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Isospin splitting of the giant resonance. I. Isodoublets
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We study the isospin splitting of the giant resonance of T =2 nuclei with sum rul. es. The
particular isospin geometry involved in this case permits a number of simplifications in the
isospin sum rules and several largely model independent relations are obtained and discussed.
It turns out that for several. light isodoublets the "symmetry" energy U tends to be smaller
that 60(T+1)A. ' MeV.

NUCLEAR STRUCTURE T = ~ nuclei; cal.culated isospin splitting of El resonance
with sum rules, model independent results discussed.

I. INTRODUCTION

This paper arose out of a study of the isospin
dynamics involved in the dipol. e isovector excita-
tion of nuclei. In this paper we present results
which have emerged in the case of T= —,

' nuclei,
whereas in a subsequent paper we sha, ll analyze
the more subtle case of T& 2 nucl. ei.

Since an isospin structure has been predicted
in the giant dipole photoexcitation of nuclei, a
massive experimental effort has been made to
determine the isospin of photonuc lear resonance
(for successes and failures see the review' of
Paul. ) and a. considerable amount of data, and cor-
roborating evidence for the existence of the two
T components in the giant dipole state is now
available. The distribution of dipole strength
and the displacement among the two components
has been estimated by different methods. The
data essentially follow the theoretical prediction;
however, both the experimental and the theoreti-
cal situation requires more detailed work. In
light nuclei a significant amount of dipole strength
is concentrated in the T-upper component, there-
by favoring the experimental observation of the
dipole isospin splitting; however, the dipole state
itself is influenced strongly by nuclear structure
aspect and does not yet have the simpl. icity ob-
served in the heavier nuclei (in these last the
giant resonance has essentially a Lorentzian
shape; however, problems arise in the identifi-
cation of the T-upper component).

In general it can be said that the systematics
appear to demonstrate that isospin splittings ex-
ist in the light mass region also, but difficulties
arise in the appropriate location of the strength.
On the other hand the different" theoretical pre-

dictions which in the medium and heavy region
are in good agreement [the so-called 60 MeV law
emerges in this region; i.e., the isospin splitting
AE of the dipole states of a target T is essential. ly
predicted by the formula DE =60(T+1)A "MeV]
are quite different for light nuclei and the predic-
tion from isospin sum rules tends to be smaller
than 60 MeV.

The object of this work is to perform a careful
and, as far as possible, model independent ana, ly-
sis of this problem both for the experimentalists
faced with the interpretation of the data and for
those theoreticians undertaking different shell
model calculations to test the consistency of their
models.

To real. ize our program we use the isospin sum
rules approach of Leonardi and Rosa-Clot. The
essence of the method has been illustrated in dif-
ferent contexts but in the present work we wil. l

focus on T = 2 nuclei for which a number of sim-
plifications are allowed. Furthermore, some
model dependent results of the previous analysis
are avoided with the help of new a,nd unexplored
isospin sum rules. The case of T&& nuclei will
be treated separately in a forthcoming paper.

Some important specific results that have
emerged are as follows:
(i) An upper limit is found for the isospin split-
ting of T = & nuclei which is largely model indePen-
dent; as a consequence we obtain
(ii) for A =11, 13, 15, and 1 t the isospin splitting
tends to fall. to lower values in respect to the 60
MeV law. Available shell model cal.culations in
"C largely exceed this upper limit. It is argued
that the failure of the model to achieve consistent
isospin splitting is caused by using wave functions
which fail to get a. reasonable nuclear matter rms
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radius.
An essential preliminary to our program is the

evaluation of the parameters entering the dipole
sum rules and this is carried out in the next three
sections (II-IV).

In Secs. V and VI we apply our formalism to
several T = 2 nuclei and the numerical resul. ts
will be discussed and compared with other cal-
culations. In Sec. VII we treat the special case
of the A =3 system for which further simplifica-
tions are allowed due to the spatial symmetry of
the wave function. Finally in Sec. VIII we will.
anticipate some of the reasons which make the
is ospin splitting of the T)2 nuclei a more com-
plex and, from several aspects, a rather inter-
esting pr'oblem.

