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Four-body forces in nuclear matter
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The binding energy contributions to nuclear matter from four-body forces have been esti-
mated. The four nucleon potential is written in coordinate space, and two intermediate nu-
cleons are treated as spectators to give an effective two-body potential. Two-body correla-
tions are included between all four nucleons and, following a coordinate transformation, two
of the six dimensions for the spectator nucleons can be integrated analytically. Spin-isospin
dependence is extracted and the remaining integrations are done numerically to give a one-
pion-exchange-potential—like effective potential similar to the three-body force effective
potentials of Loiseau, Nogami, and Ross. Binding energy calculations can then be done in the
usual manner. As the number of nucleons increases the effect of exchanges of the spectator
nucleons must also be considered. When this is taken into account, the over-all contribution
to the energy of nuclear matter is approximately 0.1 MeV attraction.

NUCLEAR STRUCTURE Many-body forces, calcylated binding E of four-body
force; includes correlations; effective two-body potentials.

I. INTRODUCTION and tensor parts. Binding energy calculations can
then be done in the usual way.?' 3
Recent calculations of the binding energy con- In Sec. II we derive the direct three pion ex-
tributions from three-body forces in nuclear change four-body potential, in which the spectator

matter have shown that the results are of the

order of 2 MeV or more!’? and are therefore quite

large in comparison to other higher order effects

involving two-body forces. It therefore becomes

important to consider both more complex three- | Agc----4

body effects and higher order many-body effects. q,

In this paper we calculate the binding energy con- B

tributions from the simplest irreducible four-

body force, shown in Fig. 1. There are more com- e

plex four-body forces, just as there are more com- q;

plex three-body forces than the simplest irreduc- 7

ible three-body scattering diagram. The latter [\

diagram, however, gives the dominant contribu- —

tion to the binding energy from three-body forces, 2;

and it is for this reason we have chosen the sim-

plest irreducible four-body diagram for the esti-

mates presented here. Nucleon
Nucleons 3 and 4 in Fig. 1 are treated as specta- coordinates

tor nucleons and are allowed to exchange only space

among themselves. Our method, which is an ex-

tension of the method of Loiseau, Nogami, and spin

Ross® (LNR), enables an effective two-body poten-

tial to be derived. This has an OPEP-like (one- isospin

pion-exchange potential) spin and isospin depen-

dence for nucleons 1 and 2, and has both central FIG. 1. The three pion exchange four-body force.
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11 FOUR-BODY FORCES IN NUCLEAR MATTER 2041

nucleons 3 and 4 do not exchange. Section III dis- potential in Sec. IV. Some details of this calcula-
cusses the contribution to the potential from ex- tion are relegated to the Appendix. Finally, in
change of nucleons 3 and 4. The total four-body Sec. V we give the contribution of the four-body
potential is used to derive an effective two-body potential to the binding energy in nuclear matter.

II. DIRECT THREE-PION-EXCHANGE FOUR-BODY POTENTIAL

The scattering matrix for the three-pion-exchange four-body potential (3PEP) shown in Fig. 1 can be
evaluated following the method of Miyazawa,* giving

> > fr e e ’ 2 ’ 2\K! 2
S(3,4)=2mi6(0) ) fff 45,43, a8, 2 TiaTas iy Ty -Gy T, 07 010 GKE (0, )KK (0K @)

& @myus @,® + 1)(q,” + B2)g® + 12)
X (Bl B 7a,)¢ ¥ql BY|ad,), @.1)
r

where f2=0.08 is the mN-coupling constant, K is is given by Miyazawa as S, which is related
the pion mass (0.7 fm~!), and K and K’ are the to the more convenient B amplitude of Eq. (2.1)
vertex and propagator form factors, as in three- by
body calculations.?*3 The reduced pion-nucleon (aq,| S B,) =2mi8(a,, - q,0K0iq, | BY) |8G, ).
scattering amplitude (i.e., the amplitude with the 2.2)
forward propagating intermediate nucleon re- ’
moved as discussed for example by McKellar For the term where nucleons 3 and 4 do not ex-
and Rajaraman®), shown as a “blob” in Fig. 1, change, so that 8=v, the B matrix elements

which appear in (2.1) reduce to®
(Bl BY| vq,) =05, 2(A + BK(@,2)K (¢,)q, * et (U279 "4 (2.3)
and a similar expression for Bf,” . We use this direct term to define a three-pion-exchange four-body

potential W,,., which can now be written as

- 41Tf2?l . :Fz

Wop: = P12 (24 +B)]? fff daldazdase"al' (Fy=Ty) iy (4 =Tp) giGg (Fy=T )

