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Elastic electron-deuteron scattering as a probe of the deuteron wave function
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Relativistic corrections to the electric deuteron form factors are rederived within the
framework of particle quantum mechanics. In addition to the kinematic corrections there
are necessarily dynamic corrections that are substantially larger. For local potentials the
results are identical to those derived by Gross from field theory. The reasons for the
agreement of two apparently very different theories are examined in detail. The quantita-
tive aspect of these results are illustrated by several numerical examples. A precise
measurement of the polarization cross section for q & 13 fm could serve to significantly
restrict the shape of admissible deuteron wave functions.

NUCLEAR STRUCTURE Calculation 2H electric form factors, dependence on
N-N potential, relativistic effects important.

I. INTRODUCTION

It is well known that nucleon-nucleon scattering
data do not determine the potential. ' Since differ-
ent phase shift equivalent potentials may lead to
different deuteron wave functions, an experimental
probe of the short range part of the deuteron wave
function may provide additional constraints on ac-
ceptable potentials. High energy electron-deuteron
scattering would seem to provide a suitable probe.
In the one-photon-exchange approximation the dif-
ferential cross section for elastic scattering in the
laboratory frame is given by the Rosenbluth
formula' 3

do =de.„[A(q')+B(q') tan' ,'8], -

where daM, «is the Mott cross section. The co-
efficients A. and 8 are invariant functions of the
invariant momentum transfer q' = q "q„. By def ini-
tion they are related to matrix elements of the
charge density p(x} and the current density l(x)
evaluated in the Breit frame in which q' =

~j ', that
1s

where S is the spin of the deuteron. It follows that

&
—.'j, I

'I —.'(i, +~i, )l —-'j, I & =(11 p' —Wl 1 +1)n''G,

(1.'7)

From Eqs. (1.2}, (1.3), (1.5), and (1."I) it follows
that

g -Q 2+@ 2+ —qc 2 (1.8)

M~ is the deuteron mass.
The charge-density matrix elements can be ex-

pressed in terms of two form factors (reduced
matrix elements) Go and G, . For g= (0, 0, q)

( 0, p'I p(0)l —a 0, p&

=G,5„.„+(-1)"(11p'- pi 20)v 3 G, ,

(1.5)

where (1 1 p' —p, ~ 20) is a Clebsch-Gordan coeffi-
cient. Similarly, the current density is expressed
in terms of the form factor G, by

&2j, p'll(0)I-2q, p&=i& p'I Sxql p&G, /2~, ,

(1.8)

&= s Q El&2', p'Ip(0)l-kq, p&I'
and

8 = -', q(l + q)G, ' .

and

+ 2I& 2 i, p
'

I 1(0)l p, - 2 a & I
') (1.2) Since

( q, ol p(0)l - q, 0& =G +v 2 G (1.10)

a=-,'(1+q) g I&2q, p'li(0)l ——.'i, p&I',

where p. =0, +1 is the third component of the
deuteron spin and q is defined by

(1 3)
&-,'q, +1~ p(0)( ——,'q, +1& =G, —G, /v2

it follows that the differential cross sections doo
and do, for scattering by helicity 0 and helicity 1
deuterons are given by

q =q2/4M~2; (1.4) do, =de„,fG, + M2G, )' (1.12)
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and

do, =do, , „(G,—G, /M2)' .

i[H, P(x)] = —& j (x) (1.15)

requires the introduction of interaction terms in

the current density j.' ' Lorentz covariance of
the charge-current density, ( p(x), j(x)) =(j "(x)],
also requires interaction terms. This is easily
seen as follows: we must have

(1.16)

where V(A. ) is the unitary operator representing
the Lorentz transformation A. For infinitesimal
Lorentz transformations it follows from Eq. (1.16)
that

and

i [K, p(x)] =- j(x)+i[H, p(x)]x (1.17)

i[K,j» (x)] = —5;» p(x) +i [Hj» (x)]x . (1.18)

In a relativistic theory the interaction modifies
both the generator H of time displacements and the
generator K of proper Lorentz transformations.
Therefore, the covariance relations (1.17) and
(1.18) require, in general, interaction terms in

the charge-current density.
In a strictly phenomenological theory it is pos-

sible to satisfy the continuity equation (1.15) by
assuming exchange currents that do not contribute
to the deuteron form factors. ' We will make that
assumption in the following since the present in-
vestigation is restricted to two-nucleon deuteron
models without explicit inclusion of meson or
antinucleon degrees of freedom. Adler and Drell, '
Casper, " and Blankenbecler and Gunion" have
calculated meson exchange contributions to the
form factors. Arenhovel and Miller" found sub-
stantial contributions from isobar admixtures.
The effect of the Adler-Drell corrections on the
coefficient A. is negligible for q'&10 fm ' and be-
comes large for q'~ 16 fm '."'" Formulas for
the relativistic corrections to the form factors

