
PHYSICAL REVIEW C VOLUME 11, NUMBER 5 MAY 1975

Magnetic susceptibility of neutron matter
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The magnetic susceptibility of neutron matter is calculated in Brueckner theory with the Reid hard

core potential and the Mongan nonlocal separable potential. The rearrangement contribution, calculated

with suitable approximations, turns out to be important at the densities above normal nuclear density.
The results obtained for the Reid hard core potential are similar to those obtained previously for the

Reid soft-core potential. No evidence of a transition to ferromagnetic state is found.

I. INTRODUCTION

It is currently believed that pulsars are rapidly
spinning neutron stars possessing intense mag-
netic fields, ' and hence the magnetic properties
of the neutron star matter are of a considerable
interest. The matter of which real neutron stars
are composed is a very complicated substance. '
However, in the normal nuclear density region
the neutron star matter is believed to consist
mainly of neutrons, with a small admixture of
protons, electrons, and muons. Some of the neu-
tron star matter calculations' indicate that also
at high densities (k~ & 3 fm ') the ground state of
the cold dense matter could be nearly pure neu-
tron matter. Thus, pure neutron matter appears
to be a meaningful approximation of the real neu-
tron star matter near and above nuclear density
and does provide a starting point for the calcula-
tion which would take into consideration more com-
plex effects.

Several attempts have been made in explaining
the huge magnetic fields of the pulsars (10"—
10"Gs) by means of the ferromagnetic transition
of neutron matter at the densities much higher
than the normal nuclear density. This possibility
has been studied in Refs. 4-7 with rather over-
simplified n-n potentials. In the calculations pre-
sented in Refs. 8-14 the magnetic susceptibility
of neutron matter has been obtained using realistic
+-n potentials. Clark' calculated the magnetic
susceptibility of neutron matter within the frame
of the Brueckner theory, assuming the Reid soft-
core (RSC) n npotential, " in-the density region
corresponding to k~&2.02 fm '. However, he
neglected the rearrangement contribution resulting
from the intrinsic density dependence of the ef-
fective n-n interaction in neutron matter. Pearson
and Saunier' investigated the magnetic properties
of neutron matter in the first order perturbation
theory in the narrow density interval, correspon-
ding to 1 fm '&k'~ &1.8 fm ', using the realistic
effective n-n interaction. Pandharipande, Garde,

and Srivastava" calculated the magnetic suscepti-
bility of neutron matter in the wide density region,
corresponding to &~ & 5 fm ', for the RSC poten-
tial, using lowest order variational method. In
the paper of Pfarr" the magnetic properties of
neutron matter were investigated for &~ & 3 fm '
in the Hartree-Fock approximation by the method
of the unitary transformation for the old hard-core
Brueckner-Gammel- Thaler" potential and the RSC
potential. Backman, Kallman, and Sjoberg" ap-
plied the Landau theory of Fermi liquid. In their
paper the Landau parameters were calculated
from the RSC potential at k~ &2.5 fm '. Moszkow-
ski" calculated the magnetic susceptibility of neu-
tron matter using the effective n-n interactions,
constructed for the RSC potential by Sawada and
Wong in their nuclear matter calculations. The
density region considered in Moszkowski's calcu-
lation, corresponds to 1.25 fm '&0~&3.78 fm '.

In all Refs. 8-14, 17 no sign of the tendency to
the ferromagnetic transition has been obtained. On

the contrary, in all cases the calculated ratio yz/
g of the magnetic susceptibilities of neutron matter
and Fermi gas of free neutrons is greater than 1
and increases monotonically with density.

No attempt of a complete calculation of g~/y in
Brueckner theory with realistic n-n interaction
has been made. In Clark's calculation' the rear-
rangement contribution to y~/y was neglected,
while in @stgaard's paper' the calculation was not
self-consistent and the potential used was unreal-
istic.

In the present paper the magnetic susceptibility
of neutron matter is calculated within the frame of
Brueckner theory for the Reid hard-core (RHC)
potential" and the nonlocal separable Mongan (M)
potential. " The calculations were carried out for
the densities corresponding to 1.0 fm ' & k~ & 2.6
fm ' in the case of the RHC potential and for 1.0
fm '&4'~&3.3 fm ' in the case of the M potential.
In Sec. II general formulas for various terms of
gz/g are given. Numerical results and their dis-
cussion are presented in Sec. III.
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II. GENERAL FORMULAS for a fixed value of the spin excess parameter &0,

Let us consider neutron matter composed of N
neutrons contained in a periodicity box of volume
Q. In the presence of an external magnetic field,
the two spin populations will no longer be equal in
the ground state, and the total energy will be a
function of the spin excess parameter

p„II
Ao ——

and thus the magnetic susceptibility of neutron
matter is in our approximation given by

