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We present .a simple model for three and four particle cluster states in light nuclei. These states are
considered as bound states and single particle resonances of a cluster-core potential, which is obtained

by folding the cluster and core mass densities, We calculate some properties of these states in "0 and
' Ne, such as the rms radii, B(E2) values, a-decay widths, and energy spectra. Good agreement with

available data is obtained and some predictions are made for B(E2) values in the K = 0 bands in
' 0 and Ne. This model is also used to interpret recent heavy ion three particle transfer data.
Dynamical support is offered for high spin assignments in "N and "0 previously based on kinematical

considerations.

NUCLEAR STRUCTURE 5N, ~60, Ne; calculated energies, J, m, B(E2)
values, n widths, radii in cluster model with foMed potential.

I. INTRODUCTION

The principal motivation for the present work
stems from a desire to interpret in a simple and
intuitive way several striking features of nuclear
reactions involving three and four particle trans-
fer, namely:

(a) the strong selectivity in reactions such as
"C('08, 'BePN, ' for example, over and above the
I. transfer and Q-value dependence. Such data
have been interpreted' in terms of direct three
nucleon transfer populating high-spin states.

(b) in four particle transfer reactions such as
( Li, d), (7Li, t), and ('~O, "C) on light targets such
as "C and "P, several well-known rotational bands
in '60 and ' Ne are preferentially populated. Such
observations, plus the fact that the n-decay widths
of certain of these levels are rather close to the
single particle Wigner limit, have been interpreted
in terms of a direct e-cluster transfer mecha-
nism. ' 6

We propose to correlate our understanding of
such experimental results and their correspond-
ing implications for nuclear structure by intro-
ducing a simple cluster description of that re-
stricted class of nuclear states which are strongly
populated in multiparticle transfer reactions of
the above type or which have characteristically
large widths. We deliberately confine our atten-
tion to this rather narrow class of states, for
which the concept of "cluster structure" may have
at least some qualitative usefulness.

The model, in the form we adopt, provides a
convenient framework for making predictions of
the energies of high-spin states. We would like

to provide dynamica1 support for spin assignments
of certain states, which have been based thus far
on the purely kinematical Brink selection rules. '"
It should be emphasized, however, that the simple
cluster model is not designed to replace the more
detailed predictions of the nuclear shell model.
Indeed, there is known to be a large degree of
overlap between shell-model wave functions for
members of certain rotational bands in light nu-
clei and wave functions generated by less general
models such as the Bloch-Brink cluster model'
and the SU(3) model. ""The advantage of our
simple model, which neglects exchange effects,
is the relative ease with which a wide variety of
calculations may be performed, including cases
for which the full shell-model basis of states
would be very large. All cluster models represent
a choice of a small set of states to replace the
much larger shell-model basis and so their use-
fulness is restricted to nuclear states of a parti-
cularly simple structure. The goal of this paper
is to show that a simple cluster picture accounts
rather well for the properties of such states.

In this model, we search for the bound states
and single particle resonances of a cluster-core
potential which is approximated by a folding of
the cluster density p„(r) with the core density
pe(~)

2 k2
V(r) = — f dr'p„(r-r') p~(r'),

where M is the nucleon mass and f is a depth
parameter, here taken to be real; the densities
p„(x) and p~(r} are taken from electron scattering
analyses. " In writing Eq. (1.1}, we have made
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several assumptions which may be only qualita-
tively valid; for example (a) we a,ssume that the
correlations of the particles in a cluster embedded
in the nucleus are the same as those of a cluster
in free space; (b) we ignore exchange effects be-
tween the particles in the cluster and those in the
core; (c) the nucleon-nucleon interaction has zero
range.

In order to show that these approximations are
reasonable, we check the consistency of a variety
of ca.lculated properties; (a) rms radius of the
composite system; (b) energy separation between
members of a band; (c) B(E2) values for electro-
magnetic transitions between members of a band
calculated as single particle transitions; (d) n
widths of continuum states; (e) localization of
cluster wave functions outside the radius of the
core. If we have such localization, we are per-
haps justified a posteriori in neglecting exchange
effects between cluster and core. The blocking
effects of the Pauli principle, which prevent nu-
cleons of the cluster from entering single particle
states already occupied by core nucleons, are
well approximated by means of a careful choice of
the quantum numbers of bound states of the cluster
relative to the core. This choice is indicated be-
low.

A simple folding model given in Eq. (1.1) has
also proved useful in a variety of other situations,
such as n-particle elastic and inelastic scatter-
ing, "'"and heavy ion elastic scattering and one
and two particle transfer reactions. " Part of the
motivation for the present study was to test the
applicability of the folding model for composite
systems in yet another context. A detailed dis-
cussion of the folding model and its limitations is
given by Dover and Vary. "

II. FOLDED POTENTIAL

2N+ L, = Q (2n, +l, ), (2 1)

In the present study, we adopt the most extreme
form of the cluster model, in which the cluster is
viewed as a single particle in a certain orbit with
principal quantum number N and orbital quantum
number I, circulating around an inert core. The
values of N and I are related to the n, and l, of
the particles which make up the cluster in the
usual way'~:

nc

TABLE I. Parameters for a modified Gaussian
density.

Nucleus R (fm)

3H

3He
12C

160

0
0

1.33
1.60

1.64
1.77
2.47
2.75

(2n,. +l,. =2) rather than the 's or 1P shell. Thus
we satisfy the most obvious requirement of the
Pauli principle by hand.

Our procedure is then to solve a one particle
Schrodinger equation for a state specified by N
and I, with a single particle potential of the form

V.„(r)= V(r}+ V,.(r),
where the central potential V(r) is given by

2K@2
V(r) = — f Jtd'r'p„(r —r')p (r')

M

(2.2)

(2 3)

and the cluster spin-orbit potential V,.(r) is as-
sumed to be

'1 dV(r)-
me r dr (2.4)

where (5/m, c)'=2 fm' and o is the spin of the
cluster (eigenvalues o, =+1 for spin —,'). The
strength constants f and V„are regarded a,s ad-
justable real constants; they are allowed to de-
pend on the band under consideration (the 2N+ L
value}, but not on the particular state within a
band. ln other applications"'" f is related to the
effective nucleon-nucleon scattering amplitude in
the medium. Thus we are dealing with a local
energy independent potential for each band. This
is in contrast to treatments using Woods-Saxon
potentials, ""for which a different depth is re-
quired to fit the energy of each state. In addition
to the nuclear potential of Eq. (2.2), we have added
the Coulomb potential of a uniform spherical
charge distribution of radius 3.5 fm for n+ "C
and 3.53 fm for a+' O.

For the densities p„s(r) of cluster and core, we
have used parametrized forms obtained from
electron scattering analyses" and have assumed
that the neutron and proton densities have the same
radial shape. For 'H, 'He, C, and 0, we use
modified Gaussian densities of the form

where n, is the number of particles in the cluster.
Note that the values n; and l, correspond to the
filling of the shell-model orbitals above the closed
core. For Ne considered as 0+ n, for example,
the lowest-lying states considered here correspond
to dropping the four particles into the 2s-1d shell

p(r) = C(1+ny2y')e-&'" (2.5)

where y =r/R, R being the rms radius, y =[3(2
+ 5n)/2(2+ 3n)] ~', and C is a normalization con-
stant adjusted so that jd~rp(r) yields the number
of particles. The parameters n and A are listed
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in Table I. For the n particle, we have used a
three parameter Fermi distribution

p(&) =po(1+I& /& ) 1+exp (2 5)

-20—

with c=1.01 fm, a=0.372 fm, and m =0 445"
which yields an rms radius of 1.71 fm. It is also
possible to use the modified Gaussian form (2.5),
or even a simple Gaussian function, for the @-
particle density. The results we obtain are nearly
independent of the exact choice of density function
providing the parameters are consistent with the
measured rms radius. These alternative forms
have the advantage that the folding integral of Eq.
(2.3) may be calculated analytically; in this paper,
we use Eq. (2.6) for the n density, however. The
assumption that the mass density follows the
charge density seems sufficient for the present

qualitative level of our discussion. The influence
of the details of the densities p(r) (i.e., the be-
havior of the tail region) on the structure of V„~,(r)
is discussed in Ref. 15.