The polarization P has been defined by' '

P =M2(do, —do, )/(do, +2do, )

= (2G,G, + G, '/v 2 )/(Go'+ G,') .
Since the form factors are functionals of the

deuteron wave function, measurement of the quan-
tities A, B, and P determines some features of
this wave function. Unfortunately, the relation be-
tween the form factors and the wave function is
not as simple as one might expect at first sight.
Even if the wave function is known exactly, the
current operator is not. Whenever the potential
is nonlocal the continuity equation

Gas = '(Gs. +Gs. ). - (1.19)

In view of the insensitivity of the deuteron form
factors to reasonable changes in the deuteron wave
function, elastic electron-deuteron scattering has
been advocated as a means of measuring G~„."'"
This approach assumes that one has ruled out
more exotic wave functions on other grounds. A

semiphenomenological determination of G~„ that
is independent of the deuteron wave function"
could be important in this context.

Moravcsik and Gosh'4 and Brady, Tomusiak,
and Levinger" have advocated the measurement
of the polarization P as a probe of the short-range
part of the wave function. The polarization P is a
function of the ratio G, /G, and is thus independent
of G~„except for small relativistic effects. In
the region of q' where G, vanishes the ratio is
quite sensitive to short range variations of the
wave function. However, Adler's meson exchange
effects" are also large in that region. Even for
lower q' these effects are likely to be significant
since the corrections to Gp and G, are of opposite
sign. Thus they add up in P while they cancel par-
tially in A. .

have been derived from field theory by Gross. "
The effect is not negligible. For q'=10 fm ' it
decreases A by 15 to 20%." Friar" has derived
relativistic corrections on a phenomenological
basis. His correction terms are identical to some
of the terms derived by Gross, but the terms that
Friar does not have give the bulk of the correction
for q'&12 fm '. For q' =10 fm ' Friar's correc-
tions are typically about 4 of those of Gross. We
will show that the charge-current density implied
by Friar's formula does not satisfy the eovariance
conditions (1.17) and (1.18).

Several authors have found that the form factors
are rather insensitive to short range variations
in the deuteron wave function. Peltola, Laurikainen,
and Kouki" and Elias eI' al."tested several con-
ventional potentials and found that all were in
agreement with available data. Haftel and Tabakin"
and Vary' produced many examples of more violent
changes in the wave functions by short range uni-
tary transformations of the Reid soft core wave
functions. Only one wave function gave form fac-
tors in clear disagreement with experiment. In that
case the wave function was modified over a longer
range (r&2 fm). Violent variations of the wave
functions restricted to &&1 fm produced no ap-
preciable effect. ' Haftel and Tabakin and Vary did
not compute relativistic effects. The conclusions
to be drawn from their examples thus remain in
doubt.

The electric form factors Gp and G, are propor-
tional to the isoscalar nucleon form factor
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In view of the quantitative importance of the
relativistic corrections we have attempted to
answer the following question. Does it make sense
to apply the field theoretic formulas of Gross to
purely phenomenological deuteron wave functions~
With this question in mind we give a new phenomen-
ological derivation in Sec. II. The covariance con-
ditions (1.17) and (1.18) require the presence of
dynamical corrections that are, for local poten-
tials, in complete agreement with those derived
by Gross. " In order to illuminate this remarkable
agreement we review in Sec. III the field theoretic
derivation and its relation to the phenomenological
theory. Meson exchange and nucleon isobar effects
are outside the scope of the present paper.

In Sec. IV we present the results of representative
numerical calculations for the Reid potentials, for
the Hamada-Johnston potential, and for wave func-
tions obtained from the Reid wave functions by
short range unitary transformations.

II. RELATIVISTIC DEUTERON WAVE FUNCTIONS AND

ELECTRIC FORM FACTORS

It is well known" "that Lorentz invariance and
relativistic kinematics can be realized for two
particles in interaction without the intervention
of local fields. The heuristic starting point is the
description of one particle by an irreducible unitary
representation of the Poincare group. States are
represented by square integrable functions X(p, p)
of the momentum p and the spin component —s
~ P &s. The normalization condition is

If an interaction is introduced by modifying the
Hamiltonian, the generators K must also be modi-
fied in order to preserve the commutation rela-
tions

and

[H, K]=-iP

[P, , K,. ] = —i 61,H .