II. ISOSPIN SUM RULES

In the past I eonardi and Rosa-Cl. ot' have set up
a theory to evaluate the parameters entering in
the isospin structure of the giant resonance based
on isos.pin sum rules.

We recall here the most significant results. For
economy of words we will refer to the q-energy
weighted sum rules as the o, , sums, these being
the symbols we used in the text. For example
o, (q = 0) determines the bremsstrahlung-weighted
integrated cross section o, =—1E 'o(E)dE, oo de-
termines the integrated absorption cross section
o, —= J o(E)dE. Ywo critical. quantities used in the
past for characterizing the effect of the dipole
operator D,

' = 2Q; 7;3x, on the ground state of the
target I 0)=-

I TT, ) are the quantities o, and o, de-
fined by the equeti-ons:

is very conveniently made by expressing the right-
hand side of (1) as a sum of its isoscalar (=—o,', ),
isovector (=—o',",), and isotensor (o,', ) parts.

This has the great merit of facilitating separa-
tion of the model dependent parts (those involving
two and three body operators) from the model in-
dependent (those involving one body operators).

In the special case of T = 2 nuclei the isotensor
part is strictly 0 for geometrical reasons so that
Q j 0

g Furthermore the T —1 = T' channe l
does not exist. This greatly simplifies our analy-

sis�.

Once the proper isospin geometry is carried out
one obtains the fol. lowing set of independent sum
rules:

where

477
2

&Ol(De@'C8D)„„„„„., „„I0) .

Furthermore, we define the relative intensity x,
of the T+1 fragment of the dipole excitation and
the energy splitting AE of the T+1 and T giant
resonances as

o, ,(T+ 1) ~o(T + 1) o,(T)
o, , ' o,(T+1) o,(T)

x, and 4E are easily determined once 0, 1 and

o,",are known; in fact one has (for T= ~ nuclei)

o, ,(T+1)= E' 'o(E, T+1)dE = (o, , —To,",),
(2)

o', ,(T) =— E 'o(E, T)dE = (o, , +o,",,), . (8)
+

T+1 T+ 1 oe-i
(4)

where RIn)=E„In), ED=0, q=0, 1, and closure
has been used for the last equality. Another interest-
ing quantity (considered by Levinger and Bethe' a
long time ago) is the o, sum which determines

fo(E)EdE, which correspond to q =2 in (1).
The sums in (1) are unrestricted in the isospin

indices so that the isovector operator D admixes
states with T'=T —1, T, T+1. To set up the iso-
spin restricted sum rules o, (T'), oo(T') one sums
over states ln, T', T,') of isospin T' only. An es-
sential step in our program is to analyze the un-
explored restricted isospin sum rules o, (T') too;
as we shall see in Sec. IV these will be extremely
useful. to obtain model. independent upper limits on
the isoapin spl. itting.

The separation ef sum rules for different iso-
spins of the states excited by the dipole operator

27T2'"-'=
187 T3

.=»,&OI[D., [H, D.]] IO&, (8)

7T2

o".=18q T &OIIID, ff],D']-t[D', ff], D ) I.O&,
3

(9)

&Oll[D If] Ã D3]jl0&, (10)

27T2
o,"=18q T &OI[[If, D'], [ff, D ]]Io) .

3

AE=(7+1) "( '- —') (1+ ')(1 —T ')
(8)

explicitly one has

o,="
&OID,D, IO&,
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III. EVALUATION OF SUM RULES

In this section we focus our attention on the eval-
uation of the quantities

Vo ~/(7

For the q =0 case this ratio may be considered
known from experiments. In fact, using [T', T j

327

3 137 „2 3, (x", ~„'= (TT, ~ Q x, 'r„~ TT, )

where x„' is the isovector rms radius and (&~ ') is
the rms radius of the protons, N is the number of
the neutrons and e =(r„')—(xP'). For light nuclei
the approximation & =0 is rather justified so that

V 2 7 2
) ~

2@2 NZ 1
137 mA 4

where we have used

x V(r,.;)(MP*„-HP;;) ).
(13)

H=g ~' ++V„,

V;, = (W +MP",, +BP,', -HP;, ) V(r; „) .