We illustrate in Fig. 1 how the folded potential
compares with conventional Woods -Saxon poten-
tials. We have chosen the case of n+ "O, with
the value of f=1.23'1 fm chosen to give the correct
absolute energy for the 2' member of the ground
state band in "Ne. The Woods-Saxon potentials
shown are of the form

Vw, (~) =
0

1+exp
(2. 'f )

with A = 3.53 fm and a = 0.6 fm. The depths are
V0=114.78, 111.4t, 106.56, 94.95, and 89.71, re-
spectively, for the 0', 2', 4', 6', and 8' mem-
bers of the "Ne ground state band. The depths
V, must be adjusted separately for each state in
order to obtain the correct energy. A Woods-Saxon
potential of this geometry with a fixed value of V,
gives essentially a degenerate or inverted spec-
trum. The crucial geometrical property of the
folded potential, which enables one to obtain a
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FIG. 1. Single particle potential. s appropriate to the
ground state band of Ne, viewed as e+' 0, The solid
curves are Woods-Saxon potential. s of Eq. (2.7) whose
depth Vo was adjusted separately for each state 0+, 2+,
4+, 6+, and 8+ in order to fit the experimental binding
energy; we have V0=-114.78, 111.47, 106.56, 94.95,
and 89.71 MeV, respectively (Ref. 18). A radius'= 3.53
fm and a diffuseness a =-0.6 fm were used for each
state. The dashed curve represents the folded potential
of Eq. (2.3) with f=1.237 fm which produces the spec-
trum shown in Fig. 5.

FIG. 2. Equivalent diffuseness a of the folded poten-
tial Eq. (2.3), obtained by matching an exponential tail
C exp(- r ja) to the folded form at each value of r. The
e+ C and G. + 0 curves correspond to the density
parameters below Eq. (2.6) for the o. particle and the
parameters of Table I for C and ' O. A typical. curve
for a heavy ion situation ( 0+ SNi) is also shown; in
this case the densities were taken from a single particle
model (Ref. 15). Note that a is quite large (-1 fm) in
the region r = 3 —4 fm where the e cluster is localized.
For the 0+ 5 Ni case, on the other hand, we obtain the
more conventional val.ue (Ref. 58) a = 0.65 fm at the
critical radius (Ref. 58) r = 10 fm for low energy elastic
scattering (2-10 MeV/particI. e) .
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spectrum exhibiting the correct energy splitting
with a single value of f per band, is shown in Fig.
2. In this figure, we plot the effective diffuseness
a obtained by fitting an exponential tail —V,e~ 'e "~'

to the calculated folded potential. The point to note
is that the effective diffuseness is quite large for
radii where the main cluster probability is con-
centrated (see Figs. 8 and 9 in Sec. III). Since the
energy splitting of states of different spin is sensi-
tive to the diffuseness, the success of the folded
potential in reproducing roughly' the correct split-
tings can be mainly attributed to the large effec-
tive diffuseness. In Fig. 2, we also show the ef-
fective diffuseness for a typical heavy ion situa-
tion, "P+"Ni. In this case, the diffuseness in
the region of x= 10 fm, corresponding to a grazing
collision, is close to the more conventional value
a=0.65 fm.

III. n-CLUSTER STATES IN LIGHT NUCLEI

Before proceeding to the more speculative cal-
culations involving three particle clusters, we
first investigate several well established rotational
bands in light nuclei, which are thought to possess
a relatively high degree of n-cluster
structure. ""'"" These well-known cases
serve as a testing ground, in order to ascertain
whether the folded model is likely to have any use-
ful predictive power in the more interesting cases
where the spins and energies of the states in ques-
tion are unknown. These calculations provide a
much simpler description of the rotational bands
than the detailed dynamical calculations which have
been performed.

The bands we shall discuss are the following:
(a) 2N+L=8, corresponding to the shell-model

approximation of four particles in the 2s-1d shell.
This gives a K'=0' band with spins 0', 2', 4',
6', 8', corresponding to N=4, 3, 2, 1, 0, respec-
tively. We identify these states with the ground
state rotational band in "Ne and the band in '6P
based on the 6.06 MeV 0' excited state. "'"

(b) 2N+L=9, corresponding to three 2s Id-
particles and one lf 2P particle. This give-s a
K = 0 band with spins 1, 3, 5, 7, 9 . We
take this band to correspond to rotational bands
in "P and "Ne based on 1 states at 9.58 and
5.79 MeV, respectively. "'" Note that for the
first K =0 band in ' 0, a 2N+L=7 cluster as-
signment is not yet excluded by the data, since
the 9 member of the band has not yet been ob-
served experimentally. " However, the latter
assignment would require one nucleon of the
a cluster to be in the 1P shell, which is largely
blocked.

Before proceeding with a discussion of the

cluster results, it is useful to establish a per-
spective by considering briefly other models.
This will serve to emphasize the high degree of
overlap between the various models and to pin-
point those features of the data which are rela-
tively hard to explain theoretically.

A variety of models have been invoked to de-
scribe rotational bands in light nuclei: (a) the full
shell modeP4'25'58; (b) the SU(3) model"'"; (c) the
Bloch-Brink cluster mode19'"; (d) deformed oscil-
lator model"; (e) Hartree-Fock method'8"";
(f) generator coordinate method"; (g) resonating
group method. '" We will not discuss all of
these in detail; instead we concentrate on eluci-
dating the differences and similarities between
(a)-(c). Note, however, that our treatment is
similar to the resonating group method (g), ex-
cept that we use a different effective potential
and take account of the orthogonality condition"'"
approximately by our choice of quantum numbers
for cluster-core states.

Full shell-model calculations for "Ne and "P
have been performed by several authors. "'"'"'"
Here one assumes a single particle Hamiltonian
H, which generates a basis of states. Then one
diagonalizes a residual nucleon-nucleon inter-
action within this basis. Such calculations treat
the interacting system of four 2s-1d (or 2s-1d-1p)
particles outside an inert "0 (or "C) core. The
shell-model diagonalization produces in general
a large number of states. Certain of these states,
however, exhibit a very large degree of overlap
with simple SU(3) model wave functions. '4'" In
the SU(3) description, the ground state band of
"Ne, for example, corresponds mainly to the

[f](Xg) =[4](80) representation of SU(3). The
E"= 0 excited band corresponds to the [4](90)
representation of SU(3). The overlap of the com-
plete shell-model wave functions and the SU(3)
[4](80)wave functions is of order 89.5, 90.6,
84.8, 87.5, and 80.6 (in percent) for the "Ne
ground state band. '~ These results indicate that
the SU(3) model represents a judicious choice of
basis for a certain restricted class of nuclear
states. It is well known" that the SU(3) model and
an antisymmeA'ized form of the cluster model are
fully equivalent. For 'Ne, this form of the cluster
model yields a wave function of the form

where P, is an intrinsic oscillator wave function
for "O or n, taken as the lowest state of an
harmonic oscillator (same oscillator parameter
for n and "0), u~~„(x) is a wave function for the
relative motion of the o. "0 system [Ã and L-must
be chosen according to Eq. (2.1)), 4, is a
center of mass wave function, and 8 is an anti-
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P ~(a) = ka[F~'(ka)+ G~'(ka)] ',
y, '(a) = 8,'(a)v '(a) . (3.3)

