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The problem of the Coulomb corrections to inelastic electron scattering cross sections is
treated in the distorted wave Born approximation (DWBA) using electron wave functions
evaluated in the second Born approximation. The formalism is developed for magnetic mul-
tipole transitions in a manner analogous to the method devel. oped by Cutler for Coul. omb
transitions, in which the nuclear and electron physics are represented by separate factors
in the integrand of a double integral expression for the cross section. Since the nuclear
factor turns out to be simply the inelastic form factor in the first Born approximation, the
usual problem of having to specify the transition current density is avoided. The Coulomb
correction is considered in detail. for M1 transitions, and numerical comparison with "exact"
DWBA results is presented,

NUCLEAR REACTIONS Coulomb corrections to MA inelastic electron
scattering. Calculated in DWBA using 2nd BA wave functions ~

I. INTRODUCTION

Inelastic electron scattering is a well established
method for obtaining spectroscopic data on nuclear
states, as well. as providing information on the
distribution of the various transition currents
and charge densities in the nucleus. The gradual
improvement of experimental and theoretical tech-
niques in recent years has resulted in demands
for data of increasing accuracy. To the experi-
mentalist, this has meant a more diligent under-
standing and careful. application of the many cor-
rections he must usually apply in the process of
reducing his data to a form presentable for theo-
retical interpretation. For exampl. e, considera-
tion must be given to the distortion effects of the
electron wave functions by the Coulomb field of
the nucleus, since the Coul. omb distortion can re-
sult in cross sections which deviate appreciably
from those calculated using the 'first Born approx-
imation, where the electron wave functions are
treated as Dirac plane waves.

The "exact" calculation of the Coulomb distor-
tion effects in inelastic scattering requires a nu-
merical solution of the Dirac equation and such a
program, based on a distorted wave Born approxi-
mation (DWBA), was initiated by Griffy et al. ,

'
first for nuclear Coulomb excitation, and later
with the inclusion of transverse interactions. '
The first phase-shift analysis to incorporate
magnetization terms in the excitation process
was apparently developed by Drechsel, ' and more
recently Chertok, Johnson, and Sakar" have
evaluated the Coulomb corrections for M1 and
M2 excitations. To date, a variety of distorted

partial-wave computer codes are avaiLable (e.g. ,
GBHOW, DUELS, HEINEL ) for computing the elec-
troexcitation cross sections.

In all. these codes, the interaction is mediated
by a single virtual photon, while the electron wave
functions are solutions of the Dirac equation in the
static Coulomb field of the nucleus. One analysis
procedure often empl. oyed is to describe the tran-
sition density in the DWBA code by some useful
model (for example the liquid-drop model of Ta,s-
sie'), calculate the Coulomb correction factors

(du/dO)„. .„,,
(do/dQ)„. , ~„,„'

and reduce the physical. cross section to a. Born ap-
proximation cross section, then reevaluate the
transition density parameters and recalculate f, .
After iterating in this manner, one obtains the
Tassie parameters and a, set of f, factors which
can be used to present the data as Born approxi-
mation data. This is convenient for comparison
with theoretical cross sections since the latter
are usually calculated in the first Born approxi-
mation.

The above procedure is not model independent
in the sense that the transition charge, current,
and magnetization densities must be specified.
Drechsel' has investigated the dependence of the
Coulomb correction factors on the distribution of
the transition magnetization and current densities
for M1 electroexcitation, and finds that those den-
sities which give the same Born approximation
cross sections give the same correction factors,
for a given ground state charge distribution.