« KK’ (q,®) KK'(q,%) KK'(q;?) = -
q.% + 12 4,2 +“_22 a2+ 12 oy Q1Q1 Q3Q3'qqu'02 . (2.4)

Using the relative coordinates of Fig. 2 in (2.4) allows us to write
Q=-ibVy, qQ=-iuVy, Q=-iu¥,, (2.5)
so that the integrals over alazaa can be done giving

WoeFEEE) = 20000 [ p)e@urr iy, T, %), 2.6)

where

YT, V, W) =4 {5, -5, (TVW = TVW - OVW - TVW +20VW) +S,,@) TV - V)W = W) +S,, (W W - W)@ - D)

S, (W)W [T = U)V = V) +95,- UG, WU - W OW(V - V) +95, - WG,- VYW -V WV ({U-D)

_ = e"U o=V gV

TW-W)+3 VWOV - S @.7)
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R+U+V+W=0

FIG. 2. Relative coordinates for the four nucleons.

UVW and uvw are defined by

_ 2

U=1—§% e (/-1 (2.8)

= 3 3 n? < 34 3u? ) -(n/p-1)U

U_(1+U+U2>_§ e\l e )¢ ’
(2.9)

and similar expressions for VW and f/V~V ¢and n
are the parameters of the form factors of Table I.
In Sec. III a spin-isospin average of the scat-
tering matrix calculated from (2.1) with nucleons
3 and 4 exchanged is shown to be about -3 of the

direct term. As this type of exchange, where
“spectator nucleons” permute among themselves,
has no analog in three-body forces, we will in-
clude its effect approximately by introducing a
factor § into the effective two-body potential dis-
cussed in Sec. IV.

III. CONTRIBUTION OF SPECTATOR EXCHANGE TO
THE FOUR-BODY POTENTIAL

In this section we compare W, [Eq. (2.4)]
derived from Fig. 1 in the direct case, where
there is no isospin flip of nucleons 3 and 4, to the
potential derived from Fig. 1 with an exchange of
nucleons 3 and 4. Referring back to Eq. (2.1),
we must now calculate

3 TiaTas (BUGI B | va ) (val BY| 7))
aBy

= D MK@)K*@,)K4,?)
aBy
x ¢i(85=05) T, pi(a5-3,) - Ty (3.1)

for an exchange of nucleons 3 and 4.
We first extract the spin-isospin dependence of
this expression using (2.2). For convenience, we

TABLE 1. NNz form factors:
KYg)K'(gh) __1 &
PEEE) @ip? gtrqge’

where ¢ and 71 are given in the table. Original refer-
ences may be found in Ref. 3.

Form factor e (n/u)?
I 0 e 03
11 0.72 5.73
III 1 10
write
M=7,,T,s M, M, , (3.2)
where

- - > - e -
M, =AT 57,,0,° 030, q; +AT 450, ° 030, " Ay

+A~ B, B~7), (3.3)
M, ZATsyTsa—&s ' -&1—63 : as +A73a73763 : aa—as .al
+A—B, a—7). (3.4)

In the following section we construct an effective
two-body potential for the four-body potential by
averaging over the two spectator nucleons. To
simplify the relations given in this section we will
at this stage compute the spin-isospin average of
the exchange term., The resulting four-body po-
tential is still directly comparable with that of
Sec. II [Eq. (2.4)], since that is independent of
the spin and isospin of the spectator nucleons.

We can simplify M,:

My=(A=B)enyeTicDay20 3 €1pOunlsi 0y
ik
+(A+B)g,20,"q, , (8.5)
where
5, <105, (3.6)

and €;,, is the usual permutation symbol. A sim-
ilar expression holds for M,.