In Eq. (3.3), E~ and G~ are regular and irregular
Coulomb wave functions and the single particle
Wigner limit y~'(a) =3k'/2pa', where p. is the re-
duced mass and a is the channel radius. " Quali-
tatively, a large value of 0~' =1 can be taken as
evidence to support a cluster interpretation of a
state. For instance, in Ref. 22, values 8~' = (&0.54),
0.89, 1.06, 0.79 are given for the 1, 3, 5, and
7 states of the K' = 0 band in "Ne, using Eqs.
(3.2) and (3.3) with a channel radius a =5 fm. This
band is thus a prime candidate for a cluster in-
terpretation. ""

It is important to see to what extent the simple
SU(3) or cluster models can account for the ob-
served n widths. Several extensive studies of this
question have been made. """'"Such analyses
are usually expressed in terms of a reduced width
amplitude 'JJ~(r) defined by

(3.4)

for the example of "Ne, where g~, is given by
Eq. (3.1) for the SU(3) or cluster model. The re-
duced width yz(a) is related to 'g~(r) evaluated at
the channel radius a

kg 1 /P

r g(s) = 'JJ~ (r)
2p,

(3.5)

The function 'JJ~(x) may be thought of roughly as
the radial wave function for the n cluster, except
that its over-all normalization is affected by the
presence of the antisymmetrizer 8 in Eq. (3.1).
We have

(3.6)

where S~ is a spectroscopic factor between 0 and
1. For a pure SU(3) representation, S~ can be
evaluated analytically"; we get S~ =0.23 and 0.344
for states of the [80] and [90] bands, respectively.

symmetrizer which enforces the requirements of
the Pauli principle. The cluster model wave
functions of Eq. (3.1) and the shell-model wave
functions have a very large degree of overlap for
the rotational bands under discussion here.

One of the signatures for the n-cluster structure
of a state is its n-decay width I'~. In the frame-
work of 8-matrix theory, we have"

(3.2)

where P~(a) is the penetrability and y~'(a) is the
reduced width given by

The naive cluster picture yields of course S~ =1.
Thus we see that antisymmetry is very important
for SU(3) wave functions. However, the fact that
S~ is small for SU(3) wave functions leads to pre-
dicted n widths which are also too small. " For
instance, values 0~'=0.1, 0.09, 0.07, and 0.04
were obtained in Ref, 22 for the 1, 3, 5, and
7 members, respectively, of the K' =0 band in
'ONe, treating this band as a pure SU(3) [4](90)
configuration. These are to be compared with
experimental values of the order of 0.8—1.0.
Thus, in Ref. 22, there is an order of magnitude
discrepancy between the SU(3) widths and experi-
ment.

Much of this width discrepancy disappears if
one employs a Bloch-Brink cluster mave function' "
of the type

(3.'I)

where g, (n, R„,v„) is an harmonic oscillator wave
function centered at A„with oscillator parameter
v» and P~0 is an angular momentum projection
operator. In general v„~ v~; for v~=v~, we have
R„=4/5R, R~ = —1/5R so that R„—R~ R==relative
separation of n and "O. With the wave function of
Eq. (3. '7), Horiuchi and Suzuki" obtain values
8~'=0.56 for the K'=0 band in "Ne, from a
factor 6 to more than an order of magnitude larger
than the SU(3) prediction, and in better agreement
with experiment. The reason for this relative
success is illustrated in Fig. 3, where we plot the
radial function r'g~(r) for the 1 member of the
band. The SU(3) wave function is seen to have a
considerable overlap with the nuclear interior,
i.e., the e cluster has a sizable probability of
sitting inside the core radius, and hence exchange
effects are very important. The Bloch-Brink wave
function, on the other hand, is fairly mell localized
outside the core radius, and hence the effect of
antisymmetrization is much less important. This
external localization is reflected in the value of
the spectroscopic factor S~ = 0.8, several times the
SU(3) value. For such a wave function, the naive
cluster picture, where one neglects exchange
terms altogether, can be taken more seriously.
In Fig. 3, we also show the wave function which
results from the cluster model described in Sec.
II. It is seen to bear a closer resemblance to the
Bloch-Brink form of the cluster model than to the
SU(3) model. As will be discussed presently, the
simplest cluster picture also gives n widths which
are in reasonable accord with experiment.

The essential reason why the Bloch-Brink wave
functions yield correct a widths can be seen quali-
tatively from Eq. (3.5). Since y~ involves only the
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radial wave function 'g~(x) sampled at one value
x =a, where a is usually chosen to be somewhat
larger than the nuclear radius, ""wave functions
which are localized at large r will produce larger
widths. This localization of the wave function in
the surface region is one natural (although by no

means unique) interpretation of the large observed
n widths.

The most complete study of the problem of n
widths in light nuclei is that of Arima and
Yoshida. ' These authors use a cluster wave
function of the form

(3.8)
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FIG. 3. Radial wave functions for the L"=1 state of
the K~ = 0 band in Ne. The function labeled SU(3)
corresponds to the reduced width amplitude rg&(r)
defined in Eq. (3.4), using the 1. 4](90) representation
of SU(3) for the composite wave function /&0 (Ref. 22).
The curve labeled BB represents the function r&ji (r)
calculated using the Bloch-Brink antisymmetrized
cluster wave function for tI)LO (Hefs. 9 and 22). The
curve FM corresponds to the radial wave function ur (r)
obtained in the unantisymmetrized cluster model. , using
the folding model Eq. (2.3) for the cluster potential.
Note that uL (r) is normalized to unity, while r'JJ& (r)
for curves SU(3) and BB is normal. ized to the spectro-
scopic factor SL of Eq. (3.6).

where y, ($) is the product of internal core and

cluster wave functions and &„~(r) is a radial wave
function for the cluster, generated as a solution
of the Schrodinger equation with a given single
pa, rticle potential V(x) of Woods-Saxon form

r —R
V(r) = —V, I + exp (3.9)

By changing the geometry of the potential, one
can clearly vary the single particle width l, p over
several orders of magnitude; the procedure used
in Ref. 19 is to keep the diffuseness a fixed at 0.5
fm and vary A and V, for each state in order to
fit the experimental energy and u width I'„'"" (for
continuum states). Note that I',

~ is multiplied by
the SU(3}spectroscopic factor S~ of Eq. (3.6) be-
fore comparing with 1 " . Arima and Yoshida"
conclude that one must make the radius 8 of the
potential smaller for higher spin states. This
conclusion has been disputed in Ref. 18, where a
single value of A and a is used for a single band,

V, still being allowed to vary for each state.
Several disadvantages of the R-matrix formal-

ism"" should be clear from the above discussion:
(a) A purely numerical fitting procedure may lead
one to draw unwarranted conclusions about the
geometry of the cluster potential.
(b) The reduced width depends only on the value of
'jj~(x) at r =a; it is thus quite sensitive to the
choice of the channel radius a, which is not known

a priori.
(c}Such an approach wouM have very little pre-
dictive power in situations where the energies and
widths are not yet known experimentally.

