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We have measured and analyzed angular distributions of ( Li, 6He) reactions at Ebb 34 MeV
on targets between A =6 and A =48. The analysis indicates that the ( Li, 6He) reaction has
sizable contributions from multistep processes except possibly for transitions of zero angular
momentum transfer (L = 0) near closed shells. The L = 0 partial cross sections of the ( Li, ~He)

reaction are correl. ated with the known Gamow-Teller strength obtained from P-decay measure-
ments, except for a smoothly target-dependent uncorrelated factor which makes the ( Li, 6He)
L = 0 cross sections too large in the middle of the s-d shell. The ( Li, sHe) reactions should
be useful. in studying the distribution of Gamow-Tell, er strength in nuclei.

NUCLEAR REACTIONS O( Li, 6He), Si( Li, eHe), 34S(6Li, He), F. =32 MeV;
Ca( Li, 6He), E = 34 MeV„measured a (E«, 0), systematic DWBA

lysis includes 6Li(6Li, 6He) and 26Mg(6Li, 6He).

I. INTRODUCTION

This is a report of a systematic study of the
('Li, 'He) reactions; their reaction mechanism
and their potential value as a spectroscopic tool.
The ('Li, 'He) reaction replaces a proton with a
neutron and therefore can be classified as a
charge-exchange reaction. Charge-exchange re-
actions became an interesting topic twelve years
ago with the first identification of isobaric analog
states in heavy nuclei using the (P, n) reaction. ' In

(P, n) reactions the proton can undergo charge ex-
change with one of the neutrons in the targetby means
of the (t~

' t, ) term in the nucleon-nucleon force. The
analog state is strongly populated because it ex-
hausts most of the Fermi strength given by

(&)(g,&, ~~A), where the index j sums over the
individual nucleons in the initial nucleus A. and
final nucleus B. It then seemed reasonable that
other reduced matrix elements (RME) could be
measured, but during the ensuing years neither
the (P, n) nor the extensively studied ('He, t) re-
action has been of much use in measuring RME.
The lack of such quantitative spectroscopic infor-
mation has resulted from difficulties in measur-
ing (P, n) cross sections and complications in the

( He, t) reaction mechanism which is often domi-
nated by the two-step neutron pickup-proton strip-
ping process ('He-n-t). '

As there is great value in measuring the re-
duced matrix e lements between isobars, it s eem-
ed well worth pursuing other charge exchange re-
actions. Very little study of the ('Li, 'He) reac-
tion had been made. Also, the ('Li, 'He) reaction
must involve a spin transfer as well as a charge
transfer and therefore is more selective than

(p, n) or ('He, f). Recently, measurements of the
'Li('Li, 'He)'Be reaction at 8„., =32 and 36 MeV
gave encouraging results. ' Both the measured
angular distributions and magnitude of the cross
section were consistent with the distorted-wave
Born-approximation (DWBA) calculations assum-
ing a one-step inelastic interaction. Here a pro-
ton in one of the T =0, J' = 1' 'Li nuclei interacts
with a neutron in the other 'Li; they exchange
their charge and flip their spins forming T =1,
J = 0+ final nuclei. Pursuing this reaction further,
we have measured the "0('Li, 'He)"F,
"Si('Li, 'He)"P, "S('Li, 'He)"Cl reactions at
E„„=32MeV and the 4'4"'Ca('Lt 'He)"'" "Sc
reactions at 34 MeV, and we have reanalyzed ear-
lier data' on the "Mg('Li, 'He)"Al reaction.

II. EXPERIMENTAL PROCEDURE

Two 4.5 cm long Si-surface-barrier position-
sensitive detectors' are placed in the focal plane
of the Argonne National Laboratory Enge split-
pole spectrograph. The 'He ions are identified
according to their energy loss in the detectors,
and their energy is determined from their posi-
tion along the focal plane. The detectors are
500-p. m thick and, because the ions enter the
detector at a 45 angle, the effective thickness
is 700 p. m. During our measurements we were
interested in 'He ions with 20 to 30 MeV kinetic
energy. The 'He" of the same rigidity have 30 to
45 MeV. The detectors can stop He ions of 39
MeV. The 'Li ' and 'He" ions have the same
rigidity at the same energy and therefore would
be indistinguishable. To distinguish them we
placed up to 0.1 mm of aluminum foil. in front of
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the detector to degrade the 'I i energy more than
the 'He energy. The foil also slowed down 'He
ions so that they lost nearly their full. energy in

the detector. A typical particle spectrum is
shown in Fig. 1.

The position signal is obtained using analog
hardware to divide the E„sig ial by the E signal.
The position and energy are stored two dimension-
ally in direct access mode into a 64 000 word mern-
ory. The two-dimensional storage allows cleaner
ion separation than is indicated by Fig. 1. A

typical spectrum is shown for the "Si('Li, 'He)"P
reaction in Fig. 2. The spectrum up to 0.8 MeV is
taken with one position-sensitive detector and the
spectrum between 2.5 and 3.1 MeV is taken simul-
taneously with a second detector. The energy
resolution is better than 30 keV, which is suffi-
cient to resolve the 0' state at 0.677 MeV and the
1 state at 0.709 MeV. The background between
peaks is zero, indicating a clean 'He spectrum.