(2.8)

(2.9)

where

h =(H' —P')' ' (2.11)

In the reducible representation (2.7) such a con-
sistent modification is difficult to construct and
has only been given in approximate form. " " On
the other hand it is easy to introduce the interac-
tion if we first reduce the reducible representa-
tion (2.7) to a direct integral of irreducible rep-
resentations. " The main problem is then to find
the correct expression for the charge-current
density in the new representation in the presence
of a particle interaction.

The reduction is accomplished by a canonical
transformation that separates dynamical variables
describing the center-of-mass motion, and in-
trinsic coordinates. The center-of-mass variables
are defined as functions of the Poincare generators
as follows: The total momentum is the generator
of translations. The center-of-mass position X
is

X=2(H 'K+EH ') —[H/2(H+h)] 'PxW, (2.10)

+S

lllxllll*= f d2 g I x(km)ll'=1. (2 1)
W=HJ+PxK. (2.12)

The generators of the infinitesimal Poincare trans-
formations are space translations P,

The total spin I is defined by

&x(p, i1) =px(p, v);

time translations H,

Hx (p, p) = (p'+ v')"x (p, w);

(2.2)

(2.3)

I=J —Xxp,
It follows from these definitions that

(2.13)

(2.14)

rotations j,
&x(p, u) =xxpx(p, w)+P& ul sl v') x(p, p'),

(2.4)

where x = jV'; proper Lorentz transformations K,

K =-,'(ZH+Hx) —(sx P)/(M+H) . (2.5) P =p~ +p2 (2.15)

and I commutes with both X and P. The intrinsic
canonical variables, yet to be found, must com-
mute with both X and P.

I.et /1P, E} be the total four-momentum of the
two particles

For two free particles the Hilbert space X of the
states is, as usual, the tensor product of the
spaces X, and X,, of the two particles, i.e. ,

(p 2 +~2)1/2 ~ (p 2 ~~2)1./2 (2.16)

K =Kq K2 (2.8)
(E2 P2 )1 /2 (2.1 7)

K =K, 1+1 K, , etc. (2 7)

The generators are additive in the two particles: The key to the definition of the intrinsic variables
is the Lorentz transformation J ~ that transforms
fP, E) into (0, 0, 0, &)." The intrinsic relative
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momentum k is then defined by

L~(p„E,) =(k, u)),
where

(p 2 ~M2)l/2

(2.18)

(2.19)

representation by

ff&(Pk" 2S2 &) =(P'+~')' 'X (P k S P)

J y. ( P, k, S, g) = [X && P + r x k j g ( P, k, S, p )

(2.22)

and

se =(k'+M')'~2 =-,' &u (2.20)

+ pS p' y P, k, S, p.',
(2.23)

Two-particle states may be represented by
square integrable functions g(P, k, S, g), where S
and p are channel spin variables. The channel
spin S is related" to the individual spins s, and
s, by Wigner rotations" @,(p„L~) and 6t(p„L~):

where X =i~~ and r=i~, . Finally, we have

K = .'(Xa-+@X)-1&&P/(a+ ~),

where the total spin I is

(2.24)

S =N(p„L~)s, +6t(p„Lp)s, . (2.21)
I=r&k+S . (2.25)

The Poincare generators are then given in this
Following Bakamjian and Thomas, "an interac-

tion may be introduced without destroying the group

structure by the substitution - h =+v, so that

kx (Pk s, k)=2(k +kd') 'x (Pk s, II) fd'k' gP (2 2, dl vl 2',s', k')x(&k', 2', 2' )
S' P

(2.28)

where the interaction v must commute with both
X and P and must be invariant under rotations,
l.e.,

[I,vj =0 . (2.27)

(k2/M + V)(p = —xpn2/M,

where

(2.29)

and

V = ((uv +v&+v')/4M . (2.30)

We may therefore identify the operator t/' with the
usual phenomenological nucleon-nucleon potential. "

Obviously, the change of representation from
(p„p„P„P,) to ( P, k, S, P) is given by a unitary
matrix (5, k, S, P

~ Uo~ p„p„p„(u,) that can be in-
verted to reintroduce formal individual particle
coordinates even in the presence of the interac-
tion v. It is important, however, to guard against
unstated arbitrary assumptions about the observable
significance of the so defined variables.

The relativistic wave function of a deuteron with
definite momentum P0 and spin component p0 has
the form

4'p
~ (P, k, i() =&(P —P )(p~ (k, p), (2.28)

where y„ is an eigenfunction of h, I', and I,. It
0

is then also an eigenfunction of h' and thus satisfies
the equation

The transformation to the coordinate representa-
tion and the partial wave decomposition are as
usual

and

(r, k)=(2k) '~' f d'ke" '
d (k 2)

(2.31)

(l)„(r, p) = P r 'u~(r)(1 Lcm~ 1 p,,, )Y~ (r) .
(2.32)

Since h' is by construction a positive self-adjoint
operator the equation

(2.33)

is a consequence of Eq. (2.28), and the existence
of the operator v satisfying Eq. (2.30) follows
from the existence of the spectral resolution of
h2.

