Resonance fluorescence of giant magnetic dipole states in $^{24}\text{Mg}^{\dagger}$

U. E. P. Berg, K. Wienhard, and H. Wolf

Institut für Kernphysik, Strahlenzentrum, Justus Liebig-Universität, D-63 Giessen, Federal Republic of Germany

(Received 23 December 1974)

 γ -ray resonance fluorescence of three magnetic dipole states in ²⁴Mg at 9827±3, 9967±3, and 10711±3 keV was observed using bremsstrahlung and a 100 cm³ Ge(Li) detector. The measured intensity ratios to the first excited state and the ground state were found to be $0.28 \pm 0.18^{\circ}, 0.45 \pm 0.16^{\circ}, 100^{\circ}, 100$

 $\begin{bmatrix} \text{NUCLEAR REACTIONS} & {}^{24}\text{Mg}(\gamma, \gamma), & E_{\gamma} < 23.5 \text{ MeV, bremsstrahlung; measured} \\ & E_{\gamma}, & I_{\gamma}; {}^{24}\text{Mg deduced levels, } \Gamma^{0}, & \Gamma^{1}, & \gamma \text{ branching.} \end{bmatrix}$

Three giant magnetic dipole states in ²⁴Mg at 9827, 9967, and 10711 keV were observed in γ -resonance fluorescence experiments using a 100 cm³ Ge(Li) detector mounted at 125° to the incident beam and bremsstrahlung from the University of Giessen 65 MeV electron linear accelerator. A portion of a γ -ray spectrum is shown in Fig. 1. These states had been only partially resolved in previous (γ, γ) -resonance fluorescence experiments with NaI detectors¹ and in inelastic electron scattering.^{2, 3}

The transition with the largest M1 strength was previously assigned to a state at 10731 keV^{4,5} found in ²³Na(p, γ) work, but this state was not ob-

FIG. 1. Part of a spectrum of elastically and inelastically scattered photons from a 800 mg 24 Mg target. The tip energy of the bremsstrahlung was 23.5 MeV. The energy resolution is 2.7 keV per channel. Full energy, single-, and double-escape peaks are labeled with f.e., s.e., and d.e., respectively.

Endt, van der Leun ^a			Meyer et al. ^b		This work	
E_{γ} (keV)	J ^π ; T	Branching ratio	<i>Ε</i> γ (keV)	Branching ratio	E_{γ} (keV)	Branching ratio
9827 ± 2	1+	→g.s. (85±10)%	9827.3 ± 2.5	→ g.s. $(85 \pm 10)\%$ → 4.12 (<15)% → 4.24 (<20)% 15% unknown	9827 ± 3	→ g.s. $(78 \pm 13) \%$ → 1.37 $(22 \pm 13) \%$ → 4.12 → 4.24 Not observed → 4.24 <10 %
9965 ± 3	1+; <i>T</i> = 1	→g.s. (90±10)% →g.s. (70±20)% ^c →1.37(30±20)% ^c	9967 ± 3	→g.s. (90 ± 20)% →4.12 (<20)% 10% unknown	9967 ± 3	→ g.s. $(69 \pm 7) \%$ → 1.37 $(31 \pm 7) \%$
					10711 ± 3	→ g.s. $(81 \pm 4)\%$ → 1.37 $(19 \pm 4)\%$ → 4.24 < 4%
10731.4 ± 1.5	1+; <i>T</i> = 1	→ g.s. $(40 \pm 8)\%^{c}$ → 1.37 $(48 \pm 8)\%^{c}$ → 4.24 $(12 \pm 2)\%^{c}$	10731.4 ± 1.5	→ g.s. (<40)% → 1.37 (75 ± 15)% → 4.12 (<30)% → 4.24 (25 ± 15)%	Not observed	

TABLE I. Comparison of the observed levels.

^a Reference 5.

^bReference 4.

^c Reference 7.

served in our fluorescence experiment, perhaps due to an insignificant decay width to the ground state. Our measurements, however, indicate that the largest *M*1 transition strength is associated with a state at 10711 ±3 keV. This level could be identical with a 10703 keV state observed recently by Kuhlmann, Mamis, and Riess in a ²³Na(*d*, *n*\gamma) experiment,⁶ because a strong transition of this level to the ground state was found. Furthermore, we observed a transition to a state at 9827 ± 3 keV that presumably is identical with a *M*1 state at 9846 ±20 keV observed in inelastic electron scattering by the Darmstadt group.² Intensity ratios for the decay of these states to the first excited state and the ground state have been obtained from the measured γ -ray spectra. The intensity ratios are $0.28^{+0.26}_{-0.18}$, $0.45^{+0.16}_{-0.13}$, and $0.23^{+0.07}_{-0.06}$ for the 9827, 9967, and the 10711 keV level, respectively.

The reduced branching ratio of the strongest transition at 10.711 keV $(0.35^{+0.11}_{-0.09})$ is smaller than 0.5, a value obtained from the collective model by the Alaga rule for interband $\Delta K = 1$, $\Delta J = 1$ transitions. The reduced branching ratios for the two lower transitions are in agreement with this intensity rule within the errors.

