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The»nding energy contributions to nuclear matter from four-body forces have been esti-
mated. The four nucleon potential. is written in coordinate space, and two intermediate nu-
.cl.cons are treated as spectators to give an effective two-body potential. Two-body correl. a-
tions are included between alI. four nucleons and, following a coordinate transformation, two
of the six dimensions for the spectator nucleons can be integrated analytical. ly. Spin-isospin
dependence is extracted and the remaining integrations are done numerically to give a one-
pion-exchange-potential —like effective potential. similar to the three-body force effective
potentials of Loiseau, Nogami, and Ross. Binding energy calculations can then be done in the
usual manner. As the number of nucl. cons increases the effect of exchanges of the spectator
nucleons must also be considered. When this is taken into account, the over-all contribution
to the energy of nuclear matter is approximately 0.1 MeV attraction.

NUCLEAR STRUCTURE Many-body forces, calculated binding E of four-body
force; includes correlations; effective two-body potentials.

I. INTRODUCTION

Recent calculations of the binding energy con-
tributions from three-body forces in nuclear
matter have shown that the results are of the
order of 2 MeV or more' ' and are therefore quite
large in comparison to other higher order effects
involving two-body forces. It therefore becomes
important to consider both more complex three-
body effects and higher order many-body effects.
In this paper we calculate the binding energy con-
tributions from the simplest irreducible four-
body force, shown in Fig. 1. There are more corn-
plex four-body forces, just as there are more com-
plex three-body forces than the simplest irreduc-
ible three-body scattering diagram. The latter
diagram, however, gives the dominant contribu-
tion to the binding energy from three-body forces,
and it is for this reason we have chosen the sim-
plest irreducible four-body diagram for the esti-
mates presented here.

Nucleons 3 and 4 in Fig. 1 are treated as specta-
tor nucleons and are allowed to exchange only
among themselves. Our method, which is an ex-
tension of the method of Loiseau, Nogami, and
Ross' (LNR), enables an effective two-body poten-
tial to be derived. This has an OPEP-like (one-
pion-exchange potential) spin and isospin depen-
dence for nucleons 1 and 2, and has both central
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FIG. 1. The three pion exchange four-body force.

and tensor parts. Binding energy calculations can
then be done in the usual way. ' '

In Sec. II we derive the direct three pion ex-
change four-body potential, in which the spectator
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nucleons 3 and 4 do not exchange. Section III dis-
cusses the contribution to the potential from ex-
change of nucleons 3 and 4. The total four-body
potential is used to derive an effective two-body

potential in Sec. IV. Some details of this calcula-
tion are relegated to the Appendix. Finally, in

Sec. V we give the contribution of the four-body
potential to the binding energy in nuclear matter.

II. DIRECT THREE-PION-EXCHANGE FOUR-BODY POTENTIAL

The scattering matrix for the three-pion-exchange four-body potential (3PEP) shown in Fig. 1 can be

evaluated following the method of Miyazawa, ' giving

S(3 4) 2~~gq)) ~ d d d f rrr 28 qrq, r, -rq, r, or 'qrog'q2 K (Ir )KK (rIg')K (qg')
S 3, 4 2m', o ~ (2v)'~' (q '+~')(e '+ ~')(q '+ ~')

nay 1 2 3

x &Iraq, l B',"I wq, && rq, l B'."Io.q & (2.1)

where f' =0.08 is the nN-coupling constant, 0 is
the pion mass (0.7 fm '), and K and K' are the
vertex and propagator form factors, as in three-
body calculations. ' ' The reduced pion-nucleon
scattering amplitude (i.e., the amplitude with the
forward propagating intermediate nucleon re-
moved as discussed for example by McKellar
and Rajaraman'), shown as a "blob" in Fig, 1,

is given by Miyazawa as S„„,which is related
to the more convenient B amplitude of Eq. (2.1)
by

&~q, l sb'I &q. & -=2~i~(q,.-q..)&~q, IB",,'. I pq, &.