An alternate procedure, also based on DWBA,
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has been formulated by Cutler. ' The interaction
matrix element between nuclear states J,. M, and

J~Mf and electron states 4'; and 4'f, can be writ-
ten'

Hf, (4y—aM~i d'vd'r'[p(r)Gp(r')

—J(r) Gj (r')] i JM, 4, )
(2)

in which p(r), J(r), p(r'), and j(r') are, respec-
tively, the nuclear and electron charge and cu-
rent operators, and G is the free space Green's
function for the nuclear Coul. omb field:

ef QJR

G=-

zq ~ R

G= 6'2, q „q (4)

where R = r —r' and ~ corresponds to the energy
exchange. Rather than expanding G in a multipole
series as is done in the usual partial-wave analy-
sis, Cutler in effect introduces the Fourier trans-
form of the Green's function

in the expression for Pz. Further, the Pz equa-
tions are simple enough that they may be computed
on the small digital computers available in most
laboratories. A disadvantage of the approximation
described by Eq. (5) is that it is not valid near the
diffraction minima; one must consider terms of
order (o.Z) and higher in the cross section in or-
der to fill in the Born zeros. The reliability of
the approximation of course decreases with in-
creasing Z nuclei. Nevertheless, it could be use-
ful, for example, for correcting the low-momen-
tum transfer data used for extracting radiative
widths of transitions to the ground state.

In the present work, we have derived the second
Born expressions for fc for magnetic transitions,
with particular emphasis on M1. The procedure
is similar to Cutler's, except here the excitation
mechanism is completely transverse. The main
results we obtain are a relation for P„z, expressed
as a two dimensional integral, and an approximate
version of P» which involves a one dimensional in-
tegration. Numerical evaluations of the Coulomb
correction factors are compared with DWBA
phase-shift results.

into Eq. (2), which permits a complete separation
of the coordinates of the electron and nucl. eus.
After some manipulation, the matrix element
Eq. (2) can then be expressed as a q integral
over the product of the usual Born approxima-
tion inelastic form factor and a term which con-
tains the electron physics. Although the electron
matrix element could in principle be evaluated ex-
actly by solving the Dirac equation, the formalism
readily lends itself to various approximating pro-
cedures. For example, Cutler calculated the elec-
tron wave functions analytical. ly in the second Born
approximation, including the effects of the nuclear
charge distribution. The resulting electroexcita-
tion cross sections were thus consistently formu-
lated through terms of order (o.Z)' and can be ex-
pressed as

II. SEPARATION OF THE ELECTRON AND NUCLEAR
PHYSICS

We wish to develop the DWBA matrix element
Eq. (2) into a. form in which the nuclear dynamics
are expressed by multipole transition matrix ele-
ments. In fact, as we shall see, all the nuclear
physics in Hf; ean be represented by a term which
turns out to be the usual electroexcitation form
fac tor in the fir st Born approximation.

We begin by dropping the charge density terms
in Iif, , since only transverse excitations are be-
ing considered. The electron current operator is
given by

where

j(r') = e5(r'- r, ) (7)

where fc =1+o.ZPq and Pq is independent of Z.
Cutler calculated the correction factors Pz for

longitudinal electric transitions, specifically CO,

C1, and C2 by using specific analytic forms for
the elastic and inelastic form factors.

One attractive feature of this approach is that
no models are required for the ground state charge
distribution or the transition densities. An itera-
tive procedure can be used in which the experi-
mental form factors (elastic and inelastic) are in-
serted as a first estimate to the Born form factors

and n is the usual Dirac matrix. Introducing
Eq. (6) and the Fourier representation of the
Green's function, Eq. (4), into Eq. (2), one ob-
tains

d x'e 'q' j r' 4,.J,.AI,. (8)

1
Hf '

2 4fClfMf, d'r e' ' n J(r)
2lr 2 —(d
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The nuclear current operator J(r) can be decom-
posed into components transverse and parallel to
q, and by appl. ication of the continuity equation,

J„(r) can be absorbed into the longitudinal inter-
action. For the transverse interactions, there-

fore, we have

(9)

Following Willey, ' we perform a multipole decom-

position

a r'" '= —4«g 4 (-1)» —,[a qxY" » (q)] [qxj»(qr)Y»", (r)] + [a Y" (q)j[j»(qr)Y «(r)]I
X. Xz

and introduce the nuclear electric and magnetic
multipole operators'

Y»l (4) f «('rqx[j»(qr)Y»«(r)j 4(r),

Y«, (q)= f '4 r](»4)r Y", „(r) &(r),

wave functions qf,. and 4&, Eq. (15) would yield a
6 function connecting the initial and final electron
momenta with q. The q integration in Eq. (14)
can then be accomplished with the 6 function, and
we retrieve the usual first Born approximation for
IIf,