The magnitude of the cross sections has been
determined by calibrating the system with a mea-
surement of the elastic scattering at angles where
it is predicted to be larger than 90% Rutherford
and normalizing to an optical model calculation.
The major error associated with this measure-
ment is the angular calibration of the spectro-
graph which we determined to within 0.06 by
measuring the elastic scattering on each side of
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the beam. The errors in the cross sections should
be less than 15%; however, our "Ca('Li, 'He)"Sc
cross sections are 40% larger than those reported
by Gaarde and Kammuri. '

The only difficult experimental problem is the
low count rate which has four contributing factors.
(1) For incident energies of E„, =34 MeV nearly
all ('Li, 'He) cross sections are less than 200 (Ib/sr.
(2) 'Li has a large stopping power requiring thin
targets for good energy resolution. (3) 'Li beams
are often of lower intensity and less dependable
than other commonly used beams. We had 15 to
200 nA of 'Li " on target; the large range indi-
cates the poor dependability. (4) The narrow os-
cillations in the diffractive pattern of the angular
distributions make it necessary to use narrow
solid angLes (+0.2 or a 0.4'). There are no other
serious experimental problems. The study of
('Li, 'He) has a distinct advantage over the study
of ('Li, d) in that the Q value on "C is —20.9 MeV,
which means "C contamination on the target pres-
ents no problem.

III. QUASIELASTIC THEORY

One of the primary goals of this work is to study
the ('Li, 'He) reaction mechanism and in particu-
lar to determine to what extent the reaction is
quasielastic. We define a quasielastic process as
elastic scattering with an additional. one-step in-
elastic interaction between a nucleon in the target
and a nucleon in the projectile. It will then be use-
ful to review the general properties of a quasi-
elastic reaction. Using DWBA the transition am-
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FIG. l. A typical particle spectrum. This is obtained
from the Ca( Li, He) Sc reaction at E»b= 34 MeV and
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FIG. 2. The Si( Li, He) IP spectrum at E»b ——32 MeV
and ~~,b= 5'. Each half of the spectrum is taken from
one of two detectors placed in the focal plane of the
spectrograph.
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plitude for the direct term of a quasielastic reac-
tion A(a, b)B is:

Tq, = y~ RERy, RdR,

general solution of G(r, , r, ) is

G(r, , r, ) =&Bbi (o, o, )(t&' t, )V(r, —r, )iAa), ,

= Q Sg, & Yg *(&,)YP *(&l) V(r; —r, )

where the form factor is

&(R)=&BblVIAa) . (2)

Equation (2) is a spatial integration over the co-
ordinates of al. l particles in A and a, and the spin
and isospin matrix elements. The interaction V

is a two-body interaction between a nucleon, i, in

the projectile, a, and a nucleon, j, in the target,
A:

x $3(r))$~(xI)$„(x,)$,(r)) . (7)

The 6l(r) are the one-dimensional radial wave
functions of the single nucleons. [In general the
angular and radial dependence of the wave func-
tions are not separable, and it is implicitly under-
stood that tR(r) may depend on L and l. ] The var-
iables r and r' are measured relative to the center
of mass of the target and projectile, respectively,
l.e.,

V=+ Vi, r'=r —R . (6)

The radial dependence of the form factor comes
from the integration over the spatial coordinates
of particles i and j and doing this six-dimensional
integration separately, the result is

E(R) = g G(r, , r, )dr, dr, , (4)

G(r;, r, ) =&Bbl V, I Aa&;, (5)

is the integration over all. other spatial coordinates
and the spin and isospin matrix elements. The
subscript ij appearing on the matrix element in

Eq. (5) means that r, and r, are being held fixed.
To solve Eq. (5) we need an explicit form of V„.
The 'Li ground state is well described in the I,-s
coupling scheme as "S and the 'He ground state
as "S, so that the two states differ in their spin
and isospin. Therefore, the central part of the
interaction V, , which contributes is the Majorana
potential

V~, =(o, o, )(t, t, ) V(r, —r, ) . (6)

Tensor forces can also contribute but are much
less important. "' Exchange terms can be treated
approximately by renormalizing the potential [Eq.
(6)]. Substituting Eq. (6) into Eq. (5), the most

The constants S&', are obtained by multiplying Eq.
(7) by Yf (r, )Yi (r', ) and integrating over d'Q, d'I7, :

Si ", =&Bbj (o,. o;)(t,. t, )Y((w, )YP(r', )iAa.), „
(9)

Here the subscripts r, and x, indicate that the one-
dimensional radial integrals have been removed.
From Eq. (9) it is apparent that L and l are the
angular momenta transferred to particles j and i,
respectively. For ('Li, 'He) reactions the internal
wave functions of a and b are approximately "S
and "S, thus no angular momentum is transferred
to particles i, and l =0:

G(» ~
) g SMYRNA(+ ) V(r r )

L, N

x did (r, )(R, (r',.)6l„(r,)(R,(r',.),

Si =&Bbi (o,. o, )(t,. t, )Y~(r, )iAa)„„

(10)

(11)

We wish to substitute Eq. (10} into Eq. (4) and solve
for E(R). As the solution stands now, it is imprac-
tical because a six-dimensional integral must be
solved for each value of R. The computation can
be reduced considerably by making the six-dimen-
sional integral [Eq. (4}] dependent only upon the
magnitude of R and not upon its direction. To ac-
complish this we rotate the coordinate system su
that the vector R points along a new z axis. The
old z axis is assumed to be the beam direction.