This is the well known T-R-K sum rule. ' On the

o ] is measured for several nuclei; so that to the
extent in which (r~ '} and o, are known quantities
the amount of the upper fragment x, proves to be
model independent for T = & nuclei. For the eval-
uation of 4E we need both x, and x„. in the foll.ow-
ing we will analyze x, . Working out the algebra of
Eqs. (8) and (9) one obtains (k = c = 1)

other hand we have

137 „1 1 1, o", = 1-———p (x,. —x, )'(7„.+r„)V(r„)(MP",, HP', ,)- — Q p~x, ( „'v, —7,' „)2
cd 4~y

k&t

+ Q V(r, , )(Mp;. , Hp,', )x,(x, —x-, )(r;r, —v; v. .—v', v; ~ v;. v )) .
C&f', ~2

These quantities are rather complicated and model
dependent and the evaluation of them must be bas-
ed on models. In the following section we estimate
these quantities with some models.

Let us first take a wave function which is a pro-
duct (i.e. , nonantisymmetric) of single particle
plane wave functions. This means replacing sin-
gle particle spatial states by plane waves within a
sphere equal to the nuclear radius A.s (The short
range nature of the two-body force justifies this
approximation. ) This gives

, o, = — —NZ(2M+H) J~,137 1 NZ

where

Z~ = (-', ))A') ' — (x, —x, )' V(y „)C'(K~r„)d r„.g

E~ is the usual. Fermi momentum,

3 sinx
C(x) = —, — —oosx)x' x

Simil. arly one has

—,so= — —(2M+H)Zz
137 „1A —1 A-1

and this gives

~o" A -1
uo 2NZ '

(17)

, o",= — (2M+H)
137 „1A, —1 A-1

for T = —,
' nuclei this reduces to 2/2+1. '

So far we have ignored the effect of the antisym-
metrization on the wave function. The quantity oo,
involving a summation over neutron-proton pairs
only, is unaffected by Pauli effects. The quantity
o," involves sums over n-n and P-P pairs so that
it is sensitive to the antisymmetrization effects
and a quantitative estimate of these effects is im
per ative.

Taking into account the antisymmetrization of
the wave function and disregarding three-body
correlations one has

and a =r,A'".
(M + 2H;)ZD

(2M+H)J,
(18)
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where

(x, —x,)'V(r„)d r„4~a' -'1

for a Yukawa shape and a Rosenfeld mixture one
has that

2H +M
2M +II J~

ranges from -2 to -1.5 for a potential of 1.4 and

1.3 fm range, respectively, and F0=1.2. Converse-
ly a Hamada-Johnston (H-J) potential gives for this
ratio y =0.86.'

Introducing now the dipole enhancement factor

short range of the potential), whereas the tpppo

body part of the kinetic contribution which is 0
with a Fermi gas model could depend on the
ground state assumed.

It would be tempting to consider the result ob-
tained with a realistic nucleon-nucleon interaction
as the more reliable; however, for our purpose
(to give as far as possible model independent con-
straints to the isospin structure of the giant reso-
nance in light nuclei) these results are to be im-
proved.

In the next section we overcome the previous
difficulties with the help of new isospin sum rules.

IV. NET( ISOSPIN SUM RULES
k = —mA(2M+H) Jpp

so that

2n NZ
137 mA

We can express the ratio o",/o, as

~0 2 1+/k
(19)

We have seen that whereas o.", has a simple in-
terpretation, so that the ratio o",/o, may be con-
sidered known from experiments, x, is rather
model dependent. In the following we want to cir-
cumvent this difficulty.

Keeping in mind that the T, fragment is qualita-
tively higher in energy than the T, and looking at
formula (4) one easily realizes that

From Eq. (19), remembering that k = 0.4/0. 8, one
sees that whereas the Hamada- Johnston potential.
does not sensitively modify the uncorrelated re-
sul. t, a Rosenfeld mixture with Paul. i effects gives
for the ratio cro/oo a significant reduction. A fur-
ther remark is that in the framework of a pure
harmonic oscillator model. cal.culation o 0=A~o ",.