These considerations have provided some of the
motivation for a simplified cluster approach. Our
choice of Eq. (2.3) for the cluster potential repre-
sents a strong theoretical prejudice as to the ge-
ometry of the potential; via Eq. (2.3), the effective
radius and diffuseness of the cluster potential are
uniquely related to the radii and diffusenesses of
the cluster and core densities, about which we

have reliable information. " The strength constant

f of Eq. (2.3) could also in principle be estimated
from the known characteristics of the free space
nucleon-nucleon interaction, ""but such an esti-
mate would not be reliable for the calculation of
low energy properties. We allow f to be adjustable,
and find that a single value suffices to obtain close
to the correct energy splittings within a single
band. Thus we are not faced with ambiguities in
the choice of potential parameters. Also, we are
able to obtain the 0', widths of continuum states
directly from the calculated n-core phase shifts;
there is no need for the introduction of a channel
radius and its concomitant difficulties. Finally,
because of the simplicity of the model, we believe
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that it possesses some predictive power, unlike a
purely phenomenological approach.

We now give a summary of our results for
cluster states in ' 0 and "Ne, obtained using the
folded potential of Eq. (2.3). We consider a va-
riety of properties: (a) energy spectra; (b) n
widths; (c) rms radius of composite system and
mean o- core separation; (d) B(E2) values.

The calculated energy spectra are shown in
Figs. 4 and 5. In Fig. 4, the value of f = 1.425 fm
was chosen for the 0' band of ' 0, in order to
position correctly the 2' state; the energies of the
4' and 6' states then come out very close to ex-
periment, while the 0+ state is a bit low. The
position of the 8' state is not established experi-
mentally. The K'=0 band in "O is also shown
in Fig. 4. In this case, a value f =1.55 fm yields
essentially the correct 3 energy; except for the

state, the energy splittings within the band are
reproduced by a single value of f. The corres-
ponding spectra for the first K'=0' and 0 bands
of ' Ne are shown in Fig. 5. In this case, values
f=1.237 and 1.325 fm give approximately correct
absolute energies of the K'=0' and 0 bands, re-
spectively. The energy splittings in ' Ne are well

2?—

25—

reproduced by the model, except for the 8' state.
The theoretical states lie very close to an ideal
L(L+1) rotational spectrum, while the experi-
mental 8' state" "deviates strongly from this
rule. The occurrence of nearly perfect L(I +1)
spectra for bands with given values of 2N+ L,

seems to be a general and intriguing feature of
the results for folded potentials of the type de-
scribed here. This striking result seems to be
independent of the forms of the density functions
of the interacting nuclei, provided the implied
rms radii are correct. Other examples are dis-
cussed by Buck."

The o. widths predicted by the cluster model are
shown in Table II for '60 and Table III for ' Ne.
Since the widths are strongly dependent on energy,
we have made an additional fine tuning off for
each state in order to position the levels to within
a few keV of the experimental energy. The calcu-
lated widths I"'"can then be compared directly
with experimental values. Note that only &cry
small changes in f are required (a few percent)
in order to fit the experimental energies. Some
slight changes in the theoretical widths with re-
spect to preliminary values published in Ref. 13
are due to the much finer tuning of the states in
energy in the present work; the present values
replace the more approximate results of Ref. 13.
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FIG. 4. K~ = 0+ and 0 rotational bands in ~60. The
experimental energies are taken from Ref. 49. The
theoretical energies are obtained as the bound states
and resonances of the G. + ~~C folded potential of Eq.
(2.3). The depth parameter f=1.425 fm for the 0+ band
and f=1.55 fm for the 0 band, The arrow indicates
the position of the ++ C threshold in O. The widths
of continuum states are tabulated in Table II.

FIG. 5. Rotational bands with K"= 0+ and 0 in Ne.
Experimental energies are from Ref. 24. The theoreti-
cal spectra correspond to the folded potential of Eq.
(2.3) with f=1.237 fm for the ground state band and

f= 1.325 fm for the negative parity band. The arrow
indicates the &+ 0 threshold in Ne; the widths of
e -cluster states above threshold are displayed in
Table III.
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TABLE II. Calculated and experimental e widths for
i60

I "I' (keV) I'"" (keV) I (fm)

27
125

510
1200
700
750

E~=O+ band

17.5
238
385

E~ =0 band

675
1750

=2000
776

1.436
1.432
1.425

1.536
1.5575
1.539
1.668

Within a factor of 2 or so, the theoretical and
experimental widths are in essential agreement.
The theoretical widths I ""are obtained directly
from the calculated phase shifts as the energy
interval over which the phase shift changes from

n' to 3n/4; this prescription is valid for narrow
resonances or if the width function I'„(E) is not
rapidly energy dependent. As an example, we

plot in Fig. 6 the function sin26~ as a function of
energy for the L =1, 3, and 5 single particle res-
onances in the 0+"0scattering system, using
the folded potential of Eq (2.3).. Figure 6 shows
that the calculated phase shifts 6~ are very close
to 0 or n except in the immediate vicinity of the
resonance. That is, in most cases these reso-
nances can be very well fitted by a pure Breit-
Wigner form

I"i(E )(E„E)-" '"'=(E.-E)"tF.(E)/2)
(3.10)

without any background term. Only the I,=3 res-
onance requires a small background contribution.
In Eq. (3.10), E„ is the center of mass (c.m. ) res-

onance energy, E is the c.m. energy, and I ~(E)
is the width function. In obtaining the fits to the
calculated points in Fig. 6, we have used the form

1,(E)=1.(E.)(E/E.)'"" (3.11)

which includes the pentrability factor P~ of Eq.
(3.2) in an approximate way. The energy depen-
dence of the width I'~(E) enables us to reproduce
the asymmetry of the resonance shape without in-
troducing a background term, except for L=3.
As expected, I'~(E„) is nearly identical to the
width obtained by taking the energy interval over
which sin26~ changes from + 1 to -1 (6~ from ,'n-
to 3w/4).

If one naively calculates a spectroscopic factor
as the ratio of the experimental width I"""to the
single particle width I"""= I'~(E~), one might be
led to conclude that these states possess a greater
degree of cluster structure than suggested by the
SU(3) model. However, the calculated widths
would be very sensitive to the addition of an ima-
ginary part to the depth parameter f, so such a
conclusion is premature. Note than we do not
expect the imaginary part to be very large, since
there are no other open channels in "Ne beside
e+"0 in the energy range up to 12.85 MeV exci-
tation energy, where the "F+P channel opens up.
All of the states we consider, except the 7 and
9 members of the K =0 band, lie below the
"F+P threshold.

The calculated widths I"""are also in excellent
agreement with the values I ~~ listed in Table III,
calculated" using the Bloch-Brink form of the
cluster model. The values without parentheses
are obtained using the separation energy method
for attaching a proper exponential tail to an oscil-
lator wave function, while the values in paren-
theses are obtained via a Green's function meth-
od," This agreement with the Bloch-Brink model

TABLE III. Calculated and experimental e widths for Ne.

I'"~ (keV) I""'" (keV) f (fm) sU(3~ (keV) I-~~ (keV)

6+

8+
0.11
0.035

0,21
0.108

1.232
1.291

) 0.013

280

0.021

6.7

81.0

183.0

1.313

1.3274

1.339

1.345

0.0024
(0.0024)
0.8

(1,16)
9.3

(18.6)
14.2

(39.0)

0.0135
(0.0108)
5.0

(5.6)
74.5

(70.5)
198.0

(184.0)
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we display the total potential depth (nuclear +Cou-
lomb+centrifugal) for the 6' and 8' members of
the ground state band in "Ne. The folded potential
(solid line) is seen to give a somewhat higher and

0.6

0.2
0

-0.4.

