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Is there evidence of three-body forces from violation of the Koltun energy sum rule?
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The suggested failure of the model independent energy sum rule of Koltun in a recent
(e, e'p) experiment is studied in light of current Hartree-Fock theory. It is shown that the
use of (i) density dependent forces or (ii) partial occupation probabilities compensates for
the restricted momentum and energy range of the experimental. proton spectral function,
and can explain the sum rul. e violation.

NUCLEAR STRUCTURE Correction to Koltun's energy sum rule calculated for
C, Si, Ca, and Ni using effective density dependent or three-body forces.

I. INTRODUCTION

~-=—Z, --,'-(S),+(r)„- (r), =0.

Here E~ is the total energy of the protons, ' and S
the average proton separation energy. The (T)„
represent the average kinetic energy of the pro-
tons in the nucleus. The quantities are related to
the spectral function

P„(k,S) = pl&&-l, fls. (k)l»l'6(S -E&)

of the protons as follows

(2)

n= P, k, S dSd'k,

The Hartree-Pock approximation equates the to-
tal energy of the nucleus to half the sum of the
single particle and kinetic energies of all nucleons.
This relation was tested by Kohler' and Elton' and
found to be in gross disagreement with empirical
observations. This was attributed to the fact that
Koopmans's' theorem which equates the single
particle energies (c;) and the separation energies
(-e,. =S, & 0) is not valid in nuclear physics. ' The
difference R, =-c& -S, was termed the rearrange-
ment energy.

Two years ago Koltun' derived a model indepen-
dent sum rule valid for the most general two-body
forces. Appropriately corrected' for recoil ener-
gies this sum rule states that

(S) =n ' tP„(k, S)SdSd'k,

A'
(r) =n 'fe, (k, s) dsd'k.

2m

Here E& is the energy of the final state relative to
the target.

Recently Bernheim et al using (e, .e'P) reactions
measured the spectral function for the range 0&S
& 80 MeV and kk & 300 MeV/c in "C,' "Si, ~OCa,

and "Ni. ' They tested the energy sum rule for
the protons and found typical violations 6=-3 MeV
(see Table I) instead of zero. Bernheim et al,. gave
two possible reasons for this violation. (i) Three-
body forces contribute to the total binding energy
and the energy sum rule has to be generalized.
(ii) The proton spectral function has some strength
at separation energies S higher than 80 MeV which
is the upper limit of the experimental measure-
ment.

The purpose of this note is to discuss to what
extent one can derive from such a limited mea-
surement the existence of a bare of effective
three-body force between nucleons.

The range of the momenta hk exhausted by the
measurement was restricted to be less than 300
MeV/c. This range covers roughly the momenta
contained in occupied single particle shell model
wave functions (see for example Fig. 2 of Ref. 6).
Short range correlations (SRC) are expected to
induce the major changes at relative momenta of
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TABLE I. Test of the energy dependent sum rule of Koltun (Ref. 5) and its analyses in Hartree-Fock theory. The
second column displays the average binding energy per proton (Ref. 5). Columns three and four list the average kinetic

(T)~ and separation energy (S)~ per proton calculated from the experimental (Refs. 6 and 7) spectral function P„(k, S)

according to Eq. (3). 6 indicates the failure of the model independent sum rule as defined in Eq. (1). Only the statisti-
cal errors are given. (H3) is the contribution of the three-body term of the Skyrme 2 force (Ref. 11). According to the

sum rule including three-body forces the term —
& (H&)v given in co1umu 6 should be equal to D. Column 7 displays

minus half of the average proton rearrangement energy —&t(BQ/Bp)„calculated with the MDI 4 force (Ref. 16). Again

this should be equal to 4. Column 8 lists the average occupation probability P& Eq. (6) needed to fulfill sum rule Eq. (9)
using (T)/~ and (S)„from Refs. 6 and 7. One recognizes from columns 6 and 7 that the generalized sum rules Eqs. (4)
aud (7) are qualitatively fulfilled, because A is roughly equal to —t (H3)~ and —k' (BG/Bp)„. In ttC, ~BSi, and 58Ni we

have approximated the deformed HF solution by a spherical one. One expects that this still yields the right order of
magnitude for the three-body contribution or the density dependent part of the force. Furthermore the experimental P,
listed agrees approximately with values derived from theoretical consideration (Refs. 14 and 17). The discrepancies
for Ca are not understood. They may, however, be connected with the experimental data for the spectral function