The nuclear matrix element can be reduced by
the Wigner-Eckart theorem:

where

Y",(r) = g (4].mlm'~wp)1'z (r)e
mm'

(12)

(JjMy~ Tg „(q) ~ J;M, )= (- 1) s "f
(-M~ -]]. M,.

x«&ll Tf(q) II J;) . (16)
are the vector spherical harmonics. For a tran-
sition of multipolarity A., Eqs. (S)-(11)give

(f 'r e'(' (]. ~ J(r)

=-4«g «'(-()'I —,[a axY" (q)j Y; „(4)

At this point it is convenient to introduce the in-
elastic M]j. form factor E),(q). We define Eq(q)
such that the inelastic cross section in the first
Born approximation is given by

(17)

r [a ' Y'„,(4) ] Y» - (4)I .

(13)

where

Z(]. 'cos'( —,'8) 1
2E sin'(-,'O) q

'

We are not concerned with EA. transitions and so
drop the electric multipole contribution from Eq.
(13). On combining Eqs. (7), (8), and (13), one
gets

x(JqMf] Z'~ „(q) [ J,.M, ),
(14)

q = 1+—sin (—,9),2E

and q„' is the square of the four-momentum trans-
fer, 0 is the scattering angle, E is the incident
energy, M is the nuclear mass, and n is the fine
structure constant. Our units are such that k= c
=1 and n =e'. The relation between the reduced
matrix el.ement and the form factor is, therefore,

where
4

(18)

X ~ (q) = d'r, 4'z o(e '~ 'a%',. (15)

and m', m refer to the final. and initial spin direc-
tions of the electron. All the electron physics is
now isolated in the I ~ term, while the nuclear
physics is contained in the Born approximation
multipol. e matrix element.

If we use Dirac plane waves for the electron

Since we are dealing with discrete transitions,
E),(q) may be taken to be real. 'o

The cross section requires
~ Hz; ~' averaged over

incident electron and nuclear spin directions, and
summed over final spin directions. With the defin-
itions given by Eqs. (16) and (18) substituted into
Eq. (14), a.nd application of the usual closure rela, -
tion for 3-j symbols, we fi.nd the nuclear spin
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average

Z 2 2 0 d3 r d3 I .F&(q')F&(q) P [Y'„,(q') X„(q')]"[Y,"„(q) X. „(q)] . (19)
M. Mf

This is as far as we can go without specifying
the electron wave functions. In the fol. lowing sec-
tions, the exact wave functions will be replaced
by wave functions evaluated in the second Born
approximation.

III, ELECTRON WAVE FUNCTIONS IN THE SECOND

BORN APPROXIMATION

The derivation given here of the second Born
wave functions is similar to Cutler's treatment'
(see also Ref. 8) and so will be brief. For a more
complete discussion, we refer the reader to the
preceding references.

The Dirac equation for an electron moving in the
external electromagnetic field A" (r) is"

where

for the initial. state

0,.(r) = g,. (r) + (E,. —i n & + Pm)

3y &gk (r - r')
x d'r', , e&P(r')4,.(r'),

2F p —k +'Le

(23)

where Q(r') is the static Coulomb potential of the
nucleus. This potential may be expressed in terms
of the (spherical) nuclear charge density p(r) by

/I

eP(r') = —Zo. d'r", , „~ e
[
r'- r" (24)

in which a convergence factor has been introduced
to suppress the singularity arising from the infinite
range of the Coulomb interaction. At the end of
the calculation we take the limit A. - 0. The poten-
tial can be put in a more convenient form by em-
ploying the definition of the elastic scattering form
factor F(q) in the first Born approximation. We
have

the Dirac matrices are y" = (P, Pn), and the Feyn-
man slash notation is used: F(q) = d'r"p(r")e"' (25)

A(r) =y"A„(r) =y'A'(r) —y A(r) . or, if we invert the Fourier transforms

The Dirac equation may be written in integral
fol m

]p(r" )=, d'q F(q)e
(2m)' „ (26)