(4)

n =(Nt N))/—N,
where N~ and Ng are the numbers of neutrons with
spin up and spin down with respect to the direction
of the applied field. The total energy of the system
is the sum of the three terms,

E"(N, n) =E„(N, n)+E"„„,(N, n) —p„HNn, (2)

where E„,„ is the kinetic energy of the neutron
matter, E~„, is the nuclear potential energy of the
system, and the last term is perturbation describ-
ing the interaction with the external magnetic field
H, weak enough that its magnitude enters lineary
into the energy of the system. The neutron mag-
netic moment is denoted by p.„. The nuclear en-
ergy per particle,

—E" (N, n) =—(E„,„~E",„,),1 „1
expanded in powers of & takes the form

—E" (N, n) =e, ~ —,'s n',

where &o is the energy per neutron in the case of
n =0, c~ is the spin symmetry energy of the neu-
tron matter, and the spin excess parameter & is
assumed to be small, so that the terms propor-
tional to &", n&2, can be neglected. The terms
proportional to the odd powers of & vanish because
of the condition

E" (N, n) =E" (N, —n),

where p is the density of neutron matter.
For the sake of convenience, we shall introduce

a ratio of p and the magnetic susceptibility of the
Fermi gas of the free neutrons )('.»

3 2 p
X —

2
V.

F

This ratio is given by the formula:

3

X

where &F is the Fermi energy for unpolarized neu-
tron matter with N~ =N~ =2K,

The Fermi momentum k~, measured in units of
@, is given by

k, 3p=—

and K is the neutron mass divided by @'. Thus,
the calculation of the ratio y~/X is equivalent to
the calculation of the spin symmetry energy of the
neutron matter e, . Expansion (3) of E„,„gives us
the value of the kinetic part of &, ,

~ kin
o 3 E &

while the potential part of the spin symmetry en-
ergy is given. by

resulting from the time reversal invariance of the
neutron-neutron interaction. In the ground state
the total energy of the system reaches the minimum

In the lowest order Brueckner theory the nuclear
potential energy of the neutron matter is given by

the expression

(S ) (')
E",., = —g g g f(m, s,m, s,'~ K(a&)~ m, s, m, s,') —exchange),

I
SSS3 m 1 2

83)
where the sum Q - denotes summation over all
momenta states occupied by neutrons with the third
component of the spin equal to &„and the intrinsic
dependence of the matrix on the two Fermi mo-

~'=k~'(1+ n),
A.' = k~'(1 —n),

(9a)

(9b)

menta for neutrons with spin up and with spin down,
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has been explicitly shown. The order in which the
Fermi momenta appear as arguments of K will be
kept the same throughout this paper; namely, the
first argument always stands for the Fermi mo-
mentum of spin-up neutrons. Thus, nuclear po-
tential energy depends on o.' in two ways: first,
through the upper limits of the sums over m, and

m, in Eq. (8) and, secondly, through the intrinsic
dependence of K on the two Fermi momenta, re-
lated to o. by Eqs. (9). Hence, when we calculate
the second derivative of E"„„,indicated in Eq. (7)
we get two parts of &,P"',

~pot ~(0) pot +~+a o 0 (10)

the first part, &,' "', resulting from the first type
of the dependence, and the second part, 4&, re-
sulting from the second type of the dependence of
Ep"„on +. The term &e will be referred to as the
rearrangement part of &~, and the nonrearrange-

ment part of e, will be denoted by

~(O) a ~ +~(0)pot
3 F o

The calculation of e',"', i.e., the calculation of the
second derivative in Eq. (f), is lengthy but
straightforward. The final result for e '""' is

dk'
E

"' =N F kF kF K11;kF

—Q K(s0; k„)l k~kp)

++ kF 11
F

where K(& m, ; kz) and V(m) are, respectively, the
effective interaction in the representation of the
total spin & of the neutron pair and the model
single-particle potential, calculated in the case of
neutron matter with Nj =N~=& N. For the rear-
rangement part of the spin symmetry energy we

obtain

b e = —&~ V„(k~) ~2N J )ic, ml);, { K(11; tcX)/ k~ m
/

+ -'N mm' k' — K(ll; vX) —p K(so; KX) lIltll
)m m' Bg BA.

