$^{18}O(\alpha, {^8He})^{14}O$ reaction*

J. Jänecke, F. D. Becchetti, L. T. Chua, and A. M. VanderMolen Cyclotron Laboratory, Department of Physics, The University of Michigan, Ann Arbor, Michigan 48105 (Received 3 February 1975)

The ¹⁸O(α , ⁸He)¹⁴O_{g.s.} reaction has been observed at $E_{\alpha} = 58$ MeV. The measured cross section is 40±15 nb/sr at $\theta_{lab} = 8^{\circ}$. The mass excess of ⁸He was determined to be 31600±25 keV. Possible reaction mechanisms are discussed.

NUCLEAR REACTIONS ¹⁸O(⁴He, ⁸He), E = 58 MeV. Measured $\sigma(E_f, 8^\circ)$. Deduced $Q_{g.s.}$ and mass excess for ⁸He. Magnetic spectrometer.

The $(\alpha, {}^{8}\text{He})$ reaction is the simplest of the few four-neutron transfer reactions which are experimentally feasible.^{1,2} Its usefulness for measuring masses and energies of excited states of protonrich nuclei, however, requires an accurate mass value for ${}^{8}\text{He}$ and further information on crosssection systematics.

We have studied the ¹⁸O(α , ⁸He)¹⁴O reaction at E_{α} = 58 MeV. In addition, data for the related two-neutron transfer reactions ${}^{18}O(\alpha, {}^{6}He){}^{16}O$ and ${}^{16}O(\alpha, {}^{6}He){}^{14}O$ were also obtained and have been discussed elsewhere.³ The experiment was performed with an α -particle beam from The University of Michigan 2 m variable energy cyclotron.⁴ Targets consisted of oxidized nickel foils (140 $\mu g/cm^2$ $^{18}\!O$ and 450 $\mu g/cm^2$ Ni). The reaction products were detected and identified in the focal plane of a high dispersion (8 keV/mm)analyzing magnet using a special position-sensitive $\Delta E - E$ counter telescope. The solid angle of the magnet was 1.9 msr and the angular acceptance 6° . The focal-plane detection system⁵ consisted of two gas-proportional ΔE counters providing the signals ΔE_1 (or alternately x_1), and ΔE_2 backed by a 20 mm high by 50 mm long solidstate position-sensitive detector (PSD) of 350 μ m thickness which generates the signals E and xE. The system thus provides two energy loss signals $(\Delta E_1 \text{ and } \Delta E_2)$, the magnetic rigidity $B\rho$ (from x) and the total energy $(\Delta E_1 + \Delta E_2 + E)$. The signal E is another energy loss signal if the particles are not stopped. Discrimination for stopped particles (such as ³He⁺, ⁴He⁺, ⁶He⁺, ⁶He⁺⁺, etc.) presented no problem since mass identification is then very good. At $E_{\alpha} = 58$ MeV, however, the stopped ⁸He particles ($Q \approx -38$ MeV) have a relatively low magnetic rigidity and must be identified amongst background arising from energy straggling and pileup of energetic ${}^{4}\text{He}^{++}$ and ${}^{3}\text{He}^{++}$ particles which are not stopped. A ratio of typically 10^7 ⁴He⁺⁺ and ³He⁺⁺ particles per ⁸He⁺⁺ particle was observed.

Most but not all of this background could be suppressed by requiring multiple coincidences and employing pileup rejection.

The data were accumulated event by event onto magnetic tape and analyzed off-line. Data from several other reactions such as (α, α') , $(\alpha, {}^{3}\text{He})$, and $(\alpha, {}^{6}\text{He})$ were also obtained. These were used to calibrate the energy and position signals from the focal plane counters. The beam analyzing magnets were calibrated by means of the momentum crossover technique.⁶