(2.2)

For the term where nucleons 3 and 4 do not ex-
change, so that P =y, the B matrix elements

which appear in (2.1) reduce to'

& Pq, l
B'."I rq, & =&8 28+B)K(q ')K(q ')q q, e""2 '3"~ (2.3)

and a similar expression for Bo' . We use this direct term to define a three-pion-exchange four-body
potential W»E, which can now be written as

ql 1 3 e 2 4 2 g 3 3 4

IRK (qr ) IPK (g2 ) K K (rI& )

1 2 + 3 +

Using the relative coordinates of Fig. 2 in (2.4) allows us to write

q1 = ~VVV q2 = —g P Vv~ q3 = —i P VW ~ (2.5)

so that the integrals over q, q2q3 can be done giving

W,pE(r, r, r, r~) =
( ),', ' [2(r4. +B)]'(2Am')'g"g(U, V, W),

where

(2.6)

'g(U, V, W) =, fo, o, (UVW —UVW —UVW —UVW+2UVW)+S»(U) U(V —V)(W —W)+S»(V)V(W —W)(U- U)

+S»(W) W (U —U)(V —V) +9@, U v, ~ WU ~ W UW(V —V)+9vr Wo, VW. V WV(U- U)

e e 8
+9o, Uo, V [U V(W —W)+3U WW VW]UV] (2 7)
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W = t'

H

TABLE I. NN~ form factors:
Z'2(q2)Z'i (q2) 1

q2+p 2 q2+p 2 q2+ Z2

where f and q are given in the table. Original refer-
ences may be found in Ref. 3.

4 2

Form factor

I
II

III

0
0.72
1

5.73
10

R+U+ V+ W = 0

FIG. 2. Relative coordinates for the four nucleons.

write

M =7,nv28M, M2,
where

(3.2)

At

UVW and UV~ are defined by

Ml-AT4874yg4 q3g4 q2+AT4yT, BV. q g q

+(A- B, P- r), (3.3)
2 e-(nt p-i) v (2.8) 1vl2 =AT3 T3ng3'qlg3'q3+AT3n73ya3 9303'ql

+(A-B o'-r) . (3.4)

(2.9)

and similar expressions for V~' and V~. ( and g
are the parameters of the form factors of Table I.

In Sec. III a spin-isospin average of the scat-
tering matrix calculated from (2.1) with nucleons
3 and 4 exchanged is shown to be about —4 of the
direct term. As this type of exchange, where
"spectator nucleons" permute among themselves,
has no analog in three-body forces, we will in-
clude its effect approximately by introducing a
factor 4 into the effective two-body potential dis-
cussed in Sec. IV.

In the following section we construct an effective
two-body potential for the four-body potential by
averaging over the two spectator nucleons. To
simplify the relations given in this section we will
at this stage compute the spin-isospin average of
the exchange term. The resulting four-body po-
tential is still directly comparable with that of
Sec. II [Eq. (2.4)], since that is independent of
the spin and isospin of the spectator nucleons.

We can simplify M, :

M, =(A —B,e8,~„8 2i g e, ,, 4, q„q„. .

III. CONTRIBUTION OF SPECTATOR EXCHANGE TO

THE FOUR-BODY POTENTIAL
where

+(A+B)&8~2q, q, ,

-1 —58

(3.5)

(3.6)
In this section we compare II'»,, [Eq. (2.4)]

derived from Fig. 1 in the direct case, where
there is no isospin flip of nucleons 3 and 4, to the
potential derived from Fig. 1 with an exchange of
nucleons 3 and 4. Referring back to Eq. (2.1),
we must now calculate

and c,j„ is the usual permutation symbol. A sim-
ilar expression holds for M, .

We can expand the product M,M, using (3.5),
calculate isospin exchange averages, and refac-
torize the result, giving

g &, &28 (Pq21 B,"I rq, &(rq, l B,"'[ o. q, )
ney

= g M&(q. ')K'(q. ')K(q, ')

(M) ice exch Ty nT2 8[+i+22 5e g + @gQ2 2]
ave 3 4

where

(A —B)e, ,5, 22 p e,~„c,2q2,. q
ijk

(3.7)

X 8i 2 3 r4 8i(q3- q&) ~ r3 (3.1) I = (A —B)E ex~5 & 22 p E ~ I e2i (X &i q&2
i f jJyg

for an exchange of nucleons 3 and 4.
We first extract the spin-isospin dependence of

this expression using (2.2). For convenience, we

Q, =(A+B)&8~2', q, ,

Q, =(A+B)',.2q, qi .
(3.8)



f (3 9) we findlate the spin exchange average oWe must now calculate e s '

(3.9)'q —2(I q qi) .1 2 3

2

over n, P, and yther and summing o

+, , —4(A —B) (q, qq q —Z"32t(A+B) qs'q3q3'q2 1' '
& i 2& I& spin isospin

= ~ " ~2 +1 2
exch ave 32 4ofay

(3.10)