No approximations have been made so far and
nothing can be said about observations of the in-
trinsic coordinates r. For deuteron it is rea-
sonable to assume that (k/M)' as well as (P/2M)'
is small and we will use this assumption in cal-
culating the matrix elements of the charge density
p(x). We should keep in inind, however, that for
exotic deuteron wave functions with violent short
range variations an expansion in powers of (k/M)'
may not be legitimate. To order M ' the trans-
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formation matrix U, is given by '

where

Oo=(s, -s,)' (Pxk)/4M' ——((P r), (P k))/4M' .

(2.34)

(2.35)

In order to determine the electric deuteron form factors we need according to Eq. (1.5) the matrix ele-
ment

(-.qq)s(q))--.'qq&= P f ss Js'sq: (s', s')( q s', &, s'Is(D)l ——,'q s l, s'&q, (its)
Pi P

(2.36)

Thus we must determine the charge-density ma-
trix element that appears in the integral in such
a manner that charge and current density satisfy
the covariance relations (1,17) and (1.18).

In the Breit frame of the proton the matrix ele-
ments of the charge and current density are, to
order ki ', related to the conventional form fac-
tors G» and G» by

and

&2 q, p' lpq&(0)l 2q, -p,) =(I-q'/8M')&»6„; „,
(2.37)

&-' q p l I jo (0) I
--' q p ) = i & p, l I s I p ) x qG„ /~ .

(2.38)

It follows that the charge-density matrix element

in an arbitrary frame is in the same approximation

&p&, P) I p(()0IP„p) =(I —q /8M')G»0„„+i&p. ) Is, l p, ,) qx (p,'+p, )(G~ —,
'

G )/Ms (2.39)

where q =p,'-p, . The contributions of proton and

neutron to the deuteron form factors are additive.
It suffices therefore to obtain the proton contribu-
tion and then replace G~ everywhere by G~+G„.

For two free nucleons the proton contribution to
the charge density is given by

U KU=K, S1+1SK +2[x„Vj,
and hence

C'=--,'[(P r), V)/2M,

(2.43)

(2.44)

not satisfied for C '=0. In order to satisfy them
we need

p(x) = U,p~(x) S1Ut . (2.40)

The covariance relations are satisfied because
they are satisfied for a single proton and

where r =xi x2
The deuteron charge density

pD =(P, Up S)IUt(t&)+()j), Up„S1U g) (2.45)
U KU =K, 1+1(3K . (2.41)

U KU=K, S 1 + 1 SK +s[X, V)+2iM[X, C '],
(2.42)

where X= —,'(x, +x,). The covariance relations are

When the nucleons interact we replace UD by a
modified transformation matrix U. In the approxi-
mate form (2.34) we replace Co by C =40+4 '.
To order M ' we have then

is then conveniently written as a sum of five
terms,

PD PDO+ PD3o + PDi +I D2 + j D3 ~ (2.46)

where p» is the nonrelativistic limit, PD„ is the
contribution arising from the spin-orbit term in
Eq. (2.39), p» includes all other kinematic rela-
tivistic corrections to order M ', and the last two
terms give the dynamic corrections involving 4'.
Explicit expressions for the terms in Eq. (2.46)

are as follows:

(,-' q s, lp, „(q))—,'
q q) =qs„g J d'»q„'. (-, s)e" "'q, (, s), (2.47)
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where 2Q~g Gzp +Gz„,'

&~aq Palp~. (0)l-aq PV=(2G~s —Gas)/&' Q &1 P'[siIII P&xq.

where 2G„~= G„p + G„„;

PD, = 2 QP—DO'+i (g, [40, (P~+P„)lj g),

d'r(g„*(,r, p')VP„(r, p).
-4„,(r p)&4„,'(r 0 )),

(2.48)

(2.49)

(-', q g„'lp„(0)l ——,'q yJ = 'ii' -qg„Jd'rg„' (r y)e"'"'(s —,'-iq r)g„(r v), (2.50)

&.-'q, P'.Ip»(0)l-kq, PQ= i(G~~-/4M)(g„~, (V, —,'q re''"'jg, ), (2.51)

&r~q, P'0 ~P»(0)~-& q, Po) = i(G-zz/4~)(p„, [—,
'

q rVe'"'"'+e'q "'V—,
'

q ~ rj$„). (2.52)

and

G, = 2G~s C~(q') + 2(2G~~ —G)Jc(q')

G, =2Gs~Co(P') +2(2G~~- Gs~)J~(q'),

(2.53)

(2.54)

where J~ and J~ are the contributions of p~„and

In the expression for PD, we may replace Vg by
(&'/~+E)f For P. » this is possible only if the
nonrelativistic limit of the potential is strictly
local, i.e. , it commutes with the vector r. In that
case p» = p». For Serber potentials, i.e. , poten-
tials that vanish for odd partial waves, p» vanish-
es.