We can expand the product M M, using (3.5),
calculate isospin exchange averages, and refac-
torize the result, giving

(M) g e =TyaTopl PrPyabc o +@1Qp2) ,  (3.7)
where
P1=(A'B)€Byegsy2i ; €ijrOan 3425 »
i
P2=(A—B)€ya¢57a2i Z €irj'et Ogp’ 4147 9350
i’
Q1=(A+B)5ey2?13'az ’ (3.8)

Q2:(14+B)57a2—c’13.al *
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We must now calculate the spin exchange average of (3.9). We find

<P1P2>spin exch = 4(A —B)2€BY€€ya¢5675ya (%ag'alaz '63"'%‘]32-&2 'Zh) . (3-9)

ave 3,4

Q,Q, is spin independent, so its spin exchange average simply gives a factor 3. Collecting these results

together and summing over @, B, and y then gives

Z <M>sp1n isospin =_’;1 '?2[(A +B)2a1 .6.36.3 .az - 4(A —B)z(—CL .63‘&3 f:—(»12 - qszal 'az)] *

aBy exch ave 3, 4

This expression should be compared with the direct
average of M which appears in (2.4):

E (M> spin isospin :-’ 1 * —1:24(A +B)2 al * 636.3 * 62 *
aBy direct ave 3, 4
(3.11)

The second term in our exchange result (3.10)
is proportional to 4(A — B)?, From Miyazawa we
have

4A-B? 1
W = Z . (3.12)
In addition, the angle integrations of ?13 in the co-
efficient will produce some cancellation, For
example, if there is no other dependence on aa
the term in parentheses integrates over §_3 to
- %4192, ', . (3.13)

The second term in Eq. (3.10) is therefore at least
a factor of 4 smaller than the first term. The
first term is exactly one quarter of the direct re-
sult (3.11). Allowing for a relative factor (- 1) in
the exchange matrix element gives the factor § in
Eq. (4.1) for the effective two-body potential.

Exchange effects such as this have no analog in
the three-body force case. They become more
important for N-body forces as N increases, as
we show elsewhere.”

IV. EFFECTIVE TWO-BODY POTENTIAL

If we restrict our attention to scattering where
the intermediate nucleons (3 and 4 in Fig. 1) are
not involved in any other processes, and can there-
fore be thought of as “spectators,” the four-body
potential (2.6) reduces to an effective two-body
potential, given by

3 o
VSPE(TIZ):Z ff W (1, r,rr,)o(r v, r,)drdr,

(4.1)

where p is the density distribution of the four
nucleons as determined by two-body correlations,
and the factor § discussed in Sec. III is due to

(3.10)

permutations of the spectator nucleons.

This is an extension of the effective potential
method used for three-body calculations'~™2 and is
an essential step in obtaining a tractable calcula-
tion for the dominant second order tensor terms
in the binding energy. As in the three-body case,?
we have trivial equality of the first order terms
(Wopp) =(Vgp , While the validity of the approxima-
tion of replacing W, by V. in second order has
yet to be tested in detail.

To proceed with the calculation of (4.1), we
initially allow any correlation function p which is
a function of the six scalar internucleon distances
only. We now transform to the dimensionless co-
ordinate system UVWXY ¢ shown in Fig. 3:

ffH dFdf,=p7 [ Jdvayawaxayag,
Ig T4 over D, +Dgy

all space (4'2)
where J is the Jacobian for this transformation,
and D, and D, are disjoint identical domains cor-
responding to nucleon 4 respectively above and
below the plane of nucleons 1, 2, and 3 in Fig. 3.
The Jacobian J is given by

1 UVWXY 1

75" R @ - 4.3)

¢

FIG. 3. Coordinates for the integrals in calculating
the effective potential.
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where L73Q is the volume of the tetrahedron, i.e.,

=& {REW2(V2 1 X2+ U2 + Y2 = R® - W2) 4 X?Y?(U? + V2 +R? 4 W2 —

—X2W2V? _ R2V2Y? _ [J2X2R? — Uzwzyz}l/z .