There is no doubt that these resul. ts are rather
model dependent. Looking at the different contri-
butions to o", [Eq. (14)] the potential part of ot
strongly depends on the potential assumed (as
mentioned before a smooth dependence is expected
from using a Fermi gas ground state, due to the

xo& x~ & x2

or

V V

0 j 0'0 Q~

so that one obtains an upper limit for x, if x, is
known. In the following we study &r,"/o„showing
that this ratio may be estimated in a model inde-
pendent way: One obtains the result

0 (T~ 2

Working out the algebra of Eqs. (10) and (11) one

obtains

137 1
4n ' 6m

gp ) p (p'p)(
))

i ij

8m
(v „.—v,. )'(p„,. —p„;)(x,. —x;)V(r,. ;)(MPv;+HP, ;Pv*,))..

i i i i

i&J

+ g(v„.—r„)'(x,. —x;)'V-'(r, )(MP, , rHP;vpvv) )*' (20)

and

137, 1
24'" er 3 8mT, Q (r, , + v „)((P„—P„.)(x, —x, )V(r, , )](MP v +HPvvPv'v))

i&2

Q (v;, + v;, )(x,. —x, )' V'(r;)(Mpvv +H, vP;, )'
) . ,. (21)
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The first sum rule has been analyzed a long
time ago by Bethe, Levinger, and Kent." So
far the second one has not been explored.

Using once more a Wigner-Seitz procedure for
the terms involving the potential we obtain the fol-
lowing results:

the net effect of the antisymmetrization is a
(small) increase of the last term of Eq. (23).

Combining all. these resul. ts one obtains the
rather remarkable fact that

g" 21)
o, A. (24)

137 A 1 ~ p,. p,

ij

NZ(2M +H) Gs
4m

+ [2(M'+H')+2MH]LD,
NZ

(22)

and this last inequal. ity is essentially model inde-
pendent.

V. DISCUSSION

Coming back to our formula (5) one finds that
for T= —,

' nuclei

0 2M+H G~ 1—4)(' ' m 3 8m 2M+ H Gs

4E~ — ' —— 1+ ' 1-—

(25)

+ [2(M'+H')+ 2MH] L,

[4MH+(M'+H')]I.,
(2 (M' + (d *) + 2Mvd I & (23)

where T„ is the mean kinetic energy per nucleon

6
D 4 g3

(' = (same as above) J (same) C'(d v„)d v„,

1
D 4 g3 V'(x„)(r„)'dr„,

1
E 4 g3 V'(r»)C'(kzx»)(~»)'d r» .

It is clear that if the effects of the antisymme-
trization were not taken into account on o, [this is
equivalent to disregarding the correlations (p& p, )
between the momenta] and on o", [this is equiva-
lent to assuming the term in the curly brackets in
Eq. (23) is equal to 1] the ratio c",/&x, would be
simply 2/A. The effect of Pauli correlations on

o, is to decxease the uncorrelated value through the
contribution P; „(p,. p, ) T„T» (This co. ntribution
is certainly negative, as discussed by Levinger
and Kent in Ref. 5). The effect of the antisymme-
trization on o", is model dependent but easily con-
trolled. In fact GD is rigorously zero for a, wide
variety of nuclear potentials. (Yukawa and square
well shape included. ) Furthermore Ls is obviously
less than LD (for any potential) and both for a
Yukawa and square well potential one has LD= 2LE.

Finally the ratio [4MH+(M'+H')] j[2(M'+H')
+2MH] is less than 2 (=2 for H =0) for any reason-
able choice of the interaction; in particular for
realistic potentials like H-J and effective poten-
tials of Rosenfeld type this ratio is negative and

Let us first show that the last factor in this for-
mula is rather constant and ranges from 0.90 to
0.95 for different A. and different choice of o, .

in fact o ",= 2))('/137(r')/3 = 0.048 5r OA—"' fm'
and o, = o.'A. ' fm' with xo = 1.2 and 0.03 & a & 0.04
so that A "'~ o",jo, & 1.4A "'.