It follows from Eq. (1.5) that the form factors
G, and G, are given by the expressions

f

and

2C~, ———gC@, —gq ~, C~o
Q

drse u-se 8 j, —,
' qr +-,'qr jy Q qr

(2.60)

The dynamical corrections are absent in Friar' s
work since he assumes implicitly that 4 '=0. For
local potentials, when C» =C» and Cz, =C~„ the
dynamic corrections are in complete agreement
with the field theoretic result of Gross. " We have

C~=-, q dr uXu+~X~ —~' j, &qr +j, & qr

(2.61)
Cs Ceo +Csi + Cs ~ + Cs3 ~

Q 0o Qi Q~ Q3.

(2.55)

(2.56)
and

The nonrelativistic limits C~, and C~, are given
by the familiar expressions

Cz, =-3 q Cr u-w v'2 Xm+uXu —6 u —m 0'2 ou

CEO dr Q +K j() (2.57) where
(2.62)

and

C, = dru u-~ v'8 j, —,
' qr . (2.58)

Czi = -2gC@o —g q &q2 CEO

The kinematic corrections C» and Cz, are in
agreement with both Gross" and Friar":

If the potential does not commute with r then it
cannot be eliminated from the remaining terms.
Expressions for C» and C+, are obtained from
Eqs. (2.52) and (2.32). A straightforward evalua-
tion of the angle intervals gives

dr u'+m' 2 j, —,
' qr ——,

' qr j» qr

(2.59)

F(L„L,L,', I, ', &, 1)
Ly ~ Lp Ly~ Lg J

(2.63)

and

Co, = Q Q Q F(L„L„L,', L,', &, I )[3(2l+l)j'~'(1 I 00~ 20) W(211&;1I ),
Ly, L2 Ljg L~ Jy l

(2.64)
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where

I = (I/4M) f cr f dr'(( (r')-,'qr'(r', I ())('r I,)j, (''qr&( (, )i' '(2Z rl)(2 I+1, i('(2 I, ll'('

& (l L, 0 0~ L,' 0)(1 L, 0 0~ L,' 0}W(l L, J' 1;L', 1)W(1 L, 4 1;L,' 1) . (2.65)

The W's are Racah coefficients, uo=u and u, =m. We get nonvanishing contributions only if l, I-,', and 12
are odd.

The coefficients ~~ and ~~ have been previously obtained by both Gross" and Friar. " We have

J = 2g doge J zQt' +g ~Qf' (2.66)

and

Z ~ d, („„„„,}[&,('q~) +-&,('q&))-, „[3i,(2q&) —», (kq&)1 , [-,' j2(-,'qr) —22, (2qr)]
29&

(2.67)

The leading term in the form factor G, is of order
To order M there are no relativistic cor-

rections. and

P = 2(PI-P, ), (3.2)

III. DEUTERON FORM FACTORS DERIVED FROM FIELD
THEORY

In order to relate the results of the last section
to field theory we define nucleon creation opera-
tors at(p) that create physical one-nucleon states
when operating on the physical vacuum ~0}. (In
this section we suppress the spin variables for the
sake of simplifying the notation. ) Let us consider
the vertex function

—
(~p

2 + M2)2/2

The definition (3.1) suggests the identification

X,(k) = vq)(k),

and hence

q)(k) =[M —2%(k)] 'X,(k),

w(k) =(k'+M')"'.

(3.3)

(3.4)

(3 5)

(3.6)

(3.1)

&-,(P„p.) =&0 In(p, )n(p, )(& —&, —&.) I P),
=Xp(p)5(p, +p, —P),

where
~ P}D is the deuteron state with momentum

P,

Equation (3.5) implies the assumption that the state
vector of the deuteron at rest can be adequately
approximated by its projection on the two-nucleon
subspace.

The charge-density matrix element for the deu-

teron may be written in the form

,(l((l()(2) I-l()& =f (('I) f&'jr f&'1) I'l(, -, (i)l )2) (i)ll () +() li) &2' „,-((i)„i)).