4 (r) = y(r) + d'r'Sz(r —r')A(r')0 (r'), (21) Inserting Eq. (26) into Eq. (24), and carrying out
the r" integration, we obtain

where the free-particle Feynman propagator is"

&-i&~ (r -r')
$3q ~ fq' I'

eP(r') = —4nct.Z, „F(q), (27)

and the limit e-+ 0 is understood. The function
y(r) is a free wave solution to the Dirac equation
with four-momentum P" = (E, p). The initial elec-
tron state 4', (r) contains outgoing spherical waves
at infinity while the final state %«(r) contains in-
coming waves. For the latter state the propagator
is given by Eq. (22) but with c replaced by -e.

We will assume in the fol. lowing that the field
A" (r) of the nucleus does not change appreciably
during the excitation, and that the nuclear recoil
is negligible. Furthermore, the distortion of the
electron wave due to interaction with the vector
field A(r) will be ignored. With these approxima-
tions Eqs. (21) and (22) may be combined to give,

In the preceding expressions, the charge density
is normal. ized to unity:

d'r p(r) =1 .

One may question the usefulness of expressing the
potential in terms of F(q), since Eq. (27) requires
knowledge of the form factor at all. values of the
momentum transfer, whereas experimental elas-
tic scattering data in most cases do not extend be-
yond q=3 or 4 fm '. Fortunately however the final
expressions for P~q are not very sensitive to the
behavior of F(q) for q values much greater than
the momentum transfer at which pM& is being eval-
uated.
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The substitution of Eq. (27) into Eq. (23) gives an integral equation for the exact wave function. The sec-
ond Born approximation for @,(r) is obtained by replacing C, (r ) in the integral by g, (r), the plane wave
solution of the free-particle Dirac equation. When this is done, the integral over r gives a 5 function
5(p; —k —q), so the integral over k becomes trivial and we get

o.Z t', (2E, + n k)e'"''F(k)
2n' J (k'+ A.')((I,"+2k p; —ie) (28)

where U(p) is the free Dirac spinor. In obtaining
the above, we have replaced the integration vari-
able q by -k and used the fact that the elastic form
factor F(q) is an even function of q. The corre-
sponding approximation for the final state electron
wave function is obtained by replacing the initial
energy and momentum E, , p; by the final state

quantities, and & - —&. The limit & - 0, A, - 0 is
understood.

IV. GENERAL EXPRESSION FOR P~q

It remains now to use the approximate wave
functions to calculate the electron function X ~ (q),
perform the electron spin average on

~ Hz; ~', and

sum over L(, . From Eqs. (28) and (15) we have

x .„(t))=(2w)'ll(Q)U(p, )tZU(p, )+4trnz, , U(p, )'(a, ~ ' —, - ci)U(p,. ), (29)

where Q=q —Z and Z=p;-pz is the three-momen-
tum transfer. Terms of order (nZ)' have been
dropped since the Coulomb correction factor f~
is being calculated to order aZ. On combining
Eqs. (29) and (19), one obtains for the integrand
a. term proportional to &(Q)5(Q'), a cross term of
order aZ containing two terms proportional. to
&(Q) and 5(Q'), respectively, and a term propor-
tional to (o.Z)' which will be dropped. The two
terms of order nZ can be combined into a single
term by interchanging q —q' in one term and us-

Hf, =H~+ aZH2,
N M~
mm'

(30)

ing the fact that the inelastic form factor Fz(q) is
real. Part of the integration over q and q' is ac-
complished using the & functions, and the average
over initial and sum over final electron spin pro-
jections are done using standard trace techniques. "
After al1. this the result may be written

where

. (4&)' F),(&)
2/+ I 2yJz2(/2 2)2

gu *() ][(),;][*() ][() ] [*() ()](; —; )], (31)

Z. 32~ F~(&) ' d'q F.(q)F(Q)
2A. + I m'(b. ' —&u') „q' —&u' Q'+)P

'«Q, 2
f,

+~~ L[Y*(&) Y(q))(&A-P; Pf)+[Y*(&) Py][Y(q). p;]+[Y*(&) P;][Y(q) Pf]]b, b~

([Y*(&) Y(q)](& P;-E;P ) Q [Y*(&) Ql(&;P -& P;) Y(q)]

, ([Y(q) Ql (&,p—,'—E,p,).Y*(~)]
i f

(32)

0; = FAIL'+ 2Q p; —is, b~ ——Q' —2Q' p~
—ie .