0.4

0

—0.4.

0.4

wider barrier than Woods-Saxon potentials
which have also been adjusted to give the experi-
mental binding energies. This is mainly due to
the large effective diffuseness of the folded poten-
tial, as displayed in Fig. 2. As a consequence of
the larger barrier, the penetrabilities for the
folded potential are smaller than those for the
Woods-Saxon potentials"'" and hence, the cor-
responding single particle widths are also smaller.
Note, however, that the Woods-Saxon potentials"'
also give about the correct experimental e widths
I'„'"~ for the 6+ and 8' states, since the single
particle width is multiplied by the SU(3) spectro-
scopic factor S~ =0.23 of Eq. (3.6) before compar-
ing with experiment. For the folded potential, we

get a considerably smaller single particle width,
but since S~ = 1 for the simple cluster model (and
also close to 1 for antisymmetrized cluster
models'"), we identify the single particle width
directly with the experimental value.

—0.2
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I I
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0.4
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-0.6
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0.2
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FIG. 8. Radial wave function uz (x) for the K" = 0+

ground state band of Ne in the cluster model. For
each curve, the arrow corresponds to the rms ~-~60
separation p of Eq. {3.12). The bracket above each
curve gives the mid 50% of the probability distribution
for the 0 cluster; these brackets indicate the degree
of localization of the o'. cluster. The first five curves
correspond to e clusters having close to the experimen-
tal binding energies; we have f=1.2523, 1.237, 1.237,
1,2318, and 1.291 fm for the 0+, 2+, 4+, 6+, and 8',
respectively. The final curve for the 8+ state corre-
sponds to the spectrum shown in Fig. 5, for which f
=1.237 fm. The continuum wave functions for the 6+

and 8+ states are normalized to unity in a box of radius
7.5 fm.

-04—

-0.8
0 2 5 4 5 6 7

FIG. 9. Cluster model wave functions ul (x) for the
K = 0 band of Ne (9 state omitted). For each curve,
the arrow corresponds to the rms e-nucleus separation
p of Eq. (3.10) and the bracket gives the mid 50% of the
e-cluster probability. Each wave function corresponds
to a state at the observed energy: values f =1.313,
1.3274, 1.339, and 1.345 fm have been used to correctly
position the 1, 3, 5, and 7 states, respectively.
All wave functions are normalized in a box of radius
7.5 fm.
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TABLE IV. e-core separation p and rms radii for the
ground state band in Ne.

TABLE V. Electromagnetic transition rates for the
ground state band of Ne.

p (fm) p& (fm) p[~ (fm) p ~ (fm) (x )20
' (fm) Transition B(E2)„,p B(E2) B(E2)sM B(E2IRM

0+ 3.67
2 3.68
4 3.58
6+ 3.44
8 3.06

3.82
3.85
3.81
3.78
3.48

3.75
3.78
3.76
3.76
3.56

3.86
3.84
3.76
3.67
3.54

2.96
2.97
2.95
2.92
2.85

2+ ~0+
4+ ~2+
6+ 4+

8+ 6+

57.3
71.0
66.0
24.0

57.3
73.8
62.7
28.9

52.6
64.5
53.4
32.8

57.6
82.4
90.8
95.6

'All B(E2) values in units of e-fm'.

In Figs. 8 and 9, we show the radial wave func-
tions u„~(r) for the K"=0' and 0 bands of 2'Ne,

obtained using the folded potential of Eq. (2.3).
The rms separation p of the a cluster from the
"O core, defined by

p = 9 Q~~ A
0

(3.12)

is indicated by an arrow for each state. The radial
wave function u„~(r) is normalized so that
fu„~'(r)dz =1. A bracket is also given such that
the middle

50%%uo

probabili region for the cluster-
core separation is localized within the bracket,
25%%uo above the indicated region and 25%%uobelow. As
seen from Figs. 8 and 9, most of the e-cluster
probability is located well outside the calculated
rms radius of the "Ne composite system, shown
in Table IV. These wave functions are very simi-
lar to those of the Bloch-Brink cluster model'
a,nd hence, rather distinct from SU(3) wave func-
tions, which have a much greater overlap with the
nuclear interior. In view of these properties, it
seems that we are justified a posteriori in neglect-
ing exchange effects for this case.

The values of p for the various states of the "Ne
ground state band are shown in Table IV. The rms
radius(r')»'~'of the "Ne composite system com-
puted from

(3.13)

is also given for each of the states. To calculate
(r')„, we used (r')„=(2.'I5)' fm' and (r')
= (1.71)' fm', which correspond to the radii of the
densities used to generate the folded potential of
Eq. (2.3). In Table IV we also show the results of
a variety of other calculations of p: p( and p
are obtained from Refs. 18 and 19, respectively,
using Woods-Saxon potentials to generate the
n-cluster wave functions; p

' is obtained from
the Hartree-Fock calculations of Ref. 28. Several
features of Table IV are noteworthy: (a,) Even
though the e cluster is localized at the surface,
the folding model yields essentially the correct
value for the rms radius of "Ne; the theoretical
value of 2.96 fm agrees well with the empirical
value 2.9 fm given in Ref. 38. (b) All the theoreti-

cal models in Table IV predict an anticentrifugal
stretching effect, i.e., the higgle~ spin states cor-
responds to a louer value of p and hence, a smal-
ler rms radius. In the folding model, as in Ref.
18, this effect does not require a change in radius
of the potential itself; the folded potential has a
fixed geometry for all the states. The anticentri-
fugal stretching effect arises from a competition
between the increasing L value, which tends to in-
crease p and a decreasing number of nodes, which
favors a smaller p. Whether one gets centrifugal
stretching or anticentrifugal stretching thus de-
pends on the details of the potential. If we have
an oscillator potential, for instance, p would be
the same for each state within a. band (fixed value
of 2N+ L,). The effective diffuseness of the poten-
tial is clearly of relevance. For a very small
diffuseness, we would expect to get centrifugal
stretching (i.e., limit of a square well); for a
large effective diffuseness, as is the case for the
folded potential, we expect anticentrifugal stretch-
ing. Relative to the Woods-Saxon and the Hartree-
Fock models, the folded potential gives the largest
amount of anticentrifugal stretching.

As a final test of our model, we calculate the
electromagnetic transition rates between levels of
a rotational band. We treat these transitions in a
pure single particle model, for which the B(E2)
value for "Ne is given by

B(E2)= e,«'(uN ~—+, ~

r'~ u„~)'(I.+ 2, 020~ LO)'
16

(3.14)

for a transition L+2- L, where e,« is the effective
charge given by e„+ep, where e„=re and e~
= (I+a)e are neutron and proton effective charges.
The resulting values are tabulated in Table V. We
also give the experimental values B(E2),„,

""and
the results of other theoretical calculations in the
shell model [B(E2)SM] and the simple rotational
model [B(E2)R„]." Several remarks are in order:
With only a small adjustment of the effective
charge e,« ——1.245e or e =0.123, the folding model
yields values B(E2) rather close to the results
B(E2)~u of the complete shell-model calculation"
which used e,« =1.583e. In particular, the cluster
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TABLE VI. Predicted transition rates for the first
%~=0 band in Ne and the first K~=0+ and 0 bands
in "O.