One concludes that for 6 =A - 40 the last factor
in Eq. (25) varies from 0.90 to 0.95 so that one has

3 1 o' o'
o ~ -i 2 0 952g 0 ~

o' (26)

The factor in parentheses is usually indicated as
U in the literature.

This formula clearly shows us how the isospin
splitting in T =

& nuclei depends on the giant reso-
nance position and on o ",/v „so that a consis-
tency condition must be satisfied between x, from
(4) and bE from Eq. (25). As a consequence mea-
surements on xo must be consistent with b,E(x,).

Our numerical results are shown in the table
for a wide variety of o, and oo. The radii are
taken from experiments when available, in other
cases an interpolation formula is used. Some
comments on our assumptions are in order here

Measurements" of o, and o, for A, = 40 from
10 MeV to the pion threshold indicate o,=
(0.3 —0.35)A~" mb and co= (60NZ/A) (1.5-2) mb
MeV. One should keep in mind, however, that the
measured photocross section o(E) suffers uncer-
tainty in the low energy region thereby introduc-
ing an uncertainty on v, (this last quantity strong-
ly depends on the low energy region due to the 1/E
factor).

From these measurements after the subtraction
of the so-called electronic cross section (theoret-
ically computed) one obtains that o(E) tend to be
negative below 15 MeV. As a consequence o. , is
clearly underestimated in these cases. (This is
certainly the case for 9Be and ' C.) This suggests
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that v, could be larger than (0.3 —0.35)A»" mb
for light nuclei.

As far as o, is concerned, the uncertainty in the
high energy tail of the electronic cross section is
still significant and estimated to be about 10%%uc

thereby introducing an even larger uncertainty in
the enhancement factor of the classical sum rule.

As a consequence of these remarks, final con-
clusions can be drawn when experiments are in a
shape which all. ows a more detailed comparison.
However, for say A =11, 13, and 15 one should
conclude that the isospin splitting is definitely
smaller than U =40 MeV."

As a final remark we must point out that the
isospin splitting measurements on the dipole
photoexcitation are carried out in an energy re-
gion up to 30-35 MeV, whereas our formulas are
obtained using total integrated cross sections
(o'„o',) up to w threshold so that our theoretical
prediction should be compared with care with a
similar formula obtained with measured cross
sections truncated up to 30-40 MeV. However,
in T =

& nuclei to the extent in which in the high
energy tail of the o(E) there is no dominance of
the T, (lower) fragment of the dipole (conversely
rather general arguments support the contrary),
one expects that ~E measured &~E as defined
from Eq. (26).

VI. COMPARISON WITH MODEL CALCULATIONS

Any detailed model calculation should be con-
sistent with our sum rules. In particular the fol.—

lowing check should be satisfied. Once ap, o „
cr, (T+ I), and o,(T+ I) are calculated:
(i) the ratio [o,(T+1)J/o, should be consistent
with the ratio obtained from (4) using the "model"
value of 0'", ;
(ii) the ratio o",/o, extracted (a) from Eq. (4) us-
ing the calculated ratio [o,(T+ I)]/o, and (b) from
Eq. (5) using the calculated o„o „o,(T + 1), and

oo(T + 1) should be the same, and in fair agreement
withadirectmodel calculation throughformulas (9)
and (14). Furthermore, any "realistic" model
should give for o", the "experimental" root mean
square radius and oo/oo~ 2/A.

The check (ii) involving both the wave functions
and the Hamiltonian interaction is obviously a
more severe and significant consistency test than
test (i).

A detailed "continuum" shell. model calculation"
is available for the isospin structure of the giant
resonance of "C.

The results of these calculations are 0, =0.4A."'
mb,

&p 1 3.5 60 MeV mb 0 56 fm
NZ o,(T +1)'

-1

"( ' )=065 fm
0'p

o",=0.048&&8.41 fm', and U =68 MeV.