We have introduced a short notation for the vector
spherical harmonics, Y(q) =Y",(q), and defined

Terms in the numerators of Eqs. (31) and (32) pro-
portional to the electron rest mass m have been
neglected.

The above expressions are valid for processes



SECOND BORN APPROXIMATION FOR MAGNETIC MULTIPOLE. . . 2529

where nuclear recoil is ignored but where the
electron loses an energy cv due to the nuclear ex-
citation. Drechsel' and Chertok' have investigated
the effect on fc of finite energy loss and do not
find a strong dependence on ~ except for large
scattering angles and near the diffraction mini-
mum of the inelastic cross section. Therefore,
we will set ~=0, that is, E; =Ef =E.

If the 0, integration of the terms in Eq. (32)
containing b, is done in a coordinate system where
the ~ axis is along & and the x axis is along p, +pf,
while the corresponding integration of the 6& terms
is done in a coordinate system where the x axis is
along —p,- —p&,

' then one sees that H2 must be in-
variant under the substitution p, - —pf, p&

-—p; .
Under this transformation b, bf, and H2

simplifies to

, 64' EF~(b, )
" d'q F~(q)F(Q)

2K+1 m 6 . q Q +& Q +2q'py —i&

xReg f[Y*(Z) Y(q)] (Z'q)+ [Y*(&)' (p;+pf)][Y(q)' (p&+py)]

+ [Y*(&)'Q][Y(q) Qj-[Y*(~) (p, .p, )][Y(q) ~9 (33)

The sum over g in Eqs. (31) and (33) can be done

by using the following identities, evaluated in the
coordinate system where the z axis is along & and
the x axis is parallel to p;+ p~.

l

g[Y*(&) (p;+pf)][Y(q) &]

2x+1 &l p;+p~l
( 1)

p'„(x)co p, ,

gY*(~)~ Y(q) = „P,(x),

g[Y*(&) (p;+p~)][ Y(q) (p;+py)j

(34) where x =q z and P ~(x) are the associated I egen-
dre functions.

It is convenient at this point to rewrite some of
the vector quantities in terms of unitless vectors.
Let

2X+1, P'„(x)
8n (p; + p~)' P ~(x) +,",cos(2 P, )~t~+ lj

Z=E5 so 5=2 sin(28),

q =Eu,

Q = q —& =Z(u —5),

(35)

g[Y*(~) Q][Y(q) Q]

i( )[1 gP/2
4w z(a+I) "

where 6) is the electron scattering angle in the lab-
oratory. Combining Eqs. (31), (33), and (34), to-
gether with the above definitions, and using

we obtain

4 52 1 ~ F,(zu)F(EI u —5I)
m' 4+ 5' F~(4)„"[(u -5)'+)P](u'+2u p~ —ie)

x P~(x)(25ux+4 —5')+
1 P~(x)[u(1 —x )' '+(4 —5')' 'cosy„]

(36)

Since l u —5l is independent of Q„ for our choice of
coordinate axes, we may proceed to integrate Eq.
(36) over p„.

The azimuthal integrals are of the form

cos(np)dp
g + 2u'pf —2C

which may be expressed as
""cos(n p) dp

a+ b cosP

where n =0, 1, or 2, and

a =u -u5x —ie,2

b =u [(4 —5')(1 -x')]'i' .