{P,I,&,.„„„,„„.„=- 4„——B 68 ~C ~g sy y~ 2 q3

Collecting these resu so ec suits1 ives a factor &. o echan e average simp y gendent, so its spin exchangeQ1 I Pi" i P"
toge

~ ~ 4( +B)'qs ~
q3q3

~ q, .1 2& spiss isospin

i3 11)
direct ave 3, 4ately

n e result (3.10)d term in our exchange
is proportional to — '. F om4„—B '. From
have

4 (A —B)' 1
(A+B)' 4

' (3.12)

e an le integrations o q,
'f in the co-In addition, the ang e '
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(4.1)
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where p '0 is the volume of the tetrahedron, i.e. ,

Q 1 (+2W 2(V'2 +~2 ~ U2 ~ y2 g2 W 2) +g2y2(U2 + y2 +ft2 W 2 ~2 V2) U2y2(ft2 ZP W 2 y2 U2 y2)

~2W 2y2 ft2V2 y2 U2~2/2 U2W 2@2)1~2 (4.4)

S„U d =2mS„~, iJ ~ r (4.5)

We use spherical tensor recoupling relations' to
write

o ' Uo2 ' y = 3 m~
' o2 U ' V 4- z ( o~ x o2) ~ ( U x V )

As the only Q dependence of the integrand is in

W»E and therefore in 'g(U, V, W) of Eq. (2.7), we
now direct our attention to this expression for the
first integration. All the Q dependence is in the
tensor terms (S»(U), etc )a.nd the terms such
as o, Uo', V. The terms like S»(U) integrate
simply to give

The first and third terms of (4.6) integrate to give

~ ~ ~

A ~ 2
o, Uo, V dP= —,via', o, U V+

+S„(r)(-',U rv r —.'U V)].

(4. f)
th

The second term is nonzero, as U and V are not
in general coplanar; however, the contribution
from this term is proportional to U~ V ~ and is
therefore of opposite sign in the two domains Dy

and D„so that it vanishes when these are added.
In all other cases, the contributions in D, and D,

are equal and simply add to give a factor of 2, so
that the integration with respect to Q gives

+ T, (o,o, ) T, (UV ) . (4.6) g(UVW)dg =4m[F,o, o, +F,S»(r)], (4.8)
5g+ D2

where F, and F, are functions of UVWXV and x, given by

F, =,—,(UVW —UVW- UVW- UVW+2UVW+3n'(U- U) VW+3p'U(V- V)W+3y'UV(W —W) +9npyUVW]

and

e e e
U V W

F, =, j-,' (35' —1)U(V- V)(W - W) + -,'(3e' - l)(U —U) V(W —W)+ —,'(3z' —1)(V- V)(V- V)W

-U -F -W
+ —'(3ew —n)n(U —U) Vw+-'(35& —P)PU(V —V)W+-,' (35m —y)ry(W —W) +3PnW] Uy)

(4.9)

(4.10)

where

X —V' —W'

2VW

X' —V' -Z'
AU

and

00 Oo WH XH YH
dU dV dW dX dYJeF

0 WL XL YZ

F —U -TV
P=

P2 g2 V2

2A V
(4.11)

g2 + gr2 X2 y'2

2UV ' 2AW

and UVW and UVW are defined by (2.8) and (2.9).
The expression (4.1) now reduces to

V»r(r) =7, ~ f,[o, ~ o, V', "(r) +S»(r) V',"(r)],
(4.12)

p(rir2rsr4)
—2
P

(4.15)

We now specialize to the cutoff correlation, when

8 = 8(R —pc) 8(U - p c)8( y - pc) 8(W —pc)

(4.14)

where P is the average density of nuclear matter,
and

where

t2p(&+ B)]'
x 8(X —uc)8(y- qc), (4.16)

=Q.333g, t MeV (4.13)
where c is the cutoff distance (i.e., any two nucle-
ons are separated by at least c).
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The limits of integration are given by

W~ =max(0, U —V —R, V —R —U, R —U —V),

W„=U+ V+A,

0.2—

O.I-

X, =m~(f U-R f, f
V- W f],

X„=min(U+R, V+W],

Y = (M —P)"',
Y„=(M +P)'",

with

(4.17)
MeV

O. I

-0.2

, (~(XR U) z (xvw))"'.1

The notation n.(abc) is defined as

h(abc) = 2a'b' + 2b'c' +2c'a' —a~ —b~ —c'

= I& (area, of triangle "abc")'.