A comparison of the states and of the γ -ray branching from our measurement with data from

Transition (Energy in MeV)	Titze ^a ſŷ (eV)	Fagg ^b Γ ⁰ _γ (eV)	Γ _γ ⁰ (eV)	This work Γ^{1}_{γ} (eV)	(MeV mb)
10.71 → g.s.	15.9 ± 2.4	$17.6\substack{+3\\-3\\0}$	$17.8^{+8}_{-5}^{+8}_{-5}^{-9}_{-6}$		1.45_{-0}^{+0} ; $^{64}_{44}$
$10.71 \rightarrow 1.38$				$4.2^{+1}_{-1.6}$	$0.33_{-0.12}^{+0.17}$
9.97 → g.s.	$\textbf{4.50} \pm \textbf{0.73}$		6.2^{+2}_{-2} ; $\frac{7}{2}$		$0.48^{+0}_{-0.16}$
9.97→1.38		$\Sigma = 7.6^{+1}_{-1}.5_{4}$		$2.8^{+1}_{-1.0}$	$0.22^{+0.11}_{-0.08}$
9.83 → g.s.	$\textbf{1.05} \pm \textbf{0.26}$		$1.7^{+1}_{-0}; {}^{0}_{7}$		$0.16^{+0}_{-0.06}$
9.83 - 1.38				$0.5_{-0.4}^{+0.5}$	$0.045\substack{+0\\-0\\0.036}$

TABLE II. Integrated scattering cross sections I_s and derived γ -decay widths.

^a Reference 2.

^bReference 3.

 (p, γ) and $(d, n\gamma)$ experiments is given in Table I. A $\Delta K = 2$ mixing between the first and second excited states in ²⁴Mg, which was extracted from the γ -ray branching observed in a ²³Na $(d, n\gamma)$ measurement, ⁷ could not be confirmed.

11

A second experiment was performed on MgO with a bremsstrahlung end point energy of 28.7 MeV in order to obtain absolute γ -ray decay widths Γ_{γ}^{i} for the three $J^{\pi} = 1^{+}$ levels. Absolute cross section data for the decay of the giant electric dipole resonance of ¹⁶O to excited states of ¹⁵N and ¹⁵O are known from the work of Caldwell, Fultz, and Bramblett.⁸ The subsequent deexcitation γ rays of these states were observed and a comparison of the ²⁴Mg(γ, γ) and ¹⁶O($\gamma, x\gamma'$) peak areas yielded absolute integrated cross sections for the *M*1

- [†]Taken part from the Ph.D. dissertation of U.E.P. Berg (D26).
- ¹H. W. Kuehne, P. Axel, and D. C. Sutton, Phys. Rev. 163, 1278 (1967).
- ²O. Titze, Z. Phys. <u>220</u>, 66 (1969).
- ³L. W. Fagg, W. L. Bendel, S. K. Numrich, and B. T. Chertok, Phys. Rev. C 1, 1137 (1970).
- ⁴M. A. Meyer, J. P. L. Reinecke, and D. Reitmann, Nucl. Phys. <u>A185</u>, 625 (1972).
- ⁵P. M. Endt and C. van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973); At. Data Nucl. Data Tables 13, 67 (1974).
- ⁶E. Kuhlmann, A. Mamis, and F. Riess, in *Proceedings* of the International Conference on Photonuclear Reactions and Applications, Asilomar, 1973, edited by

transitions. The shape of the bremsstrahlung spectrum was taken into account¹⁰ and the data of Ref. 8 were corrected for the different angle of observation taking into consideration the results of Horowitz *et al.*⁹ The errors quoted in Table II contain the statistical errors of the peak areas and the background as well as the reported errors from Caldwell *et al.* (±10%) and Horowitz *et al.* ($^{+21}_{-15}$)% for the 6.323 MeV state in ¹⁵N. The results are given in Table II and are compared with the data from Titze² and Fagg.³

We would like to thank Professor U. Kneissl for useful discussions and for a number of helpful suggestions. We appreciate the support given by the Deutsche Forschungsgemeinschaft.

B. L. Berman (Lawrence Livermore Laboratory, Univ. of California, 1973), p. 697.

- ⁷B. Lawergren, I. J. Taylor, and M. Nessin, Phys. Rev. C <u>1</u>, 994 (1970).
- ⁸J. T. Caldwell, S. C. Fultz, and R. L. Bramblett, Phys. Rev. Lett. <u>19</u>, 447 (1967).
- ⁹Y. S. Horowitz, D. B. McConnell, J. Ssengabi, and N. Keller, Nucl. Phys. <u>A151</u>, 161 (1970).
- ¹⁰At each run the bremsstrahlung intensity distribution was determined from a simultaneously measured $d(\gamma, p)$ spectrum using the theoretical photodisintegration cross section of the deuteron [F. Partovi, Ann. Phys. (N.Y.) <u>27</u>, 79 (1964)].