o le,.Ip'q'&& ole,.lpq'&&o I J..lp'q&
(z, +z,)(z,, +z, , )(z,+z, , )(z,, +z,)

mp=k J/2 4 3/2 tp tp

mp& =mp t, t p

m =m p=-m +y

z z .q &olq IPq&&oiq, .loq&)'
(z, +z,)(z,, +z, )

mph mp

m = -mp+1

where we have applied the conditions

mp+m, =+1. , rnp. +rn, =+1.

The other three terms can be evaluated in a similar way, and we obtain finally

c &qqp&=-4 p p &z+z, &
g&ol lPq&&oql lPq&)q

(z, + z, )(z, +z, , )

m = -mp+1e
m p= m 1p

z z ~ & o Iq,.lPq&& o lq-IP'q& )'
(z, +z,)(z, , +z, )

mph =mp&0 tp~tpp

(A4)

Substitution of Eq. (A2) into Eq. (A4) then yields the first t&&I&o terms in Eq. (23).
The contribution of the two-quasiparticle excitations to the first term in Eq. ( f) is

2 p
l

2 ~ &o I&,.Iuq&&Pq l&„IP'q'&&f 'q' l&ii IPiq, & &P,q. I&-I o&

(p~) ~i . p q p a pg cj
(p'q') 0, ~2

(p, ~,)»
Since

&Pq I~„IP'q"'& =fpp &q l~„lq'&+~,. &f l~i, IP'& —fp, &q l&i, IP'& -f„&P l&,i lq'&

one obtains

(p~') o, »
(pqg) &&

&olz Ipq&&q le„lq'&&q'lz Iq &&pq lz I o&

(z,+z,)(z, +z,, )(z, +z, )

&o I~-IJ q&&q l~ lq'&&& IJ. IP'&&&'q" IJ..lo&

(z, +z,)(z, +z, ,)(z,, +z, ,)
(pq) az

(p&') 0, *2
(pl+I) yy

Recalling that J„only operates between states with J, components differed by +1, we get

& o Iq..Ipq&&q iq„ I
q'&&q'

I
p

I q, &&pq. Ip- I o&

)(z, +z,)(z, +z, ,)(z, +z, )

(pQ )0 (p+ )p (po )2
(p&y) y (pQ&) ~ (pQ&)

(&oIq-lpq&&q Iq Iq'&&I lq. Ip'&&p'q'iq. .l o&)
(z,+z,)(z, +z,, )(z,, +z, , )

(p~),

( pl ~S)
(pq~) (pq')
(p'~') &
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where we have used the concise notation

g+ g +g (~) =g ~++ ~+ g ~.
1 2

We regroup the third and the sixth term in Eq (A. 5) where the J, components of the two-quasiparticle in-
termediate states are mp+m, = 2, and obtain

( o
I q„loq&(q lq„ I

q'& )*E+E, Ep+E,
mp =& 1/2, & 3/2 $ ~ ~ 4 t tp' e' t

m = -mp+10

(ole, „lqq&&qle„iq'& + &o le, lqq'&&o lz„lq&)
Ep+E, E,p+E,

m = % 1/2, 4 3/2 ~ ~ ~ ~ t
m p =-mp+2a' m = -mp+1 m =mp-1

The above expression can be rewritten finally as

C'„(2QP) = 4

m g= m +2
p

& o
I J,.I pe&&e l~„l v'&

Ep+E,
t

& o
I q.. I

qq'&(o
I q„ I q & )*

E i+E,
t

m =mp -1

(Ae)

We then regroup the remaining four terms in Eq. (A5) where the J, components of the two-quasipal tjcle
intermediate states are mp+m, , =0, and obtain

Cq(2QP) =4
mp =Wl/2, a3/2, ...

1
ZE, ,E,

, t

«I&,.Ipv&&~ IJ„
Ep+E

(z
mp+ 1

lq'&)
(

& oIq-loq&&qlq„l q'&)'
Ep+E

& o
I q..I oq && q I q„ I

q'&

)Ep+E,
m =-m +1e p

=-m
a p

m = -mp+1

(olq-Ioq&&qlq ~ lq'& ~ &olq„iqq'&(o lz Iq&)
Ep+E E,+E,,

mq = mp+1

& o
I ~.. I p~&& a I J» I

~'& ~ & o
I ~.o I

w'&&&
I J„I ~&

Ep+E, E+Ei
t ta (2

mq = -mp+1

which can be rewritten finally as

C'„'(2QP) = 2
m &0 t, tp' a'

(z
m =m -10 p

& o
I ~..I pe && a I ~„I

e'&

Ep+E,
m pa p

m =-m %1

&olq..lqq'&&qlq„lo&)'
E, +E,i

tq

(A7)

m =mph 1

Substitution of Eq. (A2) into Eqs. (Ae) and (A7) then yields the last two terms in Eq. (23).
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