(4.18)

(4.19)

-0.3

-0.4

-0.5

Inspecting (4.4), we see that the expression in
curly parentheses is a quadratic in F'. We can
rewrite J a.s

-0.6-

0.8 2 R(fm)

UVW 2Y
f (Y 2 Y2)(Y2 Y 2)] 1/2 (4.20)

FIG. 5. 3PEP central potential, for cutoff at 0.8 fm,
form factors I, II, and III.

and noting that Y dependence in I", and I, is also

0.04 0.3-

MeV

MeV 0.2—

-O.l

O.I

-0.2

-03
0.8 I R(fm)

FIG. 4. 3PEP central potential, for form factor II
with cutoff at 0.6, 0,8, and 1.0 fm.

FIG. 6. 3PEP tensor potential, for form factor II,
with cutoffs at 0.6, 0.8, and 1.0 fm.
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O.a-

Mev

0.2

distance c. Predictably, the four-body potentials
depend strongly on the cutoff distance used in the
correlation function p(r, r2r3r3) and only mildly on
the choice of form factors, provided a realistic
form factor (II or III) is used. Following the com-
parison of cutoff correlations to smooth Reid-hard-
core correlations in Blatt and McKellar, ' we take
the potentials with a cutoff at 0.8 fm and form fac-
tors II or III as being most realistic.

We should emphasize the scale. At typical nu-
cleon-nucleon separations the effective potential
is of the order of tenths of an MeV.

O. I

V. BINDING ENERGY CONTRIBUTION OF 3PEP

Having calculated an effective two-body potential,
we can now compute its binding energy contribu-
tions to nuclear matter in first and second order.
Using the notation of LNR, ' the contributions are

gg(S (Ir3PE)j~
+g(2) 2 IrrOPI':P Q +3PI:. + p3PE 9 lr3PI:

e e

(5.I)

0.8 I R (frn) y2PI' Q y3PI.
e

FIG. 7. 3PEP tensor potential, for cutoff at 0.8 fm,
form factors I, II, and III. gg(2) +gg(2) +gg(2) (5.2)

quadratic in F', the integration over 7 can be
done analytically. The algebraic expressions re-
sulting are quite lengthy and are not included
here. '

There are four more integrations, over U, V,

W, and X, needed to compute 8, and 8, and hence
the effective potential. These cannot be done ana-
lytically, but can be simplified because the final
integrand is symmetric under interchange of U

and V. We defer the proof of this symmetry to the
Appendix. The resulting effective potentials are
shown in Figs. 4 to 7 for three different form fac-
tors and various values of the internucleon cutoff

N is the nucleon number, Q is the Pauli operator,
e is an energy denominator, and

c2 ~

yOPI!P(~) J ~1 2

2 7T p.

1 V2 qZ2(g)Z/( 2)et q r' a"u' q e

(5 3)

The terms AE'," and AE,"' are negligible compared
to the dominant terms 6g'" and bF., ', which are
themselves small compared to three-body results.

Table II gives the results for each of the form
factors of Table I. In the first column we show
the results of a calculation with c =0.8 fm and with
no form factors used in OPEP (5.3). This column
should be compared with the corresponding three-

TABLE II. Binding energy contributions of the four-body force to nuclear matter (MeV).

No form in OPEP
c=0.8 fm c=0.6 fm

Form in OPEP
c=0.8 fm c =1.0 fm

Form factor
I

(No form)

n E&')

g E(~)
1

Total

g E(&)

6 E~')
i

Total

~EO)
g EQ)

Total

0.1
—1.0
-0.9

0.16
-0.28
-0.12

0.25
-0.35
-0.10

0.2
-4.8
-4.6

0.26
-0.68
-0.42

0.45
-0.85
-0.40

0.1
—1.0
-0.9

0.16
-0.22
—0.06

0.25
—0.31
-0.06

0.1
—0.2
-0.1

0.09
-0.06

0.03

0.13
—0.09

0.04
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body results of Table III, which were calculated in
Ref. 2 and are about 7% of those results.