Such a rotation gives'.

&(R) =4 g Yf,*(Bs,o) Q Sgfz, (&)
L, M

(12)

(13)



1966 R. WHAR TON AND P. T. DEBEVEC

where 6I~ is the angle 8 makes with the incident
beam direction and

The sum over i and j in Eq. (12) can be considered
as a weighted sum over shel. l model configurations.

Equation (12) is also valid in the original refer-
ence frame with the z axis along the incident beam
direction because Y~*(6„,0) is unchanged when ro-
tated back to the original frame of reference. The
original rotation is made to allow us to use sym-
metry arguments' to factor the angular dependence
out of the six-dimensional. integral. The new in-
tegral [Eq. (13)] does not depend on the angular
orientation of R, and furthermore it can be re-
duced trivially to a five-dimensional. integral by
integrating over dQ, or dP, . The integrand de-
pends simply on the difference of these two angles.
The remaining five-dimensional integral must be
solved numerica. lly. If one expands the wave func-
tions and the interaction into a sum of Gaussians,
one can obtain an analytic solution which is given
in Appendix A.

The two general properties of f~(R) are':
(1) f~(R) decreases rapidly with increasing I..
This results in a predominance of small L trans-
fers for a quasielastic reaction. The strong L de-
pendence is caused by the P~(0s ), which is in the

integrand. The Pz(8s ) decreases as 8s deviates
from zero and then oscillates from positive to
negative values. The decrease at small angles
is proportional to L and upon integration results
in a smaller value of fz(R) for larger L. There
would be no L dependence if 0~ was constrained
to be zero, which is the case for a point projectile
with a, zero range interaction. Both the size of
the projectile and the range of the interaction con-
tribute to the L dependence, but in our situation
the large size of the 'Li nucleus dominates the L
dependence, making it considerably stronger than
in ('He, i) or (P, n)
(2) fz, (R) is only weakly dependent upon the sheil
model configurations of the nucleon j, assuming
that al. l important contributions come from one
major shell (for example 2s, 1d). This is particu-
larly true at the values of R where most of the re-
action takes place. It is therefore a good approx-
imation to factor fz, (R) out of the sum Q;, and in-
cl.ude the sum in the matrix element S~. This
gives

S~ =(Bbl Q (o'; o', )(t; t, )Y~(r,)IAa)„„. (15)

S~ contains essentially all of the nuclear structure
information. It can be factored into matrix ele-
ments for the projectile and target and rewritten

as (see Appendix 8):

S~ = Q (—1)'" "——'-— (11&sos I T„gg)(1M,J„M&II(M, +M„))(L'MI(M, +M~)I4Ms)
1 (2L+ 1)(2I+ 1)

s+ A+

x (z, =-o, r, =ill p f,o, Ilz, =1, T, =o)„«, , lip f, [o, Y,(~~)]'lie„, r„&„
LK 1]

Z„ I J~

(16)

The cross section is proportional to IS/I' and is
therefore proportional to (Bl I 5~;t, [o, x Y~(v, )]I I A)„'."j
For L =0 the cross section is proportional to

(Blip t, o, ll A), ', which is the Gamow-Teller
strength. fz(R) is nearly independent' of the sin-
gle particle configurations in the target A. and re-
sidual nucleus B and therefore can be calculated
without knowing the configurations of A and B. In
the absence of spin-orbit or other spin noncon-
serving potentials the different angular momenta
transferred in the reaction are decoupled and add
incoherently. By assuming an incoherent sum of
the amplitudes for various angular momenta
transferred one can fit the measured angular dis-
tributions and easily extract the L =0 cross sec-
tion, which is simply and directly proportional to
the Gamow- Teller strength. For a 0' target, all
final states with L = 0 cross sections are 1' states.

If the target has nonzero spin, then one must know

the spin of the fina, l nucleus in order to extract
the Gamow- Teller strength.

We should emphasize, however, that the corre-
lation between the L =0 cross section of a quasi-
elastic reaction and the Gamow- Teller strength is
not perfect because of a very weak dependence of
fz(R) on the nuclear structure configurations. The
relative error in the correlation should be less
than 10% for the strongest Gamow- Teller transi-
tions, but the percentage error can be expected
to increase for some weaker transitions which
involve a near cancellation of two large matrix
e lements.

The preceding theory is for a. quasielastic pro-
cess but, as pointed out by Madsen, ' even two-
step stripping and pickup (or vice versa) reac-
tions may have a simple proportionality between
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TABLE I. ~Li elastic scattering potential parameters
using volume absorption.

v
Target (Me V) (fm) (fm)

W rw~
(Me V) (fm)

Qw

(fm)

6L
i80

Mg
42Ca c

48Ca

53.1
385.5
174.5
250.0
245.0

' Multiplied by
Also used for

C Also used for

0.524 12,5
0.741. 15.1
0.646 35.4
0.804 16.0
0.912 15.6

2.35
1.05
1.38
1.20
I.06

(x,)'~3.
mass 30 and mass 34.
mass 44.

