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The Goldhaber-Tell. er model general. ized to spin-isospin vibrations is used to provide a
simple estimate for the total cross section for threshold pion production in pion-nucleus col.—

lisions (7t Az-71 x Az ~) in the case of nuclei with N =Z. Cross sections are calcul. ated
using the threshold approximant to the production amplitude for singl. e nucleons consisting of
pion pole plus contact terms alternately derived from the phenomenological Lagrangian theory
and the current-commutator theory of multiple-pion production. The threshold approximant
in the latter theory fits the experimental pion-production data on protons poorly and, in the
case of 4He, the lightest target nucleus we consider, that theory predicts cross sections about
a factor of 2 smaller than those similarly calculated with phenomenological Lagrangian input.
On the other hand, for ~~C and ~8O, the predictions of the alternative threshold theories are
in essential agreement. In the case of the current-commutator theory, the Goldhaber- Teller
predictions for 4He and ~60 are consistent with those of the particle-hole model obtained
earlier by Eisenberg after quadrupling his calculated values to compensate for an omitted
factor of 2 in his production amplitude. While the cross sections for the (7(, 2r) reaction in
nuclei are still expected to be quite small, the prospect for their accessibil. ity seems reason-
ably improved.

NUCLEAR REACTIONS 4He(7t, m x+) ~ C(7t', 7t m+) O(7t' 7t x+) threshold
pion production cross section calculated with a spin-isospin-generalized Gold-
haber-Tell. er model with phenomenological Lagrangian and current-commuta-

tor inputs and compared to particle-hole model. predictions.

Threshold pion production in pion-nucleus colli-
sions was studied some time ago by Eisenberg' as
a possibly promising mechanism for the preferen-
tial excitation of the J =0 spin-isospin oscilla-
tions in closed-shell nuclei. The numerical ap-
plications there' of the theory (to He and "0), for
which a local approximation' to the current-com-
mutator amplitude for soft-pion production (by
soft pions)'~ and the particle-hole formalism' of
closed-shell nuclei are input, indicated that the
corresponding partial excitation cross sections
(as well as those for the giant resonance 1 and

2, T = 1 states) are expected to be quite small
[ranging from the order of, at most, tenths of a
microbarn in the case of the heavier target nucleus
("0) to a few microbarns in the case of the lighter
nucleus ('He) for incident pion kinetic energies in
the neighborhood of threshold (170 MeV & T'
6 250 MeV)].4 On the other hand, with the opera-
tion of the meson factories at LAMPF, in Canada,
and in Zurich, such experiments become practi-
cable, so that it may be more appropriate at this
preexperimental stage to give estimates for the
(n, 2m) total cros's section for collective excitation
in nuclei which are based on a more tractable and
less detailed collective model. The Goldhaber-
Teller (G- T) model' generalized to collective spin-
isospin vibrations' affords just such a simple

collective approach' with the additional advantage
of allowing one to focus attention on the patent
differences in the threshold approximants to the
alternative soft-pion formulations" and their
associated predictive consequences for threshold
production in nuclei.

Thus we note that in the phenomenological
Lagrangian approach to single-pion production, in
which the soft-pion amplitude is straightforwardly
calculated from the effective Lagrangian, ' "
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the threshold approximant (which we indicate by -)
for the experimentally favored value" $ =0 com-
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posed of just pion po-le plus contact terms (Figs. 1 and 2)"
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where' o.',
h

P,„," " " = ~a(- +n) ~'ig' x(phase space). On the other hand, in the current-commutator theory, '
the analogous ( =0 threshold approximant (in this case the local equal-time-commutator terms)
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accounts for a much smalle~ fraction of the
threshold arnPlitude. Indeed, one finds for the
ratio of threshold cross sections for the two "pole
+ contact term" approximants [Eqs. (4) and (8)],

I

be multiplied by a factor of 4. This factor of 4 has
been supplied in our plots (Figs. 4 and 5) of
summed partial production cross sections derived
from the relevant tables of Ref. I.
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Threshold

so that the good agreement with threshold data
reported by Chang' must depend as much on the
inclusion in this approach' of the "recoil correc-
tions" provided by typically o.mitted baryon-pole
terms. '

Note that it is the threshold approximant of the
current-commutator theory' which Eisenberg'
uses in his estimate of threshold pion production
in nuclei. ' Unfortunately, his expression (ll) [cf.
our nonre1ativistic form Eq. (10) below] is too
small by a factor of 2." Consequently, all the
Production cross section estimates there' must
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FIG. 1. Important diagrams in the reaction x p x x+n

at threshold in the phenomenological Lagrangian theory.
The contribution from the double equal-time commuta-
tors (the threshold approximation of Ref. 1) of the
current-commutator theory (Ref. 2) is l.ikewise expres-
sible as a sum of (a) pion-pole and (b) contact graphs.
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To apply the alternative threshold approximants Eqs. (4) and (8) to nuclei, one next makes the re-
duction to the nonrelativistic forms [neglecting corrections 0(1/M)]