(Ref. 7). The last column lists the value n/Z [see Eq. (B)l obtained from experiment (Refs. 6 and 7).

z,iz
(MeV) (Me V)

(S)7I

(Mev) (Meg

— (a, )

(MeV) (MeV) n/Z

12C

28S1

4'Ca
Ni

-6.93
-6.84
-6.51
-6.95

16.9
17.0
16.6
18.7

23.4
24.5
27.8
24.8

—2.9+ 0.5
-2.8 + 0.6
-0.7+ 0.5
-3.8+ 0.7

-2.93
-3.61
-3.81
-4.06

-2.15
-2.65
-2.81
—2.97

0.85
0.86
0.97
0.83

0.60
0.81
0.80
0.93

500 MeV/c or higher. As far as the limitation of
the separation energies to S & 80 MeV is concerned,
both the total occupation numbers and the shell
model analysis of the spectral function" show
that the normally occupied shell model orbits have
been essentially covered by the experiment.

Now Hartree-Fock (HF) theory with its limita-
tion to single particle Slater determinants basical-
ly is also confined to a description of the "shell
model region. " In theory, however, one knows
how to renormalize the nucleon-nucleon inter-
action to account for this restriction. Three pos-
sibilities shall be discussed: (i) The effective
force becomes density dependent due to the short
range correlations. ' " (ii) This density dependence
can also be considered as an effective three-body
force." (An example of such an effective three-
body force is the "Skyrme 2" force".) (iii) Partial
occupation probabilities " "'"'"are considered
in the renormalized Brueckner-Hartree-Pock
theory.

II. REARRANGEMENT ENERGY

One way of defining an effective force in an in-
dependent single particle space containing only
moments. below =300 MeV/c and energies below
=80 MeV is to renormalize the short range cor-
relations (SRC) into a density dependence. Such
density dependent forces' take into account 2p2h
intermediate states as described by the Bethe-
Goldstone equation. Due to the Pauli operator and
the starting energy dependence the reaction ma-
trix (which is equivalent to the effective force)

gets density dependent. With such forces the
energy sum rule evaluated in the Hartree-Fock
model is of the following form:

BG Z &G
lk

~
Ek p)pl~& ~

P m )yg P&

Expression (5) has been used to calculate the re-
arrangement correction, But for later use in
Sec. IV we want to show that this expression can
be approximately modified:

(5)

lk lk k, p, =2+ lk lk)P, P,
8G 8Q

gA lA

x (IiiG(W)igi)

=2+ (il)G(W)(il) pg(P, -I)

(6)

The last term is minus half the average proton
rearrangement energy. G(1, 2, p) is an effective
density dependent force, like the Skyrme" or the
MDI" forces. The symbol p[—,'(r, +r, )] denotes the
density distribution of the nucleus. In the self-
consistent single particle representation ~i), ~k),
~l) " the density is parametrized by the diagonal
density matrix elements p, k =(i~p~k) =5, ~p, with
values 1 or 0. In deriving Eq. (4) we used a modi-
fication of the HF theory (see e.g. , Refs. 13 and

14) which includea the rearrangement energy in
the definition of the single particle energy, whence
-c]—S .
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with

P, =1++ lk ~, lk p, .BG

gk

In Eq. (6) we used the fact that the total rear-
rangement energy is composed of the starting
energy rearrangement, Pauli rearrangement, and
orbital rearrangement. "'" The first two contri-
butions are often called Brueckner rearrangement,
because Brueckner' studied this effect first. Mu-
ther, Faessler, and Goeke" showed that in "O
the starting (or occupation) rearrangement al-
ways yields more than t4% of the total rearrange-
ment energy for a single particle state (see Table
2 of Ref. 13}. Equation (6) includes the sta, rting
energy rearrangement only. In addition we intro-
duced the partial occupation probability" P, .

The rearrangement correction --,'(BG/Sp) „cal-
culated with the force" MDI 4 is given in Table I.
With the exception of "Ca the agreement is satis-

factory. (The discrepancy in "Ca is hard to un-
derstand, if it is not an experimental effect. } The
error given in Table I for the violation b of the
two-body sum rule does not include theoretical
uncertainties e.g. , coming from the corrections
for the distortion of the outgoing proton.