An (α ,⁸He) spectrum from ¹⁸O at $\theta_{lab} = 8^{\circ}$ is shown in Fig. 1. It was obtained by setting gates on the ΔE_1 , ΔE_2 , and E signals at values determined for ⁸He particles based on ⁴He⁺⁺, ⁴He⁺, ³He⁺⁺, and ⁶He⁺⁺ data. The spectrum is a composite of several runs at slightly different magnet settings appropriately combined. The spectrum shown in the lower part of Fig. 1 includes background subtraction based on the number of events in neighboring regions of ΔE_1 , ΔE_2 , and E. The background is not uniform due to the nonlinear response of the PSD. The usable length covered by the PSD was chosen to span a region of approximately 350 keV centered at the predicted position of the groundstate transition based on the previously accepted ⁸He mass.¹ The $(\alpha, {}^{8}\text{He})$ reactions on the dominant Ni isotopes in the target cannot interfere, as the Q values are more negative. A group of ⁸He events is observed close to the calculated position of the ¹⁴O g.s. as displayed in the figure. The centroid for this group, including corrections for target thickness etc., corresponds to a mass excess⁵ for ⁸He of 31600 ± 25 keV. This value is in good agreement with the earlier value¹ of 31650 ± 120 keV and the recent remeasurements^{7,8} of 31570 \pm 30 keV and 31 611 \pm 18 keV, respectively. The cross section (lab) for ${}^{18}O(\alpha, {}^{8}\text{He})$ is $40 \pm 15 \text{ nb/sr}$ at 8° (lab) and may be compared with other data (target, energy, angle): ~20 nb/sr (¹²C, 156 MeV, 2° , Ref. 2); ~7 nb/sr (²⁴Mg, 156 MeV, 2° , Ref. 2);

2114

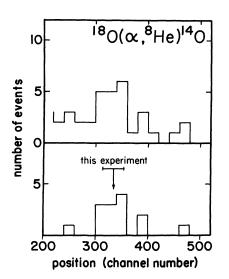


FIG. 1. A spectrum of ⁸He particles observed at $\theta_{lab} = 8^{\circ}$ from the bombardment of ¹⁸O with 17 mC of 58 MeV α particles. The upper part shows the uncorrected spectrum. The lower part shows the spectrum corrected for background (see text) with the peak position determined in this experiment (1 bin=20 channels \cong 25 keV).

~35 nb/sr (²⁶Mg, 80 MeV, 14°, Ref. 1); ~10 nb/sr (²⁶Mg, 110 MeV, 10°, Ref. 7); 50 ± 20 nb/sr (⁶⁴Ni, 58 MeV, 8°, Ref. 8).

The small cross sections and the relative independence on target mass observed for the various $(\alpha, {}^{8}\text{He})$ four-neutron transfer reactions are in contrast to those observed for α -particle transfer reactions such as $(d, {}^{6}Li)$ and $(\alpha, {}^{8}Be).^{9,10}$ Furthermore, the cross sections for α -particle transfer reactions, as expected for a direct reaction, generally decrease rapidly with increasing target mass approximately⁹ as A^{-3} , whereas the (α , ⁸He) cross sections apparently do not. Thus, the $(\alpha, {}^{8}\text{He})$ data do not appear to exhibit characteristics similar to those found for known direct fournucleon transfer reactions. It should be noted, however, that the ${}^{18}O(\alpha, {}^{6}He){}^{16}O$ and ${}^{16}O(\alpha, {}^{6}He){}^{14}O$ reactions,³ although apparently direct, also have rather small cross sections ($\approx 50 \ \mu b/sr$ and ≤ 0.5 $\mu b/sr$, respectively). A possible mechanism for

(α , ⁸He) might be the two-step process (α , ⁶He) (⁶He, ⁸He). Simple semiclassical calculations using available ^{16,18}O(α , ⁶He) data³ yield estimates of 0.1 to 10 nb/sr for such a process with a relatively weak dependence on target mass ($\approx A^{-1}$) for $A \leq 70$. Coherence effects could increase the cross sections for such two-step processes sufficiently to explain the magnitude and mass dependence of existing (α , ⁸He) data.

Another possible mechanism is evaporation of ⁸He subsequent to compound nucleus formation. Hauser-Feshbach cross sections were calculated for the $(\alpha, {}^{8}\text{He})$ reaction on ${}^{18}\text{O}$, ${}^{26}\text{Mg}$, and ${}^{64}\text{Ni}$ at bombarding energies of 58 MeV, 80 MeV, and 58 MeV, respectively. The Fermi-gas level density expression and parameters of Cameron et al.¹¹ were used, together with the analytic expressions for the compound nucleus level width and the sum over the transmission coefficients for all decay channels of Eberhard et al.¹² Compound nucleus level widths Γ were also calculated and compared to experimental level width extrapolations¹³ to test the reliability of the estimated level densities at the rather high excitation energies. The agreement for ¹⁸F and ⁶⁸Zn is very good. A discrepancy observed for ³⁰Si (factor of about 5) yields an uncertainty in the estimated cross section by a factor of about 10. The calculated cross section at 8° in the reaction on ¹⁸O is about 30 nb/sr, which could explain all or an appreciable fraction of the observed cross section. The calculated cross sections for the reactions^{1,8} on ²⁶Mg at 14° and ⁶⁴Ni at 8° are about 5×10^{-2} nb/sr and 8×10^{-8} nb/sr, respectively. This result essentially excludes any compound nucleus contributions.