As the only ¢ dependence of the integrand is in
W, and therefore in Y(U,V,W) of Eq. (2.7),
now direct our attention to this expression for the
first integration. A11 the ¢ dependence is in the
tensor terms (Slz(U) etc.) and the terms such
as 0, U(r V The terms like SIZ(U) integrate
s1mp1y ; to give

[ 51(0)dg =218, (IP,(T 7). (@.5)

We use spherical tensor recoupling relations® to
write

+T,(5,5,) T,(OV) . (4.6)

J

—Y?) + UPVR(R? 1 X2+ W2 L Y2~ U2 V?)

(4.4)

The first and third terms of (4.6) integrate to give

f'_ﬁ f"¢>%[ *5,0-
81,(7)

I'<:>

i(%

|Q)

oy

<
‘ﬁ)
|

9.
(4.7

The second term is nonzero, as U and ¥ are not
in general coplanar; however, the contrlbutxon
from this term is proportional to UXV 7 and is
therefore of opposite sign in the two domains D
and Dz, so that it vanishes when these are_ added.

In all other cases, the contributions in D and D
are equal and simply add to give a factor of 2, so
that the integration with respect to ¢ gives

1
-2

f  (OVWdp =41[F 5,5, +F,S,#)], (4.8)
By+Dy

where F, and F, are functions of UVWXY and », given by

Fo=;{UVW = UVW = OVW = TVW +20VW +302(T = 0) VW +3820(V = V)W + 3520 V(W -

W) +9apyUTVW}

(4.9)

Fi=£{3B8 - 1)T(V= V)W -W)++B = 1)(T -0V - W)+ +3x2=1)(V= V)TV = D)W

++Bek = a)a(U=0)VW + 138k - p)RU(V - V)W +2(36e =)y (W = W) +3BaW] UV} ¢

where
X-vi-w? 5 X - U -R*
@ 2VW 2RU  °
YRR oW YP_RP_V?
B=——Smw €=—rv —» @1
_RP+WP X2 - Y P+ VEoXPo YR
20V > KS 2RW ’

and UVW and UVW are defined by (2.8) and (2.9).
The expression (4.1) now reduces to

-

Vape(r) =7, - 7,(5,+ 5, V) +S1z('_;'_) V::Pl:’('r)] s

(4.12)
where
[2p4 +B)]?

3PE
V (T) 4 f 47 c t

=0.3339, , MeV (4.13)

and

o ° Wy Xy
sc.,=f de dvf dwf dax
0 0 W Xy

L

Yy
dYJGFc. ts
YL

(4.14)

where D is the average density of nuclear matter,
and

77,77
@:&%&2. (4.15)

p

We now specialize to the cutoff correlation, when

0=0R — nc)o(U - puc)o(V - uc)o(W — uc)
X 0(X - pne)o(Y - uc), (4.16)

where c is the cutoff distance (i.e., any two nucle-
ons are separated by at least c).
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The limits of integration are given by o2k
W, =max{0,U-V-R,V-R-U,R-U-V}, I
W,=U+V+R, OlF
X, =max{|U~R|, |V-W|}, MeV
(4.17) o)

X, =min{U+R, V+W},
Y, =(M - P)¥2 |
Y, =(M +P)Y%,

0.l

with -02
(1% = R?)(V? - W?)
2X?2 ’
(4.18)

M=53X2+R2+U2 + V2 +W?) +
-0.3

1
P =W(A{XR uta{xvwhvz,
The notation A{abc} is defined as
A{abcl=2a*b® +2b%c* +2c2 —a* - bt = c* -0.5
=16 (area of triangle “abc”)?. (4.19)

Inspecting (4.4), we see that the expression in

curly parentheses is a quadratic in Y2, We can 1 1 1
rewrite J as o8 | 2 R(fm) 3

_uvw 2Y (4.20) FIG. 5. 3PEP central potential, for cutoff at 0.8 fm,
"R (V2 - Y?)(Y2 -1, 2)]V?’ : form factors I, II, and III.