The wave function 4 ~(p„pl} is related to q)(k) by

+-,(p„p.) = [s(k, P)/s(p„p)) "'q
I k(p„p.)]5(P- pl —p.),

(3.7)

(3 6)

where 8(k, P}/8(p„p, ) is the Jacobian of the trans-
formation

whe re Lp is the rotationless Lorentz transforma-
tion defined by

k = k(p„p, ),
(3 9)

L,(P, Z,) =(0, M,], (3.11)

If we define k(p„p, ) by

L [p„F.,)={-k,w(k)), (3.10)

then the form factors derived from Eq. (3.7) are
precisely the same as those obtained for local po-
tentials in the last section. After expansion in
powers of P to second order it follows from Eq.



ELASTIC ELECTRON-DEUTERON SCATTERING AS A PROBE. . . 1843

(3.1O) that

k=p+~(p +o. )P/M —P(P p)/2M~ (3.12)

The dynamic corrections arise from the second
term in Eq. (3.12).

In order to relate the probability amplitude

4p(p„p, ) to the vertex function Ap(p„p, ) we intro-
duce covariant fields as follows. Let {f„(x)}be a
complete set of positive-energy solutions of the
free Dirac equation

where

f„(x)=tf „'(x)P,

S =yug&+M,

and

y"=-iPc)", n'=1.
We have thus

(3.24)

(3.25)

(3.26)

(3.27)

l.e. y

+a V+il)M}f (x)=D, „ (3.13)

(3.28)

In this form it is easy to relate the function &p(p)
to Xo(k) by virtue of the transformation properties

v(I,,-')
I 0&, =

I P&,(E,/M, )'",

f (~) =(2~) "'I&') u(P)e"'('. (i)),

where

Px =p' x —ddt

(3.14)

(3.15)

+ 1/2

&(Lp ')lk I&= g IP»y'&6t„„(L,g ', pn)

x[E /n)(k)]' ' (3.29)

and (C„(p)] is a complete set of square integrable
functions. The spinor matrix u(p) is defined by

and

It'(I, )&,(t(0)ft(i, ) =S(L )&„(t(0), (3.30)

u(p) =[3~ p+u)+M][2(d((o+M)] '-', (1+P). (3.16)

Let (t)(x) be any local covariant spinor field such
that the annihilation operator

where S(l.p) is the appropriate unimodular repre-
sentation of the Lorentz transformation l~, i.e.,

S(L,,) =[E,+M, +Z P]/[2M, (E, +M,)]"'.
a„(t) =Jl d'xf„(x)y(x)

satisfies the relation

&0 ls.(t) l~'& =5.."

(3,17)

(3.18)

(3.31)

The %igner rotations S cancel out in the end and
we shall therefore ignore them in the following.
To second order in M ' we have

If (1)(x) is not a free field then a„does not create a
hysical one-nucleon state~ i.e.~ ~„~a„." The

creation operator a„may be obtained from a co-
variant quasilocal spinor field (i)(x) as follows":

ic(k)S(Ip) =M(p, ) [E,/u (k)]"'.
Since

P ~ P, =P ~ p, -E~E, =-M~(k) (3.33)

a„(t) =, d'xft(x) j(x),

where

il'(*)=(2 ) 'f') p "t(—p')i)(p)

(t)( P) = (2 w)
'

)I
d'x e ""(I)(x),

(3.19)

(3.20)

(3.21)

0.6

0.4

and g(K) is a test function such that g(M ) = 1,
0 (g(K) (1, and g(K) =0 for

I
K —M I) 2M .

The vertex function Ap may be expressed in the
form

~ p(p&, p2) =&p& I [s(p|),ff] - s(p, )(d& IP&

=t —„&p. I s(p„ t )I »
From Eq. (3.19) it follows that

i " =f d'xf„(xi@i)(x), ,

(3.22)

(3.23)

r (frn)

FIG. 1. "Reasonable" deuteron wave functions listed in
Table I. Both S waves u {r') and D waves se{t') are
shown.
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it follows that 0.6
I

'
~ 7' IU~ l

ul

(3.34)

The wave function (3.34) is equivalent to the one
derived by Gross" to order I '.

In order to establish the relation of the wave
function (3.34) to the Bethe-Salpeter formalism"
it is necessary to use the Lehmann-Symanzik-
Zimmerman (LSZ) reduction formulas" which re-
quire that the fields be local. It is therefore nec-
essary to assume that g(x) may be approximated
by a local field $(x). This means that in the wave
function the physical nucleons are approximated
by point particles.