As a general remark we observe that this value
of U is larger than our upper limits. [Our upper
limits are obtained with a, =0.32A. ' and op=1.V

(T-R-K). Using o „and oo as in Ref. 12 the limits
become U= 9 MeV, i.e., one order of magnitude
smaller than U= 68 MeV. )

The first consistency check (i) is quite satisfac-
tory but with the second we are in trouble; in fact
&x",/o, from (4) and (5) are 0.049 and 0.065, respec-
tively, with more than 30%% of difference. The last
step of check (ii) is more difficult to work out. As
mentioned in Sec. III, y in formula (19) is very
model dependent thereby introducing a model, de-
pendence on bE as obtained from Eq. (5). Unfor-
tunately calculations are available only with a
Hoper mixture. Finally one finds that o", as cal-
culated from the model is much larger than one
would expect from our knowledge of the nuclear
ma, tter distribution. This is an important point
and looking at the formulas one is led to suspect
that in order to get reliable answers on the iso-
spin structure of the giant resonance a micro-
scopic model. should properly predict the neutrons
and protons rms radii, two aspects intimately
connected. One should of course keep in mind
that continuum shell model calculations have great
merit in other contexts.

Turning to the isospin structure of the giant
resonance more promising results are obtained
from phenomenological models in which a sym-
metry energy term is inserted in the problem
from the beginning both in the single particle en-
ergies of the "active" particles and in the residual
interaction. "

VII. THREE NUCLEONS

Among the T = & nuclei the A. =3 system is a very
special case." For these nuclei the spatial part
P of the wave function is expected to be mainly
totally symmetric and as a consequence the Pauli
principle plays no role in our sum rules (6, 9, 10,
and 11) so that the only important correlations
are those arising from the centre of mass condi-
tion. Using the properties of g and the relation
(Q;r, )' = 0 one obtains the following simple re
suits:

=-A x = r, 'r
ij

=A(A —1)(r, r2)
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TABLE I. Values of U (symmetry energy) as calculated from {25) for different choices of
e, P, x,h, and A. The parameters e and P are defined from o

&
= n A mb, cro=.:P60(NZ/A)

MeV mb.

A(x,h fm) +=0.32 P =1.6
Symmetry energy U in MeU

e = 0.32 P = 1.7 n = 0.35 P = 1.6 +=0.35 P =1.7

9(2.42)
11(2.42)
13(2.32)
15(2.40)
15(2.60)
17(2.60)
19(2.80)
21(2.85)
23(2.95)
25(2.98)
27(2.93)
27(3.10)
31(3.07)
41(3.51)

57
46
30
46
39
48
53
51
54
53

58
50
64

61
49
31
49
42
51
56
55
58
56
50
62
53
67

42
34
21
35
30
37
40
39
42
41
36
45
37
50

4r&

21
22
37
32
39
42
41
45
43
38

41
53

one obtains

P (rv r;)(vv, v;.,))

so that

4T'

2w' NZ NZ
vv = — — (M+ 'H)(r'V„, ) )-,

2m 1 A, -1 A-1'"' =137 2 X 8

(29)

(30)

and

nH(r2) 4HZ'
137 3 A- 1

where

v„.„(r)=-,'(v(r) „„„„,+ v(r)„„,„,)

= V(r„) = V(r,.) = V(r..) .
g', 1 x2„
g, 2(r') ' (28)

Q (v„v„)*)=2HZ,
~~i&i

A similar procedure may be carried out in com-
puting the potential energy contribution to vo and

o, and o", and o, .
Using

Similarly one obtains

a, = T,„+ (M'+H'+MH) (r' V„,, ')
4n'2 2NZ NZ
137 9A- I '" 3

(31)

vv", =
2

T„+ (M'+ll' —2MH)(r V,„,. ) ),
4p' 1 A-1

9m

(32)
so that for A =3 one has

{vv + Tv ) )
= 4T (A —1),

iwj

1 ,'H(r ' V„,)—
o, 2 (1/m) —(M+-,'ll)(V*V.„) )
and

(33)

~(x" 1 3MK(r ' V„,')
r, 2 (1/m)(T. , /2)+(M +H +MH)(r'V„, ) )