(12)

where all the derivatives are to be calculated at the point K =~ =&F, and where

1
3

d'm .
4~~F

1 m I & eF

In Eq. (12) Vs is the rearrangement potential, calculated at the Fermi surface in the case of N~ =N) =-,' N,

3N mm' kz g K(s m, ; kz) mm'
R F 4

msm

In all the above formulas the notation of Ref. 17
has been used. Let us notice that in Eq. (12) we
omitted the cross terms, resulting from the ma-
trix elements of the effective interaction between
the spin singlet and spin triplet states. These
elements of the K matrix vanish in the approxima-
tion, in which the exclusion principle operator in
the Bethe-Goldstone equation for the K matrix is
replaced by the value averaged over the direc-
tions of the total momentum of the neutron pair.

Although it is possible to calculate the K matrix
which depends on two different Fermi momenta,
this calculation is very tedious. For instance, such
a calculation for nuclear matter with a neutron ex-
cess has been performed in Refs. 19-21. On the
other hand, an approximation introduced by Brueck-
ner and Gammel" enables one to calculate 4&,

using the K matrix for unpolarized neutron matter.
This approximation has the form

K(11;6.) =K(11;z),

K(s0; KX) - P K(s0; e),

(13a)

(13b)

where

2- x/2(K2 g2)I/2 (14)

and where the K matrices on the right-hand side of
Eqs. (13) are calculated in the case of u=0
with indicated value of the Fermi momentum.
When expressions (13) are introduced into Eq. (12)
we get the following approximate formulas for the
rearrangement part of the spin symmetry energy
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of neutron matter:

M, =- ~3V„(k~) +2N
dk~ k m k K(1);k)k m)

F

+-,'Nf CPmm' I ', K()I;I )+-'1 g K(kk;I ) mm')
F

(15)

III, NUMERICAL RESULTS AND DISCUSSION

The K matrix has been calculated self-consis-
tently within the frame of the Brueckner theory
over a range of neutron matter densities for the
RHC and M neutron-neutron potentials. The cal-
culation was performed using the angle-averaged
Pauli exclusion principle operator and the effec-
tive mass approximation for the hole states. Pure
kinetic energies in the intermediate states were
used. This standard choice of the single-particle
potential in the intermediate states could not be
used at the high density region and hence the cal-
culation was restricted to k~ & 3.3 fm ' in the case
of the M potential and &~ &2.6 fm ' in the case of
the RHC potential. The details of the calculation
are presented in Ref. 23. The differentiation of the
K matrix was carried out numerically, by making
finite shifts in the Fermi momentum, &~-&~+A,
and repeating the whole self-consistent calculation.
Then the derivatives were determined from the
resulting shifts in the matrix, using the five point
Lagrange interpolation formula. The contribution
to &, from the J & 2 partial waves was estimated in
the first Born approximation for one-pion ex-
change potential.

The quotient y.„/X can be split into two parts,

g~/g. The values of (g~/y), and (X~/g)„ for the
RHC and M potentials are given in Table I. Near
and below the normal nuclear density (k~ &2 fm ')
the values of y„/y for the RHC and M potentials
are approximatively the same. At higher densities
(k~ &2 fm ') the values of the nonrearrangement
parts of Z~/y stay nearly the same for both poten-
tials, while the values of the rearrangement parts
differ significantly. Thus, the difference between
the RHC and the M values of y~/y results mainly
from the differences between the rearrangement
parts. In Fig. 1 our values of y~/y. are plotted
versus k~. The results of Pfarr, "Moszkowski, "
and Pandharipande et al."for the RSC potential
are shown for comparison. Our results for the
RHC potential agree quite well with those obtained
by Pandharipande et al. The discrepancy between
the Moszkowski's, Pandharipande's, and Pfarr's
results for the same neutron-neutron interaction

I I I I
I

I I I I
I

I

3.0—

where (&z/&), and (yz/y)a are, respectively, the
nonrearrangement and rearrangement parts of

TABLE I. Values of the nonrearrangement and re-
arrangement parts of y&/y for the RHC and M potentials.

2Q

(x~/x)0
M RHC

(x~/x)&
M RHC

x~/x
M RHC

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.5
2.7
2.9
3.1
3 3

1.62 1,76
1.66 1.82
1.73 1.89
1.84 1,92
1.95 1.97
2.05 2.04
2.15 2,12
2.27 2.24
2.29
2.30
2.32
2.33

0.03
0.19
0.27
0.32
0.34
0.35
0.33
0.21
0.08

-0.03
-0.09
-0.16

-0.02
0.03
0.05
0.14
0.28
0.38
0.47
0.57

1.65 1.74
1.85 1.85
2.00 1.94
2.16 2.06
2.29 2.25
2.40 2.42
2.48 2.59
2.47 2.81
2.37
2.27
2.23
2.17

1.0
1.Q

I I I

2Q

k„(km ')
3.0

I'IG. 1. Values of gz/g versus kz for the BHC and M

potentials (solid lines). The results of Pfarr (Ref. 12)
(dotted line), Pandharipande et al, . (Ref. 11) (dashed line),
and Moszkowski (Ref. 14) (dash-dotted line, correspond-
ing to the SW effective interaction) for RSC potential are
shown for comparison.
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should be attributed to different approximations
used by these authors in their calculations of the
effective neutron-neutron interaction in neutron
matter.