(37)

(38)
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The integral Eq. (37) can be done by contour inte-
gration around the unit circle centered on the ori-
gin of the complex plane. With Z = e'~ we have

tains

2'
0 (g2 b2)1/2

i —(Z" +Z ")dZ
b Z2+2(a/b)z+1 ' (39)

2 7T a'g
1 b (

2 b2)1/2 (40)

The integrand has poles at the origin (if n &0) at
Z = Z, and Z, where

Z= ' -1

2n ' (2a —b )q
2 b2 (+2 b2 )1/2

where

1) =+»f
I z, j &1, q=-1 if [z2( &1,

@=0 1f I Z, l =[Z2] =1.
If we now let c -0, we find

q =+1 if a&0

q = —1 if a&0

and a & 5

a2) P (41)
Note that since Z, Z2 =1, one pole will lie outside
the contour unless both Z, and Z, are on the unit
circle. Applying the method of residues one ob-

jf Q2) a2

Introducing the azimuthal integrals into Eq. (36),

one gets

8 6' 1 "" I' F1(Eu)F[E(u'+ 6' —2u bx)'/']
w 4+ 6 F1(&) „0 J 1 u + 6 —2ubx+A.

I'), x 25ux+4 —6 2 2 p~ +

u (1 —x')'/2q (4 —62)'/2
1

aq
(g2 b2)1/2 b (~2 b2)1/2

(4-6')F;(x) (2a'-b')q
b2Z(Z+ 1) (a2 —b')'/' (42)

where a and b are defined by Eq. (38) and we have
set e =0. Letting e -0 at this point introduces an
apparent singularity at u =0 of order 1/u in the in-
tegrand, but this is cancelled by the u dependence
of F1(Eu) as u-0. Furthermore, it can be shown
that the integrals across the singularity in
(a' —b') ' ', whichappears as a- b, are infact finite.

Equation (42) gives the Coulomb correction to
magnetic A. -pole transitions in the second Born ap-
proximation, in the limit I/E -0 and neglecting
any energy loss by the electron. By introducing
a suitable approximation, it is possible to perform
the x integration and this is illustrated below for
magnetic dipole transitions.

86'
2(4+ 6')F, (&)

x du I dxJ F,(Eu)F [E(u'+ 6' —2ubx)'/']

J-1 u2+ 52 2u 5x+ A2

nx, 2 2,1/2 (611x + 4x) +-
(a —5 j Q

(43)

In order to do the x integral it is necessary to give
an analytic form for the elastic form factor, or
replace it by some approximation which specifies
the dependence on x. Cutler' introduced what he
referred to as a "radius approximation"

V. COULOMB CORRECTION FACTOR FOR MAGNETIC

DIPOLE TRANSITIONS F(q) = 1 ——', q'(R2) (44)

For magnetic dipole transitions we have, in the
e-0 limit,

which he concluded would be appropriate for 4g
&2, where the mean square radius (B ) =-', I; . The
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F(Ei u —5i)= E, (u) —xF (u),

where

E+(u) = 2(E[E(u +5)]+F[E(u —5)]),
F (u ) = 2 [ E[E(u + 5)] —E [E(u —5)]j . (45)

This expression has the advantage that it gives
the correct form factor at x =a 1, does not contain

approximation we adopt is different and perhaps
not quite as severe. Since the integrand of Eq. (43)
has a maximum value at x=+1, we expand the
form factor about this point and to first order in
x get

the low-momentum transfer restriction implicit
in Eq. (44), and is valid to the extent that E(q)„,
—E(q), , is linear in q'.

When the above expansion of the elastic form
factor is inserted into Eq. (43), the x integration
becomes straightforward. We remark only that
a' —b' &0 for all (xl & 1 if u &2, while for u & 2 we
integrate from x = -1-x, and x2 +1 where
(u' —b')„=0, a, nd note that

q =+1 if u/5&1,

q =+1 if u/5&1 and x&u/5,

q= —1 if u/5&1 and x&u/5.