Transition B(E2) (e2 fm4) B(E2) (E2)exp

3 —1
5 3
7 5

100.3
103.5
84.0

20Xe

76.9, 143.0

2+ ~0+
4+ -2'
6 4+

8+ ~6+

3 1
5 3
7 5

66.8
89.1
91.1
52.9

152.6
97.5
76.77

30
32
21
22

23
17

67
116+15

References 53 and 59.
b e ff=e,' See Ref. 16. e,ff =2.166e.

e,ff = 1.246e.
See Ref. 59. ecff 2e.

model produces the trend of B(E2) values, i.e. , the
4' -2' transition is strongest and the 8'-6' weak-
est. Note that the rotational model B(E2)RM pre-
dicts that the 8' - 6' transition is the strongest,
in disagreement with the data. Thus although the
cluster model gives close to an L(L+1) rotational
energy spectrum, the B(E2) values a.re far from
the rotational limit.

The predicted B(E2) values for the K" =0 band
in "Ne are shown in Table VI, as well as the
values for the first K' =0' and 0 bands in "O.
For the negative parity states in Table VI, the
bare charge was used in the folding calculations,
due to the absence of experimental data. For "Ne,
we compare with some results of Arima ei al."
for the 3 -1 transition, which use two different
residual interactions in the shell-model calculation
and e„-,=2.166e. For the positive parity states in
"0, we have used the same effective charge e,ff
=1.246e (e =0.123) as was used in Table V to fit
the 2"-O' B(E2) value in "Ne; the resultant
agreement with the experimental values"'" in ' 0
is remarkable. This agreement is particularly
noteworthy since only a small renormalization of
the effective charge is required. On the other
hand, the shell-model B(E2) values" for the first
K" = 0' band in "O are consistently too small by
more than a factor of 2, even with a much larger
effective charge. This difference is traceable to
the greater degree of surface localization for the
cluster wave functions as compared to shell-model
wave functions. Such localization enhances both
the B(E2) values and the o. widths with respect to

shell-model or SU(3) predictions, and brings the
results into agreement with experiment. Note that
the shell-model wave functions" for the first K"
=0' band in "O are predominantly of four particle-
four hole character, consistent with our cluster
model assignment of 2N+L=8, but the shell model
in a restricted basis of states does not seem to
develop enough correlations in the nuclear surface.

For the transitions between the members of the
K" =0 band in "0 (see Table VI), the cluster
model predicts B(E2) values which differ from
shell-model predictions" by more than an order
of magnitude if the same effective charge is em-
ployed. However, the shell-model 1, 3, 5,
and 7 states in "0 are mostly three particle-
three hole in nature, "and hence, would corres-
pond to the 2N+L=7 cluster band. We have in-
stead identified the 1, 3, 5, and 7 states in
"O with the 2K+ L=9 cluster band. Here we fol-
low an argument of Arima and Yoshida, "who
point out that in a weak coupling picture, the first
K' =0 band in ' 0 should be analogous to the first
K'=0 band in "Ne, i.e., 2N+L=9. Of course,
since the shell-model calculation "does not in-
clude the 2P lf shell, -no states corresponding
to 2N+L=9 can be obtained. Experimental
measurements of the electromagnetic transition
rates in the K' = 0 bands of "0 and "Ne would
be extremely valuable in determining the nature
of these states. Since all the negative parity
states in Table VI, as well as the 6' and 8' mem-
bers of the ground state band in "Ne, are above
the e-emission threshold, experimental measure-
ments are very difficult; only for the 8'-6' does
a measurement exist." In the cluster calculation,
we have used a box normalization for the continuum
states. The calculated transition rates depend only
rather weakly on the cutoff ~, if R is chosen with-
in reasonable limits. For the 6' and 8' states in
"Ne, we users =7.5 fm. For the K'=0 band in ' Ne
and the two bands in "0, we use R =8 fm. The 9
state lies high in the continuum, and has a large
width, so we have omitted it from our study.

Let us now briefly summarize the results of
our study of n -cluster states in "O and "Ne:

(a,) The folded potential Eq. (2.3) produces a
spectrum with essentially the correct level order
and energy spacing, utilizing a single value of the
depth parameter f per band.

(b) The calculated o. widths are in reasonable
agreement with experiment.

(c) The o. -cluster wave functions are fairly well
localized outside the "0 core; in spite of this,
the "Ne composite system has the correct rms
radius.

(d) The absolute values and trends of the electro-
magnetic transition rates for the ground state
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TABLE VII. Possible high-spin states in 5N seen in
three particle transfer reactions.

TABLE VIII. Cluster model states for 5N and 50.

~„, (MeV)

5.27

7.56

9.87

10.78

13.15

15.72

E, (MeV)

-9.58

-7.29

-4.98

-4.07

—1.70

+0.87

5'
2

+
2

7 (-)
2

(-,")
11
2

(13+)
2

2 N+ L = 3 band

2N+I =4 band

(~ )
2 2

(—,
' )(-', )

1+
2

g+ 5+
2 2

+ (g+)

2N+L= 5 band

band of "Ne and the band based on the 6.06 MeV
0' state in "0are in good agreement with experi-
ment, using only a small renormalization of the
effective charge.

For the well-known case of "Ne, there seems
to be no glaring discrepancy between the predic-
tions of the simple cluster model and experimen-
tal data. We are hence encouraged to try out the
model in situations where the energies and spins
of possible cluster states are not established. As
an example of the use of the folding model as a
predictive tool, we consider such a case in the
next section.

IV. THREE PARTICLE CLUSTER STATES

Recently, a variety of three particle transfer
reactions have been studied experimentally. """
These reactions exhibit strong selectivity, in ad-
dition to the selectivity which arises from L trans-
fer and Q-value dependence. The data seem to be
consistent with a direct three nucleon transfer
mechanism. Under conditions of large momentum
mismatch, the kinematical selection rules of
Brink' suggest the preferential population of high-
spin states. " For example, in reactions such as
('Li, 'He), ('Li, o. ), and ("B,'Be) on a "C tar-
get ' ~ certain states in ' N are strongly popu-
lated in all cases. Such states are candidates for
a triton cluster interpretation; the analog states
in the "0system would correspond to a 'He cluster
plus a "C core. The states in question are listed
in Table VII. The energies E„,, and E, are, re-
spectively, the excitation energy in "N and the
energy above the t+ "C threshold. The spins of
the ~ and, ' states are based on the Brink se-
lection rules; the, state is also seen in two
particle transfer. ' '*" The suggested++ state
coincides very closely in energy with a well es-
tablished —', state seen in the "C('He, Py)"N re
action. " We would not expect to observe a high-
spin state such as a ~~' in the latter reaction, how-
ever.