IV. NUMERICAL RESULTS

0.4-

0.2—

-0.2-

-0.4
0

l

2.0
We have shown in Sec. II that the deuteron elec-

tric form factors depend, in general, not only on

the deuteron wave function but also explicitly on

the 'P and 'E, potentials. The wave functions alone
are sufficient to calculate the form factors if ei-
ther the static limit (M- ~) of the potential is
strictly local, i.e., the same in all partial waves,
or if it vanishes in odd partial waves (Serber ex-
change). Conventional potentials such a,s the Reid
potentials" and the Hamada- Johnston potential"
are not strictly local; neither are they Serber po-
tentials. However, the P-wave potentials are rela-
tively small (compare Ref. 47, Figs. 3 and 4, with

Fig. 11). We have computed C» and Cz, for the
Reid potentials and the Hamada-Johnston potential
and found their contribution to the observable quan-
tities A and P to be small.

For purposes of illustration we assume in the
following that the deuteron wave functions under
consideration are produced either by a strictly
local potential or by a Serber potential. They will

FIG. 2. Exotic deuteron wave functions listed in Table
I. The solid lines show the RSC wave functions for com-
parison.

A(r) =
d

u(A(r)), (4. 1)

where

] +(1+pe "is)&n
A = r + a +2 P ln 1+(1+$ '~2 (4.2)

be in two classes: wave functions with reasonable
shapes and wave functions with exotic short-range
variations. In the first class we have the Reid"
and Hamada-Johnston" (HJ) wave functions as well
as wave functions that are obtained from the Reid
hard-core (RHC) wave functions by a Baker trans-
formation" that removes the S-wave hard core.
These wave functions are shown in Fig. 1. The
Baker transformation is given by

TABLE I. Summary of deuteron wave functions, D-
state probabilities, and quadrupole moments.

0~06 i
i

i i i & i i i
I i s

0.05-
%ave function

number Description

RSC
RHC
HJ

RHC+ Baker transf.
of u(x), P =0.3

RHC+ Baker transf.
of u(x), P =0.7

RSC +u-zo twist
p =0.8

RSC+u-~ twist
p=1

RSC+ UT101

PD
(%)

6.47 0.280
6.50 0.277
6.95 0.284
6.50 0.276

6.50 0.272

5.27 0.276

4.35 0.268

6.47 0.279

c, 004-
Lal

C9
0.03-
0.02-

0.0 I—

l a l i

2 6
I I I i ''. I i 1 s I

IO I4 I8

q (fm )

22 26

FIG. 3. Neutron form factor Gz„(q ) according to Eq.
(4.8) (solid line) and two five-parameter fits of Ref. 23.
The dashed line is the dipole fit and the dotted line is
the monopole fit.
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and a is the hard-core radius. The parameter S
is determined by the asymptotic condition

(4.3)

Exotic shapes are represented by the wave func-
tion UT101 given by Vary'o and two wave functions
obtained from the Reid soft-core (RSC) wave func-
tions by a unitary transformation designed to lower
the D-state probability, i.e.,

0.5-

O
O.l—

1

l.O-y. .

~

u(r) = C(r )u (r) +S(r)e (r),
cu(r) =-S(r)u(r) +C(re(r),

where

(4.4)

(4.5)

and

(4 7)

S(r) =A, tanh(r/y)e '" P"'(1 +e '" P'") ' (4 8)
0.05-

I

6
I

8
s I

10

q (fm )

�

%5

4
~ .N+g

~. 6,
12

The parameters chosen are A„=0.4472, y =0.02
fm, T =0.02 fm, p =0.8 fm, and p = 1 fm. The wave
functions are shown in Fig. 2. The D-state prob-
abilities and quadrupole moments are summarized
in Table I.

The coefficient A in the Rosenbluth cross sec-
tion depends on the neutron form factor G~„. Fig-
ure 3 shows the q' dependence of Ge„proposed by
Bertozzi et al. ,

"
Ge„=(1+0.58q /12) ~ —(1+0.7q /12) ~, (4.8)

and by Iachello, Jackson, and Lande. " In Fig. 4

FIG. 5. Plot of A. (q~) for wave functions listed in Table
I. G&„=0 and Serber exchange is assumed.

we show the values of A computed from the Reid
soft-core wave function for Q~„=0 and for G~„
given by Eq. (4.8). The corresponding curves for
the Reid hard-core and Hamada-Johnston wave
functions differ by ~% or less. Figure 5 exhibits
the dependence of A on different wave functions
for Q~„=O. A positive neutron form factor would

merely shift the whole pattern in the manner shown
in Fig. 4. The experimental data shown in Figs.
4 and 5 are taken from Galster et al."and from

l
I

I

1.0 LOCAL
- -- --- SERBER EXCHANGE

FULL REl0

0.5-

0 ~
I

~ y
~

e
~

i
~

I

-O.I—
Kl

I

LI

-0.2-

0.05-
I

6
I

IO

q (fm }

I

l2

FIG. 4. Plot of A(q~) for the RSC wave function with
Gz„=o and Gz„given by Eq. (4.8) (see solid line in Fig.
3). The dashed lines are computed with the full RSC po-
tential using Eqs. (2.63) and (2.64). The solid lines ob-
tain if the wave function is produced by a local potential.
The experimental data are taken from Refs. 21 (crosses)
and 50 (dots).