Setting A. =0 one finally obtains

852 u'+5
P» =

(4 2) (~) Jl
du E,(Eu) F, (u) —F (u)

5(8+5 +u ) u+2 5 5 u+2 1 u+5
+ ———ln +—

2 ln4u'(u —5') u —2 4u 16 u —2 u' u —5

+ 4 —35'+ — —,'5 u' -u' —5'+ 12 ln
32 u u —2

(46)

where F,(u) and 6 are defined by Eqs. (45) and

(35), and & is the three momentum transfer.
The double integral expression for P» given by

Eq. (43), and the approximate single integral re-
lation Eq. (46) represent the main results of the
present work. The Coulomb correction factor fc
is related to P» by Eq. (5).

where

z =t/41n3

and t is the skin thickness. A useful analytic ex-
pression for the elastic form factor for the Fermi
charge distribution has been derived by Verdier, "
which to a good approximation is

VI. COMPARISON WITH DWBA CALCULATIONS

Although the approximation for P» given by Eq.
(46) is not a complicated function, some care must
be exercised when one evaluates it by numerical
integration techniques since singularities exist in
the integrand at u = 2 and u = 5. The integrals over
these singularities are finite when they are defined
as principal values, that is when one integrates to
within c of the singularities, where c-0.

In order to see how Eq. (46) compares with the
DWBA analysis of M1 electroexcitation cross sec-
tions, we have computed fc using elastic and in-
elastic form factors based on the charge and cur-
rent distributions employed by Drechsel' and Cher-
tok, Johnson, and Sarkar ' in their partial-wave
computations. These calculations use a Fermi
distribution to describe the ground state charge
density, that is

so

J(r) ~5(R„r)Y,"»(r)- (49)

F»(q) "ii(q~ ~) (49')

3 y' sinxcoshy xy co x
sinh'y sinhy s

(48)

where x=qc, y=7(qz, and s =c/z. This is suffi-
cient for our purposes, for example for c = 3.547
fm and t = 2.4 fm we find agreement within +0.2%
with the numerically integrated elastic form factor
out to the third diffraction maximum (q-2.5 fm '),
except very close to the diffraction minima where
the comparison is less favorable.

Two models will be considered for the M1 form
factor. One model used by Drechsel locates the
nuclear M1 transition current at a radius R„and
has the form

Pp
P( ) 1 (r-c) jz (47)

The other model, used by Chertok, Johnson, and
Sarkar, is based on the incompressible liquid-
drop model. The static charge density is given
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l.5-

l.4-
F (q) =I

l. 2

or

'c

l, 3

n approx.

Drechsel (exact)—

Z = 28 E=50 MeV

F (q) = CJ (qR)

&c

i.o

0.8

Z= 20 E = 60MeV

FNII (q) = cq F/L(q)

exact

I.C I I

40 80 l20
SCATTERING ANGLE

e (deg)

I

I 60

FIG. 1. The Coulomb correction factor f, = (do'/dQ)/

(do/dQ~„) for an M1 transition evaluated in the second
Born approximation (solid curve) and in DWBA (dashed
curve), for Z =28, E = 50 MeV. The effect of replacing
the ground state Fermi charge distribution by a point
charge, in the second Born calculation, is shown by
the curve E(q) = 1. Energy loss by the scattered electron
has not been included in these calculations.

by Eq. (47), and the corresponding Ml transition
current operator is

&(r) =
d ~~"~~(r) ~dr (50)

which describes a convection current distributed
near the nuclear surface. The form factor which
follows from Eq. (50) is

(50')

where E(q) is the elastic form factor, in this case
Eq. (48).

In Fig. 1 we compare fc, based on Eq. (46), with
the DWBA calculations of Drechsel for Z=28 and
E =50 MeV. The M1 form factor is given by Eq.
(49') with A„=4 fm, and the parameters of the
ground state charge density are c =4 fm, t =2 fm.
This figure covers momentum transfers q =0-0.5
fm ', and extends roughly up to the peak of first
maxima of E»(q} The grea. test relative discre-
pancy between the two calculations occurs at the
largest scattering angles, where it is almost 7%.
It appears that the second Born approximation
overestimates P„, at these angles. The influence
of the elastic form factor on fc can be seen by
setting E(q) =1 [I.e., E, (q) =1, E (q}=0] in Eq.
(46), corresponding to the replacement of the ex-
tended nucleus by a point charge. As Fig. 1 shows,
the comparison at the forward angles improves
slightly, but for large 8 the difference approaches
15

I

40
I

80 120 160

Scattering Angle e (deg)

FIG. 2. The Coulomb correction factor f~ for an M1
transition evaluated in the second Born approximation
(solid curve) and in DVPBA (dashed curve), for Z =20,
E = 60 MeV. The transition is described by a liquid-
drop (Tassie) model with a Fermi charge distribution
for the ground state. Energy loss by the scattered elec-
tron has not been included in these calculations.