J

and noting that Y dependence in F, and F, is also

0.04 03
o]
MeV
MeV 0.2}

-0.2

o3l . L 08 | 2 3
0.8 | 2 R(fm) 3 R(fm)
FIG. 4. 3PEP central potential, for form factor II FIG. 6. 3PEP tensor potential, for form factor II,

with cutoff at 0.6, 0.8, and 1.0 fm. with cutoffs at 0.6, 0.8, and 1.0 fm.
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0.3

MeV

0.2

oy /
1 1 |

08 | 2 Ritm) 3

FIG. 7. 3PEP tensor potential, for cutoff at 0.8 fm,
form factors I, II, and III.

quadratic in Y2, the integration over Y can be
done analytically. The algebraic expressions re-
sulting are quite lengthy and are not included
here.®

There are four more integrations, over U, V,
W, and X, needed to compute J, and 9, and hence
the effective potential. These cannot be done ana-
lytically, but can be simplified because the final
integrand is symmetric under interchange of U
and V. We defer the proof of this symmetry to the
Appendix. The resulting effective potentials are
shown in Figs. 4 to 7 for three different form fac-
tors and various values of the internucleon cutoff

BLATT AND BRUCE H. J. McKELLAR 11

distance ¢. Predictably, the four-body potentials
depend strongly on the cutoff distance used in the
correlation function p(¥,T,T,T,) and only mildly on
the choice of form factors, provided a realistic
form factor (II or III) is used. Following the com-
parison of cutoff correlations to smooth Reid-hard-
core correlations in Blatt and McKellar,? we take
the potentials with a cutoff at 0.8 fm and form fac-
tors II or III as being most realistic.

We should emphasize the scale. At typical nu-
cleon-nucleon separations the effective potential
is of the order of tenths of an MeV.

V. BINDING ENERGY CONTRIBUTION OF 3PEP

Having calculated an effective two-body potential,
we can now compute its binding energy contribu-
tions to nuclear matter in first and second order.
Using the notation of LNR,® the contributions are

AE® =(V¥ /N, (5.1)
AE® = [2 <V0Px-:PQ Vapr.> + <V3P1i9_ Vspr«:>
e e

+2 <V2*"'?§ V“’fﬂ / N

=AE? +AE? +AE? . (5.2)

N is the nucleon number, @ is the Pauli operator,
e is an energy denominator, and

P . e
oprpy _ 71'Tzfd*°'1'q02'q 2 (2 piqeT
14 ) 272 112 q &+ 12 KX (@)K (e .

(5.3)

The terms AEY and AE? are negligible compared
to the dominant terms AE® and AE?, which are
themselves small compared to three-body results.
Table II gives the results for each of the form
factors of Table I. In the first column we show
the results of a calculation with ¢ =0.8 fm and with
no form factors used in OPEP (5.3). This column
should be compared with the corresponding three-

TABLE II. Binding energy contributions of the four-body force to nuclear matter (MeV).

No form in OPEP

Form in OPEP

c=0.8 fm c=0.6 fm c=0.8 fm ¢=1,0 fm
Form factor AEQ® 0.1 0.2 0.1 0.1
I AED -1.0 -4.8 -1.0 -0.2
(No form) Total -0.9 —-4.6 -0.9 -0.1
AE®D 0.16 0.26 0.16 0.09
I AE® —0.28 —0.68 —0.22 —0.06
Total —0.12 —0.42 —0.06 0.03
AE®D 0.25 0.45 0.25 0.13
111 AED —0.35 -0.85 -0.31 ~0.09
Total —0.10 —0.40 —-0.06 0.04
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body results of Table III, which were calculated in
Ref. 2 and are about 7% of those results.

The remaining three columns of Table III contain
the results for cutoffs ¢ =0.6, 0.8, and 1.0 fm when
form factors are included in (5.3). The size of the
binding energy contributions decreases as the cut-
off distance ¢ increases, as might be expected be-
cause of the short range nature of the four-body
force. Form factor I is unrealistic, as explained
in LNR. With a cutoff at 0.8 fm, the results for
both form factors II and III are 0.06 MeV attrac-
tion. These numbers should be compared with the
corresponding three-body binding energies of 1.3
and 1.6 MeV attraction for form factors II and III,
respectively. This represents a convergence ra-
tio of approximately 0.05 over-all.