2.45 0.673
2.04 0.797
1.27 1.26
1,83 0.87
1.85 0.801

the Gamow-Teller strength and the L =0 part of
the cross section. %e will therefore aoalyze our
data assuming this proportionality exists and corn-
pare the Gamow-Teller strengths which we ex-
tract with those measured from the P decay. In
other words, the analysis which we use will as-
sume a quasielastic process, but it is not manda-
tory that the reaction be quasielastic to extract
useful. information about the Gamow- Teller
str ength.

The optical potentials used in the DWBA anal-
ysis were taken from other sources"" except for

"0 and are given in Table I. The fit we obtain for
the "0 elastic scattering is shown in Fig. 3. Ex-
cept for the 'Li('Li, 'He)'Be reaction, ' the magni-
tude of the DWBA cross sections is, for our pur-
poses, sufficiently insensitive to the optical po-
tentials. Different sets of optical potentials rare-
ly caused variations of mere than 39% in the cross
sections. 0'ur form factors ac@ DWSA cro8s sec-
tions are crweietent vrith calculations made by
others, "'"but are inconsistent with the calcula-
tions of De@:rn et al."

Using a Yekawa potential of range 1 fm, the
radial dependence of the interaction in Eq. (6) is

-li -r I8
( —,)= ., ~-ov'

Duhm et al. require an interaction strength V„
=180 MeV to reproduce their "Mg(BLi, 'He)"Al
cross sections, which compares to our value of
V,„=30MeV using the same wave functions and
optical potential. Furthermore, their value of
V„ is larger than the value they obtained when
using a point projectil. e.4 Increasing the size of
the projectile should definitely increase the cross
section, allowing for a smaller value for V«.

IV. REACTION PROCESS
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FIG. 3. The 0+ Li elastic angular distribution at
E~,b=32 MeV. The optical model fit is given by the solid
line. The parameters for the fit are given in Table I.

In examining our data, ere eve that the qualita-
tive characteristics- of a quasielastic process are
generally and consistently present, but that a
careful quanhkative analysis indicates the ('Li, 'He)
reaction is not p:red+I-inantly quasiekastic but
must be proceeding through muktistey processes.
Four aspects of the data are examtmed: (I) the
selectivity of populating final states, (2) the angu-
lar distributions, (3) the magnitude of the cross
sections, and (4) the forbidden 0'-0 transitions.

The ('. Li, 'He) reactions can be very selective,
as is illustrated in Fig. 4, showing a spectrum of
the 44Ca('Li, 'He)"Sc reaction at E.b =34 MeV. Al-
though there are at least 13 known states below
0.98 MeV excite.ion in "Sc, only two or three of
these states are strongly exciteal in 4'Ca('Li, 'Be)-
4'Sc. The oCher states are an order of magnitude
weaker. In particular the 2', 4+, and 6+ states
at 0.0, 0.350, and 0.271 MeV, respectively, are
vreakly excited. These states are thought to be
mostly pure (vf,i„vf„,')~ configurations. In a
quasielastic reaction we would expect these states
to be weakly populated, since the ( ( ( t(o & Y~) ) ))
matrix element between a pure (vf„,')0+ state and
a pure (nf„,vf„„')~+ state is zero when J is an
even integer. The same kind of sel;ectivity is
seen also in 4 Ca('Li, 'He) Sc.'

A quasielastic process should also show a strong
angular momentum selectivity, resulting in weak-
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FIG. 4. A spectrum of the 4Ca( Li, He) Sc reaction
at E]ab=34 MeV and ~]ab=-10

er cross sections for higher angular momentum
transfers. In particular, the angular distributions
shoul. d show strong selectivity in angular momen-
tum transfer. For a 0 to J' transition where J
is an odd integer, two angular momentum trans-

fers, L& =J —1 and L, =J+1, are allowed. If the

(II t(ox Y~)II) matrix element is not very small for
L„ then the angular distribution should be com-
pletely dominated by L&. This is usually found to
be true even though the higher L, results in better
angular momentum matching between the incoming
and outgoing distorted waves. An example is
shown in Fig. 5. The "F 1' state has an L =-0

angular distribution and definitely not L = 2. The
"F 3+ has an L =2 angular distribution rather than

L =4. For other examples, see Refs. 4, 6, and 7.
By strong contrast, the (sHe, f) reactions consis-
tently show angular distributions characteristic
of L& to these same states. '4'"

The most important test of the reaction mechan-
ism is the magnitude. To study the magnitude of
the cross sections we choose a Yukawa interaction
of range I fm for V(r; —r, ) given in Eq. (6) and ad-
just the strength V« to give the measured cross
section. If the reaction is quasielastic the strength
V„should stay the same for al. l transitions. The
main uncertainty in this procedure is that we do
not know the reduced matrix element RME
=(I I t(v&&Yz, )i I) for each transition. For this rea-
son we have only considered the reactions "0-

IOOO— 300

- L=2

IOO=

IOO—

3

b IO=

b — I8

42
I8

48
42

I

20
I

40
c.m. (deg)

I

60 IO I

5
I

7

FIG. 5. Angular distributions for the ~80( Li, 8He)~SF

reaction at E~,b=32 MeV popul. ating the 1+ ground state
and the 3+ state at 0.94 MeV. The lines through the data
are arbitrarily normaI. ized DWBA calcul. ations for L = 0,
2, and 4.