T",'"-", ,"-"-„-'r(sr)'Il(Q-p+p') q" a' t' 'r (()-qu) ir—,((Q —q )* —sm, ']It",
tr -m. '

TCarr. o~ommutators 2(2+)40(q p +ps)
ttsA Italy g(a ') t (3q 'q ) .+ (3q2 q, q) g(rr)

tr P~tr tr+n (~f )3 q2 2 2 (10)

One might be led by the close analogy here to the one-nucleon input for the calculation of threshold pion
electroproduction in nucleite to include the additional contribution associated with the N*' tail" "

[ the
pertinent graph is displayed in Fig. 3)":
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This contribution has been evaluated in the center-
of-momentum frame of the outgoing m' and recoil-
ing neutron (q, +p'=0) in the adiabatic limit of its
nonrekativistic reduction. However, since this
contribution produces an effect on the production
cross section from a single nucleon of less than
10/o in the threshold region (cf. Table 1), we
neglect it in the application to nuclei.

Using the alternative nonrelativistic single-
nucleon amplitudes [Eqs. (9}and (10)], we. next
evaluate the pion production cross section in nuclei
leading to states of collective excitation in the
generalized"" Goldhaber- Teller model. ' In this
simple model, the cross section for the reaction

0)

n(p') T+(q )

I
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FIG. 2. Various theoretical threshold predictions for
the reaction & p m m+n versus 7.'~, incident pion
laboratory kinetic energy, compared with experimental
data points (cf. Ref. 8), The solid curves were calcula-
ted from the threshold approximation consisting of the
sum of the two graphs of Fig. 1. The dashed curve
shows the improved agreement between theory and ex-
periment which results when one includes the contribu-
tions from all graphs in the phenomenological La-
grangian theory and is obtained (Ref. 8) by multiplying
the quantity k2(phase space) (the dashed-dotted refer-
ence curve in the figure) by )a(-+pt))2=1.85 (for )=0).

w-(q&)

v-(k)

FIG. 3. Contribution to the process x p 7t m+n in
which the x+ is produced via an intermediate N*+. The
threshold amplitude consisting of the sum of the dia-
grams of Figs. 1 and 2 is the exact analog here of the
threshoM amplitude for electroproduction used by Pzyz
and Walecka (Ref. 17).
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z ~ ~ &z-i is given by"
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Because of the increased sensitivity of our results
to the shape of the charge distribution we take for
the ground-state charge form factor

n(Q)= f a'r ee(r)'
which enters into the matrix elements for the 0'
-1 (M') transition

(1 M'm' j~ I0+) = jv2 8, l5( IQ IE(Q)

"(aarira)
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the harmonic oscillator result"

which requires only a single numerical integration
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with length parameters"

a('He} = 1.31 fm,

a(' C) = 1.64 fm,

a(' 0) =1.79 fm,

(19)
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rather than the simpler "dipole" fit of Ref. 6.
Straightforward manipulation"" yields an expres-
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FIG. 4. Theoretical threshold 4He {7r,7r x+ }4H* cross
sections in the particle-hoJ. e and generalized Goldhaber-
Teller models as a function of T~ . The dashed curves
are calculated using Zisenberg's approximation to the
current-commutator theory (Ref. 2). In the case of the
particle-hole model prediction (Ref. 1), a sum over the
cross sections for excitation of the giant resonance 0,1, and 2, T=1 states, an additional factor of 4 omit-
ted in that work has been supplied. Note the sizable
difference between the predictions of the two threshold
production theories in the generalized Goldhaber- Tel.ler
model.
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FIG. 5, TheoreticaI. threshold ~60(m, 7r 7r+) ~SN* cross
sections in the particle-hole and generalized Goldhaber-
Teller models. In the generalized Goldhaber- Teller
model, the predictions of the two pion-production
theories do not appear to differ significantly in this
case.

once the squared amplitudes la(-+n; Q) I',
2
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r,
a

(21a)

Curr. commutators +
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have been fitted with functions of the form f(Q)
g Q2 2 -a Q=A,e '&o +A2Q'e '2o . The predictions of the

generalized Goldhaber- Teller model for the three
target nuclei with N = Z, He, ' 0, and ' C, are
displayed in Figs. 4, 5, Bnd 6 and are consistent"
within a factor of 2 to 3 in the neighborhood of
threshold with the predictions of the particle-hole
model used by Eisenberg' after the necessary
"renormalization" of the numbers calculated
there. ' (Moreover, since it has been remarked

FIG. 6. Theoretical predictions for threshold
C(7r, 7r 7r+) B*cross sections in the generalized

Goldhaber- Teller model.

that particle-hole model calculations using har-
monic oscillator wave functions frequently over-
estimate cross sections by a factor of 2, the pre-
dictions of the two models may not actually be so
far apart. "' For He, the lightest target nucleus
considered, one finds the interesting result that
the predicted cross sections for the two alternative
soft-pion theories differ by a factor of about 2. We
conclude that while the cross sections for the (n, 2m)

reaction in nuclei are still expected to be quite
small, the prospect for their accessibility seems
reasonably improved.
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