I, i i . i

2 4 6 8 IO 12

q (fm )

FIG. 6. Relativistic corrections to A(q~) for the wave
functions 1 and 8 of Table I. Curves labeled E show the
kinematic corrections only. Curves labeled S show the
full correction assuming Serber exchange. The curve
labeled L is obtained assuming a local potential. The
curve labeled I' is obtained with the full RSC potential.
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0.08—

0 I2 I I I I I I

/

I o6 I I I I I I I I I I I I I

5-
1.2—

~ 004-
0
40

SI0 I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

FI

0.8—

0.4—

-0.04—
I I I

2 4

SB
I I I I

6 8 10 12

q (fm )

FIG. 7. Relativistic corrections to P(q~) for the wave
functions 1 and 8. The curves are labeled as in Fig. 6.

0—

04 ) I

K7

I ) I ) I ) Ix )X I '

8 12 16 20 24
q (fm )

FIG. 9. Plot of P(q2) for wave functions listed in Table
I and Serber exchange.

Buchanan and Yearian. "
The relativistic corrections with and without

inclusion of the dynamic effects are illustrated in
Fig. 6 by a typical example, the RSC wave function,
and an extreme case, the UT101 wave function.

The polarization P depends on the neutron form
factor G~„only through a term proportional to
G~~/Ga~ in the kinematic relativistic corrections.
That effect is negligible (about 0.4% for q'& l3
fm '). For q'& 13 fm ' the polarization is also
much less sensitive than A. to the relativistic cor-

rections. The corrections shown in Fig. 7 for the
Reid soft core wave functions are typical for all
cases except the wave function UT101 for which
the kinematic corrections are the same but the
dynamic corrections are much larger. For q & 13
fm ' there is no visible difference between the po-
larizations obtained from the wave functions 1-3
(Fig. 8). The polarization predicted by the other
wave functions is significantly different even for
q'& 13 fm ' (Fig. 9). The dependence of P on the
exchange character of the potential is illustrated

I o6 I I I I
I ) I ( I I I I I

I 6 I f I J I f & [ I
f I / I

1.2— 1.2—

0.8— 0.8-

0.4—

0—
~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ oeo R

0 SERBER EXCHANGE
FULL REI D

04 I I I I ) I I I I I I I I

4 8 12 16 20 24

q (fm )

FIG. 8, Plot of P(q2) for the full potentials RSC, RHC,
and HJ.

-O4 I I I I I I I I I I I )

4 8 12 16 20 24

q (fm )

FIG. 10. Dependence of P(q ) on the exchange character
of the potential.
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in Fig. 10. The difference between local potentials
and Serber exchange is visible even for q'(10
fm '

V. SUMMARY AND CONCLUSIONS

What can be learned from elastic electron-deu-
teron scattering about the deuteron wave function
and the nucleon-nucleon interaction? The question
implies the model we have assumed here: The de-
scription of the deuteron as a two-nucleon system
with no other degrees of freedom. Covariance of
the current density four-vector requires certain
well-defined interaction terms in the charge and
current density. Within the framework of a phe-
nomenological theory we cannot rule out arbitrary
additional interaction currents that are separately
covariant and conserved. Such interaction cur-
rents may represent the effects of field degrees of
freedom that have been eliminated. For the pres-
ent study we have assumed that such effects are
absent as long as the momentum transfer is not

too large.
For nonlocal potentials the form factors depend

not only on the deuteron wave functions but also
explicitly on the 'P and 'I, interactions. For po-
tentials that are local in the nonrelativistic limit
we have obtained the same results as those de-
rived from field theory by assuming that the state
vector of the deuteron at rest can be approximated
by its projection on the two-nucleon subspace.

A precise measurement of the deuteron electric
form factor can be used to determine the neutron
form factor only if the shape of the deuteron wave
function is sufficiently restricted by theoretical
requirements. Conversely, the shape of the deu-
teron wave function can be restricted by such a
measurement if the neutron form factor is deter-
mined by other data. The polarization cross sec-
tion is practically independent of the neutron form
factor. A precise measurement of P for q'( l3
fm ' could serve to limit admissible deuteron
wave functions considerably.
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