The remaining three columns of Table III contain
the results for cutoffs c =0.6, 0.8, and 1.0 fm when
form factors are included in (5.3). The size of the
binding energy contributions decreases as the cut-
off distance c increases, as might be expected be-
cause of the short range nature of the four-body
force. Form factor I is unrealistic, as explained
in LNR. With a cutoff at 0.8 fm, the results for
both form factors II and III are 0.06 MeV attrac-
tion. These numbers should be compared with the
corresponding three-body binding energies of 1.3
and 1.6 MeV attraction for form factors II and III,
respectively. This represents a convergence ra-
tio of approximately 0.05 over-all.

In three-body calculations, the results with in-
ternucleon cutoffs at 0.8 fm and OPEP used in sec-
ond order perturbation were very close to the re-
sults obtained using the Reid-hard-core potential,
both to derive internucleon correlations and as the
potential in the second order terms. We therefore
believe that the present results with the cutoff at
0.8 fm should give a realistic estimate of the ef-
fects of the four-body force in nuclear matter, if
a hard-core two-body force is used to derive the
two-body cor relations.

LNR {no form
in OPEP)

c=d=0.8 fm

LNR {form
in OPEP)

c=d=0.8 fm

Form factor

(No form)

g E(2)
i

g E(2)
2

Total

-6.0
-0.5
-5.2

1.3
-6.0
-0.5
-5.2

g E0)

g E(2)
1

~ E(2)

Total

1.0
-2.5
-0.1
-1.6

1,0

g E(&)

g E(2)
f

g EP)
2

Total

1.3
-3.0
-0.2
-1.9

1.3
2+7

-0.2
-1.6

APPENDIX

TABLE III. Binding energy contributions of the three-
body force to nuclear matter (MeV). In this table b, E()
= (V s)/N; b E@&&=2(vopsp(Q/e)V P ) /N; DES&
= (V (Q/s) V2~s)/N. These results are takenfrom
Befs. 1 and 2.

VI. CONCLUSION

Our results indicate that including forces which
involve more and more nucleons gives rapidly de-
creasing contributions to the energy of nuclear
matter. This is as one would expect, since the
probability of finding four nucleons within a pion
Compton wavelength of each other is roughly p, 'p
=-', as much as the probability of finding three nu-
cleons that close together, ignoring correlations.

The fact that we find a four-body force contribu-
tion to the energy of order 0.1 MeV indicates that
efforts to refine three-body force calculations be-
yond this level of accuracy are unreasonable un-
less four-body force contributions, and possibly
more complex three-body force contributions, are
included.
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Writing (4.14) as

8, , = 8(R —gc) J|JI dUdV f, ,(U, V)

pc

defines the function f, ,(U, V), which is now shown

to be symmetric under an interchange of U and V;

This roughly halves the computing time for 8, and

8,.
Using equations (4.14) and (4.16) we can rewrite

f, , as

(Al)

~e
f, ,(U, V) = 8(W —) c)k(U, V, W}dW,

lVI

(A2)

where

k(U, V, W)= t dxdYq, (X, Y)
f'P

XL,~X&Xq
YL ~F~F&

and

jUvv(X, Y) =F, ,J8(X- pc)8(Y —gc).

(A3)

(A4)

~'e

f,, q( V, U) = 8(W —pc)k( V, U, W)dW .
Ij'I

(A5)

Equation (4. 17) shows that W~ and W„are unaffect-
ed by an interchange of U and V. Hence (A2) gives
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To evaluate k(V, U, W) we must examine the effect
of U —Von the domain limits X~, X„, Y~, Y„,
regarded as functions of U, V, and W. An inspec-
tion of Fig. 3 shows that the simultaneous inter-
change of labels U —V and X—Y leaves a tetra-
hedron with the same labels A UX, 8 VY, X VW,
and YUR' bounding the four triangular faces. The
effect of an interchange between U and V on equa-
tion (A3) is therefore

From Eqs. (4.3), (4.4), (4.9), (4.10), and (4.11),
we see that the right-hand side of (A4) is unaffect-
ed by the simultaneous interchange U—V, X—Y,
causing n —P, 5 e, U —V, and U —V while y,
y, W, and TV remain unchanged. Hence

j~(Y X)=jvvw+ Y). (A7)

Changing the notation X and Y for the dummy inte-
gration variables to Y and X and using (A7) in (A6)
then gives the right-hand side of (A3), so that

k(V, U, W) =)t dXdYj~(X, Y).
Q, ~XSFp
XL, & Y~Xq

(A6) k(V, U, W) = k(U, V, W).

Substituting (A8) into (A5) completes the proof.

(A8)
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