In Pfarr's paper" the energy of neutron matter
was calculated in the Hartree-Fock approximation
with an effective neutron-neutron interaction ob-
tained by the method of the unitary transformation
from the RSC potential. This approach is in the
first order equivalent to the Jastrow method but
avoids complications of the normalization. The
parameters of the transformation were not cal-
culated self-consistently but were determined
phenomenologically from the condition of the best
agreement with the saturation properties of sym-
metric nuclear matter. The resulting effective
nucleon-nucleon interaction was extrapolated to
the case of the neutron matter. In view of all
these approximations, the approximate agreement
of Pfarr's values of X~/X with those obtained in
Refs. 12 and 14 should be considered as very good.

In Ref. 11 the energy of the polarized neutron
matter has been computed in Jastrow variational
theory, using the lowest-order cluster expansion.
Subsidiary healing conditions were imposed on the
Jastrow correlation functions to simulate the ex-
clusion principle effect. Many approximations
were introduced to simplify the calculational pro-
cedure. E.g. , for the sake of simplicity the spin-
orbit and tensor forces were neglected, and the
central part of the 'P, -'E, RSC potential was as-
sumed in all odd 1 states.

The effective neutron-neutron interaction, used
by Moszkowski, "has been developed by Sawada
and Wong in their nuclear matter calculation, and
utilized for several values of the density and neu-
tron excess. The main simplification in Sawada
and Wong calculations concerned the choice of the
single-particle energies, which is not justified
from the point of view of the complete many-body
calculation. Generally, the single-particle ener-
gies used by Sawada and Wong, and in conse-
quence their effective interaction (SW), should be
treated rather as an "educated guess" for the form
of the effective interaction in neutron matter, espe-
cially at high densities. On the other hand, the
SW effective interaction was determined for un-
polarized nuclear matter and the use of its matrix
elements for the completely polarized (+ =1) neu-
tron matter may be criticized.

Our results obtained for the M potential are very
characteristic. They agree with our RHC and the
quoted RSC results below and near normal nuclear
density (k+&2 fm ). At higher densities the values
of X~/X for the M potential are substantially lower
than those obtained for the RHC and RSC potentials.

Contrary to the monotonic increase in Xz/X for the
RHC and RSC potentials, for the M potential Xz/X
decreases for &~ & 2.5 fm '. Generally, the dif-
ferences between the results for the RHC and M
potentials are much more pronounced in the case
of Xz/X than the differences between the values of
the energy per neutron, calculated in Ref. 23.
Thus, in our case the calculation of the magnetic
susceptibility of neutron matter represents a very
sensitive test for the assumed form of the nuclear
interaction.

In principle, the magnetic susceptibility could
be determined from the difference between the
values of the energy per neutron in neutron matter
with &=0 and &=1, assuming that E,"„, is a linear
function of &'. This is a very good approxima-
tion."'" However, the generalization of the stan-
dard calculation in lowest order Brueckner theory
to the case of completely polarized neutron matter
is not trivial. In the case of completely polarized
neutron matter the model single-particle potential
has the form

V(m, ) = V, (m, ) + V, (m, )P, (m, ),
where m, is the neutron momentum and P, (m, ) is
the Legendre polynomial of the cosine of the angle
between m, and the direction of the spin polariza-
tion. The tensor part of V does not enter directly
into the potential energy of the system. However,
it should be taken into account when considering
the dispersive effects of the medium. This intro-
duces some new difficulties to the self-consistent
calculation.

Summarizing„one may conclude, that the results
for the RHC potential, obtained within the frame of
the Brueckner theory, are quite similar to those
obtained for the RSC potential using different for-
malisms. "' '2' ' The results obtained for the non-
local M potential, especially the density dependence
of the magnetic susceptibility of neutron matter,
are substantially different from those obtained for
the modern local neutron-neutron potentials. No
evidence of a transition to ferromagnetic state is
found in the density region considered.

Note addedin proof: The values of Xz/X for
the RSC potential have been obtained just recently
by the author, using the methods and approxima-
tions of the present paper. These results, which
are in agreement with those obtained within the
frame of the Landau theory of Fermi liquids in
Ref. 13, will be published elsewhere.

The author is indebted to Professor J. Dabrowski
for directing his attention to this problem and for
many stimulating and helpful. discussions.
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