2N+L, =6 band

5 7
2 2

8 11
2 2

1+
2

+ 5 +

2 2

7+ 9+
2 2

11+ 13+
2 2

In the context of the simple cluster model, we
interpret the states in Table VII in terms of a
triton cluster in a certain orbit characterized by

principal quantum number N and orbital qua, ntum
number L with respect to an inert "C core. The
four bands we will consider are listed in Table
VIII. These bands correspond to the various ways
of distributing three particles in the 1P or 2s-1d
shells, i.e. , 2N+ L=3 corresponds to putting all
three particles in the 1P shell; 2K+ L =4 corres-
ponds to two 1P particles and one 1s-2d particle,
etc. In terms of the usual shell model based on
a,n "0core, 2N+ L =3, 4, 5, 6 bands correspond to
one hole (h), zero particle (p), 2h-lp, Sh-2p, and
4h-3p configurations, respectively. The states
enclosed in parentheses in Table VIII are expli-
citly excluded by the Pauli principle. For the
2N+L=3 band, only the —,

' state survives, which
would be identified with the "N ground state. Of

course there is no reason to expect that the cluster
picture is correct for such low-lying low-spin
states. In particular, the cluster representation
for the "N ground state probably has very little
overlap with the true ground state. For such
deeply bound states, the effect of the Pauli prin-
ciple will be very important. Hence we concentrate
most of our attention on the high-spin states in the
2N+ L = 5 and 6 bands; it is some of these states
that we will try to identify with the high-spin states
in Table VII.
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A few words of caution are in order before we
proceed. It should be noted that the sante states
in the residual nucleus are not populated with the
same relative intensities in different reactions in
which a given cluster is transferred, fbr example,
('Li, n), ("B,'Be), ("F,"0), and (o., P). This is
to be expected, since the detailed dynamics of the
transfer is different in each case; thus one should
supplement the simple considerations given here
by the appropriate distorted wave Born approxi-
mation calculation of the transfer cross sections,
assuming that the three particles are transferred
as a cluster. " Such detailed calculations of three
and four particle transfer will be presented in a
subsequent article. " We note that the overall
spectroscopic factor for a transfer reaction
A+B- (A —m)+ (B+m) does not factorize in gene-
ral into a term depending only one and A —m and
another term which depends only on B and B+m.4'

Hence, the relative population of states in'm par-
ticle transfer must be determined by a detailed
dynamical calculation; it cannot be reliably pre-
dicted by kinematical conditions alone. In a re-
action calculation, one can also ask in what state

of orbital symmetry the transferred particles
find themselves. In the (n, P), ('Li, o), and
("F,"0) reactions, the three transferred particles
have the orbital symmetry [3], i.e. , the same as
the triton. However, for the ("B,'Be) reaction,
the three particles can be transferred in a [21]
orbital symmetry as well as the fully symmetric
[3] configuration. Hence the interpretation of
such results in terms of a simple "triton" transfer
must be viewed with caution.

We have previously noted the considerable over-
lap between the shell model and the antisymme-
trized cluster model. It is perhaps also worth-
while to note the nonuniqueness of a cluster de-
scription; for "N, one could propose t+ "C,
e+"B, d+' C cluster representations, among
others. These different models differ somewhat
in the spins they predict and the number of states,
In cases where the high-spin states are not well
established experimentally, it is difficult to choose
between models on this basis. Also, some of the
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FIG. 10. Dependence of the 3H+ C cluster state
energies in 5N on the depth parameter f of the folded
potential of Eq. (2.3). The energy is given with respect
to the 3H+ C threshold at 14.85 MeV in N. The orbits
shown are the 4 = L +
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FIG, 11. Dependence of the ~H+ C cluster state ener-
gies in N on the strength V3p of the spin-orbit potential,
for a fixed value f= 1.3 fm of the depth parameter. The
energy is given with respect to the H+ C threshold in
5N. The states shown are members of the 2N +L = 5

cluster band.
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same high-spin states are strongly excited in dif-
ferent cluster transfer reactions, for example,
~~B(7Li, t)"N and "C('Li, n)"N boN strongly ex-
cite4' the 10.8, 13.2, and 15.7 MeV states of
Table VII. Such results indicate a high degree of
overlap between alternate cluster descriptions.
Note also that cluster models of the type discussed
here always predict a maximum spin for a band
with a given value of 2N+ I . This maximum spin
is j,„=2N+L for a clusters and j,„„=2N+L+-,' for
'He or 'H clusters. If a state of higher spin than

j,„,„is seen experimentally, the simple cluster
model clearly cannot be valid for this state; an
example would be a 10' member of the ground
state rotational band of ' Ne. Both the shell model
and the cluster model will accommodate spins
higher than the maximum, provided core excita-
tions are allowed. However, in the various ro-
tatj, onal bands of ' C, ' 0, and Ne, no state has
yet been observed which has a spin higher than
the cutoff implied by the n-cluster model built
on an unexcited "0core. If we take this predic-
tion literally for t or 'He clusters in "N, a maxi-
mum spin of P' is indicated (unless we start to
drop particles in the 1f 2P shell-). This is the
same as the maximum spin attainable in the shell
model from the configuration [(d,&,),+8 d, &,]»&„
if the "C remains inert.

Now let us consider the results of our numerical
calculations for the states of '5N, vjewed as ~ +' C
cluster states, with special emphasis on the
2N+L=5 and 6 bands of Table VIII. Bound state
energies corresponding to the folded potential of
Eqs. (2.2)—(2.4) have been computed using a ver-
sion of the code ABACUS. 4' Trajectories of the
various bound states as a function of the well
depth parameter f are displayed in Fig. 10, for
a value V„, =0.05 of the spin-orbit strength. In
Fig. 11, we show the dependence of the 2K+ L=5
bound state energies on V„, for a fixed central
depth f =1.3 fm.

For the 2K+ I.=5 band, we have adjusted f and

V,„ to obtain the correct absolute energy and en-
ergy splitting for the '~' and ~ states in Table
VII. The resulting cluster spectrum is shown
as the second column in Fig. 12. As a bonus,
the —,

' and —,
' cluster states show up in a region

where such states are seen experimentally.
Kinematically, such low-spin states would not
show up clearly in high energy heavy ion trans-
fer. ' However, in the lower energy (30 MeV)
('Li, 'He) data of Bassani et al. 39 and Chuev et al."
there is a moderate peak at 9.2 MeV in "N which
could be identified with the~ cluster state (and
with the + state at —5.7 MeV in column 1 of Fig.
10). The analog in "0 is probably the 8.93 MeV
state. " Also in Refs. 39 and 40 there are small
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FIG. 12. Some theoretical spectra for H+ C cluster
states in 5N, corresponding to the 2N+L =5 band. Ex-
perimental. ly observed negative parity states in the en-
ergy region of interest are also shown (Ref. 49) in the
column labeled Exper. The upper two states correspond
to states of unknown spin and parity seen relatively
strongly in the ' C( B, Be) N reaction (Ref. 1). The
second column corresponds to a choice of f and V„

11-which reproduces the experimental
&

energy and also
the

&
-& energy difference. For this choice, the

&

state l.ies at 12.7 MeV in the continuum. The last two
columns are the theoretical spectra obtained if one
neglects the spin-orbit potential. .

peaks seen at 11.4 MeV in "N and 11.2 MeV in "O
which could possibly correspond to the+ cluster
states.

In columns 3 and 4 of Fig. 12, we show typical
spectra obtained without a cluster spin-orbit po-
tential. In column 3, f is adjusted to give~~ and

states in the energy range of observed states.
In this case, the~~ and~ states lie much too
high in energy, about 7-8 MeV above the observed
energies. In column 4, f is chosen to position the

state at the experimental energy; in this case
the+ and —,

' states lie within a few MeV of the
ground state. In this region, there are no candi-
dates for identification with cluster states. In
either case, the cluster model without spin-orbit
coupling yields a spectrum which is too spread
out in energy, and hence, one runs into obvious
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inconsistencies with the experimental data. Qf
course, as discussed in detail for the "Ne case,
the energy splittings depend strongly on the geo-
metry of the potential. However, in the present
case, we regard the geometry as fixed by our
knowledge of nuclear densities. Hence, the level
compression which we need in order to make a
meaningful comparison with experiment is most
naturally provided by the spin-orbit potential. The
value V„,=0.05 which we obtain here is comparable
to what one might naively expect on the basis of
the proton-nucleus spin-orbit potential, scaled
down by the number of particles in the cluster.
Thus, we feel that the experimental spectra ob-
served in three nucleon reactions"'9 ", if they
are interpretable in terms of the cluster' model,
suggest the existence of a cluster ('He or 'H)
spin-orbit potential.