It is concluded that the observed (α ,⁸He) cross sections (Refs. 1, 2, 7, 8, and this work) appear to be incompatible with a direct four-nucleon transfer and, except for the reaction on ¹⁸O, also incompatible with a statistical compound nucleus mechanism. Two-step mechanisms or preequilibrium compound nucleus decay may be important.

Thanks are due the cyclotron staff and crew for their assistance and to R. Brown and J. Chien for supplying information on target preparation.

- *Work supported in part by Atomic Energy Commission contract No. AEC AT(11-1)-2167.
- ¹J. Cerny, S. W. Cosper, G. W. Butler, R. H. Pehl, F. S. Goulding, D. A. Landis, and C. Detraz, Phys. Rev. Lett. <u>16</u>, 469 (1966).
- ²R. G. H. Robertson, S. Martin, W. R. Falk, D. Ingham, and A. Djaloeis, Phys. Rev. Lett. 32, 1207 (1974).
- ³J. Janecke, A. VanderMolen, L. Chua, and F. D.
- Becchetti, in Reactions Between Complex Nuclei, ed-
- ited by R. L. Robinson *et al.* (North-Holland, Amsterdam, 1974), Vol. 1, p. 46; A. Vander Molen, F. D. Becchetti, J. Jänecke, and L. Chua, Phys. Rev. C <u>11</u>, 734 (1975).
- ⁴W. C. Parkinson, J. F. Petersen, R. H. Day, D. C. DuPlantis, W. S. Gray, and J. Bardwick, Nucl. Instrum. Methods <u>119</u>, 61 (1974).
- ⁵Annual Report, Cyclotron Laboratory, The University of Michigan, June 1974 (unpublished), p. 6.

- ⁶D. R. Bach *et al.*, Rev. Sci. Instrum. <u>27</u>, 516 (1956);
 G. F. Trentelman and E. Kashy, Nucl. Instrum. Methods 82, 304 (1970).
- ⁷J. Cerny, in *Reactions Between Complex Nuclei* (see Ref. 3), Vol. 2, p. 483; J. Cerny *et al.*, Phys. Rev. C <u>10</u>, 2654 (1974).
- ⁸R. T. Kouzes, Ph.D. thesis, Princeton University, 1974 (unpublished).
- ⁹A. M. VanderMolen, F. D. Becchetti, and J. Janecke, in *Reactions Between Complex Nuclei* (see Ref. 3), Vol. 1, p. 36; F. D. Becchetti, L. T. Chua, J. Janecke, and A. M. VanderMolen, Phys. Rev. Lett. <u>34</u>, 225 (1975).
- ¹⁰R. E. Brown, J. S. Blair, D. Bodansky, N. Cue, and C. G. Kovalasky, Phys. Rev. <u>138</u>, B1394 (1965); G. J. Wozniak, N. A. Jelley, and J. Cerny, Phys. Rev. Lett.

<u>31</u>, 607 (1973).

- ¹¹A. Gilbert and A. G. W. Cameron, Can. J. Phys. <u>43</u>, 1446 (1965); J. W. Truran, A. G. W. Cameron, and E. Hilf, in Proceedings of the International Conference on the Properties of Nuclei Far From the Region of Beta-Stability, Leysin, Switzerland, 1970, CERN Report No. CERN 70-30, 1970 (unpublished), Vol. 1, p. 275.
- ¹²K. A. Eberhard, P. von Brentano, M. Böhning, and R. D. Stephen, Nucl. Phys. <u>A125</u>, 673 (1969).
- ¹³D. Shapira, R. G. Stockstad, and D. A. Bromley, Phys. Rev. C <u>10</u>, 1063 (1974); L. Milazzo-Colli and M. G. Braga-Marcazzan, in *Progress in Nuclear Physics*, edited by D. M. Brink and J. H. Mulvey (Pergamon, New York, 1970), Vol. 2, p. 145.