In three-body calculations,? the results with in-
ternucleon cutoffs at 0.8 fm and OPEP used in sec-
ond order perturbation were very close to the re-
sults obtained using the Reid-hard-core potential,
both to derive internucleon correlations and as the
potential in the second order terms. We therefore
believe that the present results with the cutoff at
0.8 fm should give a realistic estimate of the ef-
fects of the four-body force in nuclear matter, if
a hard-core two-body force is used to derive the
two-body correlations.

VI. CONCLUSION

Our results indicate that including forces which
involve more and more nucleons gives rapidly de-
creasing contributions to the energy of nuclear
matter. This is as one would expect, since the
probability of finding four nucleons within a pion
Compton wavelength of each other is roughly p=3p
~+ as much as the probability of finding three nu-
cleons that close together, ignoring correlations.

The fact that we find a four-body force contribu-
tion to the energy of order 0.1 MeV indicates that
efforts to refine three-body force calculations be-
yond this level of accuracy are unreasonable un-
less four-body force contributions, and possibly
more complex three-body force contributions, are
included.
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TABLE III. Binding energy contributions of the three-
body force to nuclear matter (MeV). I this table A EQ)
= (V¥E) /N; AED =2(VOPEP (Q/e)V¥E) /N; AED
= (V®E (Q/e)V?PE) /N, These results are taken from
Refs. 1 and 2.

LNR (no form LNR (form
in OPEP) in OPEP)
c=d=0.8 fm c=d=0.8 fm
Form factor A E® 1.3 1.3
I AED —6.0 —6.0
(No form) AED -0.5 -0.5
Total -5.2 -5.2
AE® 1.0 1.0
II AEP -2.5 -2.2
AED -0.1 -0.1
Total -1.6 -1.3
AEY 1.3 1.3
11 AED ~3.0 -2.7
AEg” -0.2 -0.2
Total ~1.9 -1.6
APPENDIX
Writing (4.14) as
9., =06 - uc) fdede,,, (U, V) (A1)

pe
defines the function f, ,(U, V), which is now shown
to be symmetric under an interchange of U and V.
This roughly halves the computing time for 4, and
g,
Using equations (4.14) and (4.16) we can rewrite
fc, t as

W
oW = wolk(U, v,w)aw,  (A2)
L

fc. t(U’ V)=

where

KU, V,W)= f j AX dY jym(X,Y)  (A3)
Xp=X=Xy
Y =Y=Yy
and

Jovw(X, ¥Y) =Fq, (JO(X = 1) (Y = pc) . (A4)

Equation (4.17) shows that W, and W, are unaffect-
ed by an interchange of U and V. Hence (A2) gives

L{’
fe, oV, U) =fw oW = pe)e(V, U, W)dw . (A5)
L
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To evaluate 2(V,U,W) we must examine the effect
of U+ V on the domain limits X;, X,, Y,,Y,,
regarded as functions of U, V, and W. An inspec-
tion of Fig. 3 shows that the simultaneous inter-
change of labels U« V and X-— Y leaves a tetra-
hedron with the same labels RUX, RVY, XVW,
and YUW bounding the four triangular faces. The
effect of an interchange between U and V on equa-
tion (A3) is therefore

BV, U, W)= ﬂ AXdYjpy(X,Y).  (A6)
YpsXs<¥y

X[ <Y=Xy

BRUCE H. J. McKELLAR 11

From Eqgs. (4.3), (4.4), (4.9), (4.10), and (4.11),
we see that the right-hand side of (A4) is unaffect-
ed by the simultaneous interchange U~ V, X — Y,
causing @« B, 6+ €, U~ V, and U~ V while y,
k, W, and W remain unchanged. Hence

jvvw(Y,X) =jvvw(X, Y). (AT)

Changing the notation X and Y for the dummy inte-
gration variables to Y and X and using (A7) in (A6)
then gives the right-hand side of (A3), so that

k(V, U, W)=k(U, V,W). (A8)
Substituting (A8) into (A5) completes the proof.
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