FIG. 6. V~~ plotted vs J for transitions to the lowest
1+, 3+, 5+, and 7+ states in mass 18, 42, and 48. The
solid lines are the V«using RME from realistic shell
model calculations. The dashed l.ines are the V«using
the RME of pure configurations.
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Ls,.„,„„x„„„=(- 1) (17)

Therefore, a quasielastic process should not al-
low a 0' to 0+ transition. However, there are ex-
change terms which result from the antisymmetri-
Eation of the nucleons in the projectile with the nu-
cleons in the target. The exchange terms are
mostly local and result in a renormalization of
V 7 but there is a smal l non loca lity' which can
violate Eg. (17) and a, liow a 0' to 0' transition.
Calculations" indicate that the nonlocality contri-
bution is negligibly small.

The most likely explanation of 0+ to 0 transi-
tions is that they proceed through two-step pro-
cesses." The 0' to 0' transitions are valuable
for an understanding of two-step processes and
their relative importance. We have measured
three 0' to 0+ transitions between analog states
(Fig. 7). As expected, all 0' to 0 transitions
appear to have pure L = 1 angular distributions.

('Li, 'He) "F, '"Ca('Li, 'He)~'"Sc which are near
closed shells. The shell-model wave functions
should be relatively simpler than for those in the
middle of the s-d shelland consequently should be
better understood. The V, are shown in Fig. 6
for the lowest 1+, 3, 5', and 7 transitions. The
dashed lines are the values of V„assuming pure
d», configurations in mass 18 and pure f», config-
urations in mass 42 and mass 48. The solid lines
are the values of V, , assuming the published
wave functions of realistic shell model calcula-
tions."'" V„ is far from being constant and in
general is much too high for the higher spin states.
This is a strong indication that the angular momen-
tum selectivity predicted by a quasielastic pro-
cess is absent. The 4'Ca('Li, 'He)4'Sc results look
very similar to the 'sCa('He, t)"Sc results, "which
are believed to go by two-step processes. ' This
appears to contradict the angul. ar distribution data,
which suggests that there is an angular momentum
selectivity. The other observation to make is that
the V,~ seems to vary a lot with mass except for
the 1' transitions (shown by the box in Fig. 6).
We will study these 0' to 1' transitions in greater
detail in the next section. Quantitatively, Fig. 6
is very damaging evidence against a quasielastic
process.

Attempts have been made to understand ('Li, 'He)
reactions in terms of a two-step ('Li, 'Li)('Li, 'He)
neutron pickup, proton stripping reaction. " Such
analyses must first understand the cross sections
of the 0' to 0+ transitions, which are one-step
forbidden. The ('Li, 'He) reactions have a spin
transfer of 1 which requires I- = 1 for 0' to 0'
trans itions, but a q uas ielas tic process with a
local. interaction must satisfy the parity selection
rule

The 0' to 0' transitions are an order of magni-
tude or more weaker than the strongest 0 to 1'
transitions, and it is difficult to make any quanti-
tative conclusions about the importance of mul. ti-
step processes without detailed multistep calcula-
tions. One problem is that it is not obvious which
multistep processes are and are not important.

V. CORRELATION VfITH THE GAMOW-TELLER

STRENGTH

We have al.ready stated that the I- = 0 cross sec-
tion should be proportional to the Gamow- Teller
strength for a quasielastic process and also, per-
haps, for two-step pickup and stripping processes.
To see how good the correlation is we have mea-
sured angular distributions for twelve 0 to 1'
transitions for which the Gamow- Teller strength
is known from the P decay. Some of these results
have already been published. ' From the angular
distributions we extract the i. =0 part of the cross
section and, using a DWBA calculation, obtain the
RME [(B((QoT[[A) [. In the DWBA ca.lculation
we assume a Yukawa interaction of range 1 fm

IO= P, 0.68MeV, 0+

EL, = 32 MeV

42Sc, g.s. , 0+

EL;=34 MeV

3o
b O.I—

IO—

34
CI, Q.s. , 0

EL 32 MeV

I

0
I i I

IO 20
(deg)

FIG. 7. Angular distributions for the 30Si( Li, eHe)30P

(0+ at 0.677 MeV) and the ~S{Li, He)~ Cl (0+ ground
state) reactions at Ehb = 32 MeV, and the ~~Ca( Li, 6He)~~Sc

(0+ ground state) reaction at E j b=34 MeV. The l.ines
through the data are arbitrarily normalized DWBA cal-
culations with angular momentum transfer of 1A .
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and strength 25 MeV. Then we consider the P
decay of the final 1+ state, if it is the ground
state, to the initial 0' ground state of the target
and from the ft value extract the RME according
to the equations

FIG. 8. A level diagram showing the ~ Si(6I.i, He)3 P
reaction and the Gamow- Teller P decay in mass 30.

I I

10 20
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FIG. 9. The angular distribution for the Ca( Li, ene)-
~ Sc reaction at E~,b= 34 MeV to the unresolved 1+ and 7+

doublet at 0.62 MeV. DWBA calculations for the 1+ with
L = 0 (dashed line) and for the 7+ with I. = 6 (dotted line),
and the incoherent sum (sol.id line) are shown.
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If the final. 1' state is not a ground state, then we
consider the P decay to this 1' state from the 0',
Tz = —1 analog of the 0 &z = 1 target, as is
shown in Fig. 8.