(v; rv —r, v'v —v, v;. + v; v;. ) )
= 0,

t &i,d

In formulas (12) and (28), r'„and (r') are )he mean
square isovector radius and radius, respectively,
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of the nucleus considers". -'g point nucleons. Mea. -
surements" available from el.ectron scattering
data include obviously finite size effects: Where-
as for heavier nuclei these effects are small and
to some extent they can be subtracted out, in the
case of 6=3 system both the neutron and the proton
form factors play a„ important role in calculating
the value of r„' and (x') from the charge mean
square radius r„.„'. The charge symmetry and
the spatial symmetr" of (LI) would suggest that for
A=3 (r„')=(t~'), i.e r„'=(r-'). The relation be-
tween r,'„a,nd r, may be written as

where a and s are interpreted as the mean square
charge radius of the proton and neutron, respec-
tively, (proportional to the charge form factors at
q' = 0). Using" a =0.64 fm' and s =- 0.126 fm~ one
obtains

r~('H) = 1.59+ 0.05 fm, (r,„('H) =1.70+ 0.05 fm),

x~('He)=1. 70+ 0.05 fm, (x,„('He) =1.87+ 0.05 fm),

so that the effect of the form factors is to make
x„'('H)[=r~ '('He)] quite close to x~'('H) within the
experimental errors and the Coulomb effects.
This implies that

gV-' s0.65 .

On the other hand o'o/oo may be estimated from
(33) for a wide variety of potentials and it ranges
from 0.46 (Yamaguchi nonlocal potential) to 0.59
(local effective potential) so that U & 8 MeV and

the isospin splitting in A.=3 system is l.ess than 4
MeV.

VIII. T) 2 nuclei

In this last section we briefly comment on nuclei
with T& &.

From a theoretical point of view the isospin
structure of the giant resonance, when analyzed
with the sum rules approach of Leonardi and
Rosa-Clot, exhibit quite different characteristics,
foll.owing the case of T=~ and T& 2 nuclei, so that
we have preferred to treat the two cases separate-
ly. In this paper we have been concerned with
T = 2 nuclei; in a forthcoming paper we will dis-

cuss in detail. the T& & case. Let us here antici-
pate some interesting differences.

In the case of T& —,
' the term o,', [the isotensor

part of the sum rules (2, 3)] is different from zero,
and in our formulas (4) and (5) one must take into
account the effect of o', , (However, the formulas
given in the previous sections for o, , and 0,",
are generally valid for any T nucleus. )

As a geometrical counterpart of being a,', =0
one has that three isospin channels (T+1, T, T —1)
are generally excited for T& 2 nuclei, by an iso-
vector dipole excitation.

With this in mind we can define the average ex-
citation energies of the various isospin channels
oo(T') =Er a, (T') thereby introducing two types
of isospin splitting, namely &E' =E~„—E~
=—(T+1)6' and hE =Er —Er, =—Tb, . The quan-
tities & +& and & —b have an interesting phys-
ical meaning. The first one is related to the so-
cal. led isovector potential and a microscopic basis
for this explanation has been given by several
authors. The second one is related to an jsotensor
potential the meaning of which has been discussed
in Ref. 16. Till now little attention has been paid
to this term (tacitly assuming that b, ' —b =0)
but several reasons suggest that this term could
be of the same order of magnitude as the isovector.

It turns out" that an interesting relation con-
nects 4' —~, ~'+&, and a', .

Finally for large excess neutron nuclei (T» —,')
the approximation v",=r~' is predictably rough.
o", is related to the difference between the proton
and neutron radii and extremely sensitive to them
[see Eq. (12)], i.e.,

1 2n'
2 Ne

'"-'=137 3 ("')'2T

This fact makes reasonable the suggestion that
from a knowledge of o", we can obtain valuable
information about the mean square radius of the
neutron dis tribution.

All these quantities, namely, o,', 6' —6 /
+~, and neutron-proton distribution differ-

ences (o",) are deeply interconnected and make
the isospin structure of the giant resonance of
T& 2 nuclei an extremely interesting topic.
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