The presence of a spin-orbit potential pushes
the~2 cluster state in Fig. 12 to a very high en-
ergy in the continuum, so it should not be seen in
the three particle transfer reaction. Indeed, it
is very significant that the (nnP) transfer reaction'
populates only the ~2 state at 13.15 MeV in "N
and not the ~2 state at 11.94 MeV, although both
states are seen strongly in two particle (nP) trans-
fer on a "C target. ' 4 It was precisely this type
of observation that led to the ~2 and ~2' assign-
ments for the 12.89 and 15.36 MeV states, re-
spectively, seen in the "C("C, 'Be)"0 reaction at
114 MeV. ' The analog of the 12.89 MeV state lies
at 13.15 MeV in "N and is strongly populated in
(nP) transfer. However, (nP) transfer on "C
could not populate the [(d,&, ) „C3 d, &,]»&„state,
since one particle is in the 1P,&, shell in the "C
target. Assuming the (nP) pair to be transferred
as (d, &,)'„, the spectator 1P,&, particle of "C can
couple to give ~2 or ~2 states, as observed. On
the other hand, when three particles are trans-
ferred [(nnP) or (nPP)], the cluster picture sug-
gests maximum angular momentum transfer con-
sistent with the assigned shell-model orbitals,
i.e., [(Id,),)'„Im IP, g, ] „), and [(1d,~,)'„
Is 1d, &,]»&,+. Thus both (nP) and (nnp) transfer
each give two strong peaks, but only one (~2 ) in
common.

To develop this line of reasoning further, we
need to understand why the configuration
[(1d,&,)',+ 1P,&,]»&, is likely to have large over-
lap with a triton cluster wave function and why

[(Id,~,)'„ 1P,~,],/, does not. In the I. Svector-
coupling picture, the~ state corresponds to
I =5, S = ~, which is suitable for a triton cluster.
The+ state, on the other hand, arises from I.=3,
S = —,'. Since S = —,

' is ruled out for a triton cluster,
the [(1d,&,)',+ S IP, &,],&, configuration, corres-
ponding to the ~2 state at 11.94 MeV in "N, should
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FIG. 13. Spectra for H+ C cluster states in ' N,
corresponding to the 2++ L = 6 band. Experimentally
observed positive parity states in the relevant energy
region are also shown (Ref. 49). The highest two
states, of unknown spin and parity, are seen fairly
strongly in the C( B, Be) N reaction (Ref. 1), so we
include them here. We have omitted the seven lowest

5+ (+ 5+ 3+ 7+ g+ 3+positive parity states in N (2, 2, 2, 2, 2, &, 2 )
since these states are thought to correspond to the
various couplings of two 1p ~g2 particles and one 2s&/2
or 1d5y2 particle in the shell model (Ref, 51); they
would hence have greater overlap with the 2N +L =4
band than with the 2' +L = 6 band. The second column
corresponds to a choice of f and V» which fits the
absolute energy of the assumed 2 and 2 states.g+ g+

Typical spectra obtained without a spin-orbit potential
are shown in the last two columns.

have negligible overlap with the ~2 cluster state.
We suggest instead that the [(Id, &,)'„r,
S IP, &,],&, configuration has strong overlap with
the~2 cluster state. Such a state would lie higher
in energy and be very weakly excited in (nP) trans-
fer; indeed, there is no experimental evidence for
T =1 (nP) transfer. Finally, we observe that the
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configuration (Id, ~2)'4+ r, is seen as a prominent
peak in the (nn) or (PP) transfer on "C, leading
to ' C or "O."'" The analog of this configuration
in ' N lies much higher in energy than the well-
known (1d,&,)',+ r o configuration. This lends
support to the suggestion that the main configura-
tion corresponding to the, triton cluster state is
[(Id,&,)',+ r, c83 11,&,],~, . In conclusion, we re-
gard the fact that the+ state at 11.94 MeV is not
observed in (nnP) transfer on "C as one of the
strongest supports for the whole idea of triton
clusters,

Typical spectra for the 2N+L=6 band in "N are
shown in Fig. 13, together with experimentally
observed positive parity states in the appropriate
energy region. ' In column 2 of Fig. 13, we show
a spectrum obtained by adjusting V„and f to pro-
duce the correct absolute energy and splitting for
the + and, ' members of the band, assuming
these states are to be identified with strong peaks
seen in the "C("B,'Be)"N reaction' at 10.8 and
15.7 MeV, respectively. A spin-orbit strength
V„=0.05 was required, which is the same value
needed for the 2N+ I, =5 band (see Fig. 12). In
this case, the —,", —,", and —,

"members of the band
also lie in an energy region where a number of
states of the same spin and parity are found. How-

ever, for these relatively low-spin states, we do
not expect the cluster strength to reside in only
one experimental state. Hence, we do not pursue
any more detailed attempt at identifying experi-
mental and theoretical states. In columns 3 and 4
of Fig. 13, we show two spectra obtained without
a spin-orbit potential. As for the 2N+L=5 band,
the theoretical spectrum is then far too spread
out in energy; in particular the +'-+' splitting is
about 3 MeV too large. So we conclude again that
a spin-orbit potential is necessary if we are to
exhibit a sensible correspondence of existing data
and theory.

The shell-model [(d,&,)'„Sd, &,]»~„state lies
in the region of 13-15 MeV, and presumably has

strong overlap with the cluster model. The &'

shell-model state lies several MeV lower in en-
ergy and is a, mixture of the (Id, &,)',&,+ and

[(1d,&,)'2s, &,],&„ configurations"; hence, it
could easily have a significant overlap with our
postulated 2N+ L = 6 triton structure. It should
be noted that a well established" spin —,

' state lies
at practically the same energy (10.8 MeV) as our
suggested+' cluster state. However, it is kine-
matically very unlikely that a —,

' state would be
strongly excited in heavy ion transfer reactions
at high energies, for example "C("B,'Be)"N at
100 MeV' or "C("C,'Be)"0 at 114 MeV. ' On the
other hand, a high-spin state such as+ would not
have been seen in the "C('He, jy)"N reaction, "
which was used to establish the —,

' state.
To summarize, we believe that the cluster model

for "N is sensible for the~2 and ~2 members of
the 2N+ L = 5 band and the + and ~' states in the
2N+ L = 6 band. The model also predicts states
of lower spin which are not in conflict with the
observed spectrum. The spin assignments for
these high-spin states are consistent with those
based on purely kinemaNca-l —considerations. ' The
depth parameter f of the folded cluster potential
is consistent with that required for the discussion
of o, cluster states in Sec. III. In addition, our
considerations suggest a cluster spin-orbit poten-
tial of the correct sign and magnitude, roughly
consistent with that used for the description of the
elastic scattering and polarization of tritons by
nuclei, " On the whole, our interpretation of clus-
ter states in "N is far less detailed and convinc-
ing than for the n-cluster states in "0 and "Ne.
One would expect that triton clusters are not as
stable as n clusters under the influence of residual
interactions. However, our model does predict
large spectroscopic factors for triton cluster
transfer to a certain restricted class of nuclear
states. Detailed reaction theory calculations are
required to test this hypothesis. Such calculations
will be presented in a subsequent paper. ~'
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