Using this procedure, we find the fol. lowing cor-
relation:

r
'1

30-
b
O

do~='

dn„„p, d~nwsA'
(20)

10—

50-

0.68 MeV, I+

79% L=2
21% L=O

where do ojdQ„~„„ is part of the DWBA calcula-
tion which depends upon the spins of A and Band the
Q value but not upon the microscopic nuclear struc-
ture. N& is a normalization constantwhich should
be nearly unity and equal for all transitions if the
reaction is quasielastic. Experimentally we find
that N„ is not the same for al. l. transitions but is
rather smoothly dependent upon the mass of the
target A. The observation that N„ is essentially
independent of the final nucleus B demonstrates
that a correlation exists between the I- = 0 part of
the ('Li, 'He) cross sections and the Gamow-Teller
strength.

20-

I

5

2.56 MeV, I+

2.61 MeV
55'A L=O
45% L= I

I

15
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FIG. 10. Angular distributions for the ~~8( Li, 6He)34cl
reaction at E I,b= 32 MeV to the four lowest 1+states in
3~Cl. . The lines through the data are the incoherent sum
of DWBA calculations with different angular momentum
transfers. The percentages of the integrated cross sec-
tion for each L transfer are shown.
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TABLE II. A comparison of the Gamow-Teller
strength obtained from (6Li, 6He) reactions and P decay.

Final state

(MeV)

d(T

d&
(First max. )

(p, b/sr) ('Li, 'IIe) P decay

6He (0)
i8F (0)
'6Al (1.06)

P (0)
(0.709)
(2.84)
(3.02)

"Cl (0.46)
(0.68)
(2.56)
(3.13)

Sc (0.62)

77
1550
210
220

(I-=2)
(I =2)

70
(I.=2)

10

16
30

5.5
6.3
5.4
5.9

&1.8
&2.1
9.9

&1,0
1.6
5.3
9.7
4.8

5.6
4.6
2.7
1.0
0.22

&1.0
2.8
0.35
0.64
1.4
3.0
4.0

4,0—

3e0
A

2.0—

1.0—
I

IG

A (amu)

I

40

FIG. 11. The ratio of the Gamow-Teller matrix ele-
ments extracted from the ( Li, 6He) reactions divided by
the Gamow-Tel. ler matrix elements extracted from the
ft values of P decay. The ratio, which is the parameter
&~ in Eq. (20), is plotted vs mass.

It is most significant that apart from any calcu-
lation, a simple look at the 0 to 1' angular dis-
tributions gives a correct qualitative understand-
ing of the Gamow- Teller strength. The angular
distributions of the six transitions with the largest
Gamow-Teller strength show nearly pure L = 0
shapes, while the three transitions with the smal. l-
est Gamow- Teller strength show nearly pure L = 2

shapes. These angular distributions are shown
in Figs. 5, 9, and 10, and Refs. 3, 4, and 20. A
compilation of the RME is given in Table II. The
first column gives the differential cross section
at the first maximum in the I. =0 part of the angu-
lar distribution. The second and third column
give the RME obtained from the ('Li, 'He) cross

sections (with N„= I) and the P decay, respective-
ly. It is quite evident from looking at mass 30
and 34 that a good correlation with the P decay
exists for the relative strengths of the eight tran-
sitions. If we consider all 12 transitions, there
appears to be a smooth mass dependence. This
mass dependence is plotted in Fig. 11. It is diffi-
cult to conclude much from only six mass points,
but the ratio appears to show a, shell effect, being
quite l.arge in the middle of the s-d shell.

The (6Li, 'He) cross sections are dominated by a
strong Q-value dependence. The less negative the
Q value is, the stronger the cross section. Hence
the "F 1 state has the largest cross section,
since it has the least negative Q value. The Q
value becomes more negative, on the average,
as A increases. This is true because of the in-
creased Coulomb energy in going from a T~ =+1
nucleus to a T~ =0 nucl. eus. It is most satisfying
that the DWBA apparently has removed this strong
Q-value dependence. To exhibit the correlation
between the Gamow- Teller strength and the L = 0
cross sections in mass 30 and 34, it is most im-
portant that the strong Q-value dependence of the
cross section be removed. A 3 MeV more nega-
tive Q value results in approximately a factor of
9 smaller cross section. This explains why the
states near 3 MeV excitation in "P and "Cl have
small cross sections although they have a large
RME. The strong Q-value dependence goes away
as the incident bombarding energy is increased.
This is an important reason why ('Li, 'He) reac-
tions must be studied at higher energies.

To clarify some points let us take a critical
look at our analysis. We have assumed a direct
one-step quasielastic reaction with only the
Majorana force for the inelastic interaction. We
have neglected exchange terms and the tensor
force. We feel that a more sophisticated "quasi-
elastic" calculation is unwarranted because the
reaction is probably not entirely quasielastic and
is almost certainly dominated by multistep pro-
cesses in the middl. e of the 2s-1d shell where the
cross sections are much too large.