III. EFFECTIVE THREE-BODY FORCE

Restricting the range of the momenta to less
than 300 MeV/c can also be pa.rtially compensated
for by the introduction of an effective three-body
force. Vautherin and Brink" showed that a linear
density dependence is equivalent to a three-body
5 force in the Hartree-Fock approach. For such
a case the energy sum rule has to be generalized
to

Here

(H, )„=—,(H, ) =~»Q (ikllH, likl —ilk —kii+lik+kli —tki)p, p~p,
ikl

is the average contribution of the three-body force
per proton. The sum rule is therefore fulfilled if
n. of Eq. (1) equals ——,'(H, ),. Table I shows this
quantity calculated from the three-body part II,
of Skyrme 2 with the corresponding Hartree-Fock
wave function. Again the agreement with the ex-
perimental values 4 is quite satisfactory.

IV. PARTIAL OCCUPATION PROBABILITIES

A third way of taking into account only a finite
momentum space lies in the introduction of partial
occupation probabilities P, of Eq. (6). This is in

first order equivalent with taking into account
starting energy rearrangement as shown in Eq.
(6). The total energy and the ' single particle"
energies are given in this approach by' '":

(H) = g t, p, +-,'g(lklG(II")llk) p, (2 P, )p, , —

e, =t, + P(ikl G(W)leak)p P

If one introduces d, =—1 -P, the energy sum rule
in the HF approximation" has the form:

' t,. -s,
Z(1+d) 2Z, ,)~ 1+d

(9)

V. CONCLUSION

We therefore conclude that measurements' of
the spectral function P(k, S) in the restricted range
of the momentum k and the missing energy (hk
& 300 MeV; S & 80 MeV) can give no information
about the bare three-body force. However, it is
possible to extract from them the strength of an
effective three-body force, the strength of the
density dependence of an effective interaction, or
the average partial occupation probability P, . As
we now see all three descriptions are approxi-
mately equivalent as explanations of the "failure"
of the model independent energy sum rule' applied
to the measurements of Refs. 6 and '7.

The tilde in Eqs. (8) and (9) indicates that the
correction for the center of mass motion has been
included P; = t, (1 —1/A. )].

We determined the average occupation probability
P, = 1 —d in Table I by equating the right hand side
of Eq. (9) to zero. This yields an average experi-
mental occupation probability in agreement with
theoretical values" "'"'"(again apart of "Ca).



2072 AMAND FAR SSLE R, S. KREWALD, AND G. J. WAGNER

~H. S. Kohl. er, Nucl. Phys. 88, 529 (1966).
L. R. B. Elton, Phys. Lett. 25B, 60 (1967).

3T. Koopmans, Physica 1, 104 (1933).
K. A. Brueckner and D. T. Goldman, Phys. Rev. 117,
207 (1960).

5D. S. Koltun, Phys. Rev. Lett. 28, 182 (1972).
M. Bernheim, A. Bussiere, A. Gillebert, J. Mougey,
P. Xuan Ho, M. Priou, D. Royer, I. Sick, and G. J.
Wagner, Phys. Rev. Lett. 32, 898 (1974).

M. Bernheim et al. , in Proceedings of the International
Conference on Nuclear Structure and Spectroscopy,
Amsterdam, .1974, edited by H. P. Bl.ok and A. E. L.
Dieperink (Scholar's Press, Amsterdam, 1974),
Vol. 2.
J. W. Negele, Phys. Rev. C 1, 1260 {1970).

SH. S. Kohler, Nucl. Phys. A144, 88 (1971).
J. W. Ehlers and S. A. Moszkowski, Phys. Rev. C 6,
217 (1972).

D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626
(1972).
R. K. Tripathi, A. Faessler, A. D. MacKellar, and
H. Muther, Phys. Rev. C 8, 579 {1973);Phys. Rev.
(to be publ. ished).

~3H. Muther, A. Faessl. er, and K. Goeke, Nucl. Phys.
A215, 213 (1973).

~4A. Faessler, R. K. Tripathi, and H. Muther, Phys.
Rev. C 10, 2080 (1974).

~5B. H. Brandow, Phys. Rev. 152, 863 (1966); Rev. Mod.
Phys. 39, 771 (1967).

~8A. Faessler, J. E. GaI.onska, K. Goeke, and S. A.
Moszkowski, NucI. . Phys. A239, 477 (1975).
R. L. Becker, Phys. Rev. Lett. 24, 400 (1970).
K. T. R. Davies and R. J. McCarthy, Phys. Rev. C 4,
81 (1971).
R. L. Becker, Phys. Lett. 32B, 263 (1970).