The inclusion of exchange terms will increase
our calculated cross sections but will not alter
significantly the shapes of the angular distribu-
tions." Fur thermore, the percentage of contri-
bution of the exchange terms to the cross section
is nearly independent of the target and final nu-
cleus. There will be a small target mass depen-
dence from recoil corrections but this should be
negligible. Our value for V„=25 MeV is already
unrealistically high, and the inclusion of exchange
terms would allow us to obtain the same cross sec-
tions with a value of V, closer to the -10 MeV ob-
tained from free nucleon-nucleon potentials.
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The inclusion of the tensor force also wil. l not
change our results significantly. In the 'Li-
('Li, 'He)'Be reaction, the contribution of the
tensor force is less than 20% of the total cross
section. ' For 0 to 1 transitions it will. be a
factor of 5 weaker according to spin statistics.
This is borne out by calculations. " It is easy to
show that for 0' to 1' transitions the angular dis-
tribution of the tensor contribution will be mostly
I. =2 in shape. This, of course, means that the
L = 0 part of the cross section and its correspon-
dence with the Gamow-Teller strength will be un-
affected by the tensor force.

The major weakness of our calculation is that
me assume a quasielastic process when it is prob-
able that other processes are more important.
The correspondence between the L = 0 part of the
cross section and the Gamow- Teller strength must
be considered no more than an empirical observa-
tion. We certainly have not explained the full. story
of why this correlation exists.

VI. DISCUSSION

It is safe to conclude from our analysis that the
('Li, 'He) reactions have sizable contributions
from multis tep pr ocesses. The most convincing
evidence for multistep processes is the lack of
preference for small. angular momentum transfer.
The cross sections to high spin states are much
larger than is predicted by a quasielastic process.
This is exemplified in Fig. 6. Even among 1

states, the L, =2 contribution to the cross section
is sizable in A. =30 and 34, indicating that multi-
step processes are important. A quasielastic pro-
cess predicts that the total I. =2 strength to all. 1+

states should be less than 10% of the total I.= 0
strength. Experimentally the I- =2 strength is ap-
proximately equal to the I- =0 strength in mass 30
and 34.

The presence of multistep processes undoubted-
ly are the cause of the strange mass dependence
of N„, shown in Fig. 11. The effect is strong, re-
sulting in 0 to 1' cross sections which are more
than an order of magnitude too large in A =30 and
34. Nevertheless, there remains a good correla-
tion between the L =0 cross section and the Gamow-
Teller strength even in A =30 and 34. We are for-
tunate that multistep processes do not destroy the
correlation. Madsen's suggestion' that a two-
step pickup-stripping reaction may be a valuable
spectroscopic tool. is apparently and unexpectedly
becoming a reality in the ('Li, 'He) reaction.

One may then ask the question, mhy does
(6Li, 'He) work when ('He, t) fails to work?
Madsen's crucial assumption is that the inter-
mediate states which contribute to a two-step pro-

cess must be at nearly the same energy. This
seems like a plausible assumption if the inter-
mediate states with large nuclear structure over-
lap with the initial and final states also have good
matching conditions with the incoming and outgo-
ing distorted waves. In a two-step process
('He, n)(o. , t) the high binding energy of the inter-
mediate a results in a lot of kinetic energy. There
is a bad angular momentum mismatch between the
intermediate state and the initial and final states.
The result is that contributions off the energy
shell become important and Madsen's argument
is no longer valid. A possible intermediate state
for ('Li, 'He) is 'Li, which should have good match-
ing conditions for most transitions.

It becomes clear that ('Li, 'He) should now be
seriously considered as a. tool for measuring the
Gamow- Teller strength. Knowledge of the distri-
bution of Gamow- Teller strength over excitation
energy would be valuable in understanding nuclear
structure and the spin dependence of nuclear
forces. Experimentally, all that is known about
the distribution of Gamow- Teller strength comes
from the P-decay transitions (mostly in light nu-
clei) which are energetically allowed. Theoreti-
cally, large shel. l-model calculations, particularly
in the middle of the s-d shell, do poorly in pre-
dicting the distribution of Gamow-Teller
s tr ength.

The hindrance of allowed P decay in heavy nuclei
(with large neutron excess) clearly indicates that
both the Fermi and Gamow-Teller strength lie at
higher excitation. " The Fermi strength has been
found to be concentrated in a singl. e state, the
isobaric analog state of the parent. It remains
to be found to what extent the Gamow- Teller
strength is concentrated and at what excitation
energy this concentration occurs. It is l.ikely,
both from shelI. -model caI.culations and the meager
experimental data that most of the Gamow- Teller
strength lies above the analog state. " Hardy's"
experiment on the proton emission of "Cl follow-
ing P decay of "Ar, suggests a narrow concentra-
tion of Gamow- Teller strength at 8 MeV excita-
tion in "Cl, which is a ful. l 22 MeV above the ana-
log state. We have already used the «'Ca('Li, 'He)-
"Sc reaction" to map out the Gamow-Tel. ler
strength up to 6.4 MeV excitation in "Sc. Our
analysis suggests that approximately 88% of the
Gamow- Teller strength lies at higher energies.
In a shell-model calculation, the excitation ener-
gy of the Gamow- Teller strength is proportional.
to the magnitude of the Majorana force V„(a,. cr, )
x(t;' t, ) between the particles and holes. In nu-
clear structure calculations one is unsure what
strength to use for V, . A measurement of the
distribution of Gamow-Tell. er strength will be
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TABLE III. The parameters g and b used in a Gaussian expansion of the Li and 6IIe single
particle wave functions and a Yukawa of range 1 fm (unit distance=1 fm).

gi or 4 b2

6Li
'He

Yukawa

1.0
1.0
6.608 7
0 pg4444

0.165 578 9
0.141378 0

26.015 8
0.093 975

0.133223 5
0.144 703 0
1.71130

0.061431 2 0.009 1611 0.022 387 5
0.046 076 7 0.014 975 6 0.014 530 4
3.666 6 0.51941 0.780 95

valuable in determining V„. Of equal interest
is the degree to which the Gamow-Teller strength
is loca, lized. The measurement of so-called
spreading width of a giant Gamow-Teller reso-
nance would be of great value for understanding
nuclear structure. It is our conclusion that the
('Li, 'He) reaction holds the promise of answering
these questions and the reaction should be pursued
at higher beam energies to allow the study of high-
er excitations in nuclei.

APPENDIX A: ANALYTIC SOLUTION OF fz(R) IN EQ. (12)

(A2)

then

where

2(l,/2+1), , „2
7j &la [(2l y I ) I I ]

&/2

a

(A3)

or ~ ) can be well described out to about 16 fm by
a sum of 3 Gaussians. If we properly normalize
the wave function such that

Let us expand each radial wave function into a
sum of Gaussians of the form

1
Ã2=

a =g g g (b, ~ b )-(2/2+ia) ' (A4)

(R,(r)=rfa g g,e 'a" (Al) Let us also expand the interaction into a sum of
G auss ians:

where l, is the angula, r momentum of the single
particle state, and g, and 5, form a set of adjust-
able parameters. Single particle wave functions
with zero or one node (not counting nodes at r = 0

V(r; —r, ) = V„ggse "s('i (A5)

If we substitute these Gaussian expansions for the
wave functions and interaction potential into Eq.

(13) we get

a A b B ar82'NNNN V r 2r 2i(r R)2e (bA bB)r/ -e (ha+ bb)(ri
2

l, 3I(2[(2l I. 1)I!(2l + 1)1l]1/2 a b B s i / i
aA

b, B,S
2xe 's('I '/'' P~(8B )d'r, d'r, ,

where l =2(l„+lB) and l, =I, =1. The solution of this integral for L as an even integer is:

(A6)

(P+bs)' 'bs'e "sB (l ——,'L)! (2l+1+L)l! 1

3[(2lA+ 1 ) (2lB + I) ]i/2 2 I
&~bgBgs

'
P

~ '2 g (q ~2L) (2j y I yL) ! (I J)
a, A J' $L
b,B

I).'s baal' —2 J(2s 3 'P''+ , , +l -z+ 2' (2-) s~'-)' (A V)

where

P=b, +bb,
ps' = bs [b.+ bb+ bB + bA]+ (b. + bb)(bA+ bB)

2

&s =(b.+bb)(bA+bB)bs/'Ps', ) s =(p b',
p
—. .

The main advantage of an analytic solution is that
one can examine the form factor and gain a better
understanding of how different parameters affect
it. For the 'Li reaction, the most importa, nt
terms in the summation satisfies the condition
P«bs. Taking this limit into the extreme, it is
easy to see that the L and A dependence of f~(A) is



R. %BARTON AND P. T. DEBEVEC

independent of the range of the force, 1/ba. The
parameters g and b used for the 'Li and He single
particie wave functions are given in Tabl.e III.
They are similar to the ones in Ref. 3. The pa-
rameters g, and 5, are also given for a Yukawa
of range 1 fm approximated by a sum of four
Gaussians. ' The bound states for the target nu-
cleons are calculated by varying the depth of a
Woods-Saxon potential. to obtain eigenstates of the
correct binding energy. The standard geometry
of the potential which we used was 8 = 1.25A. '",

a =0.65. A spin-orbit term as given by Perez"
was also included but had almost no effect on the
form factor.

APPENDIX B' SOLUTION OF SM

(og =(Bb!P (o,. o, )(t, t, )Yf(r„)!Aa)„„.

Let us define I and T as the channel spin and chan-
nel isospin, respectively. Using the Nigner-

Ekhart theorem

~i" = Q (~iMb~a~a I I'~i)&Tbv b Tata I T'w')&~&a~AI)fAI I~i)&T.Ii.TAuAI Tu)
IBI', Ta T'

I'i(T O T)
x(-1)'-ai ( )-Mi' ~ W)(-i1' O gf

For ('Li, 'He) J, =l, T, =o, Zb=o, T, =l. Therefore I'=Ja, T=T„, and

(Za L I l
~L Q (1i bTBPB I TAi A &&1Mb~AMAI Ii& ( 1)" "a-/2T + 1

%1/2

&((O~a)~a(»a)TAII Q (o1 o, )(t; t, )Y~(~, )ll(1JA)I, (OT„)TA), ,

The operator can be written

(O,. r, )ii(r, )=- p( O' . (.r,. x[r, i,(r)]')',

where k is the total momentum transferred to particle j. The reduced matrix element is then

2u+1 '"
((O4)4, ((i,)r II+ (IO, ( Ir;r Io; ri (r))')'. (); i)ll((O„)r, (Or„)r„), ,

Factoring into separate parts for the projectile and the target we get

1/2 OJ~ J~ 1 7~
I(2ZB+1)(2L+1)(2I+1)]'/ (-1) B' A(2T„+1)'/'

21.+1 A A

1 k L

&&&@, =O, T, = ill g t(~;Il&. =1, T.=O), (J T II g f (o, x Y(&,)]'I~, TA),

Si", is then given by Eq. (16) in the text.
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