IO

I

I

I
I
I

I
I

I
I
I
I
I

exact—
I
I
I

I
I
I

I

I
I

II I

Z =20 E = l40MeV

FM, (q)=cq Fg„(q)

2nd Born ap

Ml

minimum

O. I
I I I

40 80 120

SCATTERING ANGLE

e (deg)

!60

FIG. 3. Same as Fig. 2, except E=140 MeV.

In Figs. 2 and 3 we compare fc with the DWBA
results evaluated by the program DUELS for Z
=20at60and140MeV. The Ml formfactor is given
byEq. (50') withe =3.547 fm, I =2.4fm, andthe same
parameters are used in the elastic form factor.
%e see from Fig. 2 that again the second Born ap-
proximation overestimates fc at the largest scat-
tering angles, while underestimating it at the
forward angles, for momentum transfers well be-
low the diffraction minimum. Figure 3 shows fc
in the region of the M1 form factor minimum.
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Z=6 E=I20 MeV

approx. LO

= 45 MeV

q F„(q)

fc

09-

I.O
0

1 I

40 80 l20

SCATTERING ANGLE 8 (deg}
l60

0.8-
I I I I

40 80 l20 I60

SCATTERING ANGLE 8 (deg)
FIG. 4. Same as Fig. 2, except Z = 6, 8 = 45 MeV.

Both the DWBA and the second Born results give
fc-+~ as one approaches the minimum from the
large angle side, while from the small angle side
fc (second Born}- —~. It is in the angular region
just below the minimum that the second Born de-
scription becomes completely invalid.

Figures 4 and 5 show the correction factors for
Z = 6, E =45 and 120 MeV, again using the liquid-
drop model but with c =2.384 fm and t=2.4 fm.
The second Born approximation is seen to be in
better agreement with the DWBA calculation than
in the preceding examples, which is expected since
the reliability of the approximation should improve
with decreasing Z. Note that even for Z=6, the
Coulomb correction for Ml transitions can be 10%%up

or more.

VII. CONCLUSION

We have derived an expression for the Coulomb
distortion factor fp for magnetic multipole transi-
tions through order nZ using electron wave func-
tions evaluated in the second Born approximation
in which energy loss was neglected. The general
result is a double integral over the elastic and in-
elastic form factors computed in the first Born ap-
proximation, where the electron wave functions
are treated as plane waves. No specific models
are necessary in the formalism, and in practice
the measured form factors can be used as an initial
approximation for the first Born form factors.

The correction factor has been considered in de-
tail for magnetic dipole transitions. An approxi-
mate expansion for the elastic form factor was in-
troduced which reduced the double integral in fc
to a single integral. The resulting expression
may be numerically evaluated by standard proce-
dures if care is exercised near the singularities
of the integrand. Comparison was made of the

FIG. 5. Same as Fig. 2, except Z=6, E=120 MeV.

present approximation with the exact DWBA re-
sults for a few nuclei. It was shown that where
fc deviated appreciably from unity, most of the
deviation is given by the second Born approxima-
tion. For most of the examples considered, the
approximation overestimated fc for far backward
angle scattering, the error being the order of 3'%%up

to ll'%%up. When one approaches the diffraction mini-
mum of the inelastic cross section, the formalism
breaks down, which is not unexpected since the
Born minima are not filled in by the second Born
approximation. On the other hand, for the lightest
nucleus (Z = 6) and lowest energy (45 MeV), the
approximate and exact calculations agreed to with-
in 0.5/p at all angles. Therefore, the result of
this paper could be most useful for correcting data
on low Z nuclei in the momentum transfer range
below the diffraction minima, in those situations
where DWBA calculations may not be justified or
necessary.

The nuclear physics in fc have been isolated
into terms which are sirrply the transition form
factors evaluated in the first Born approximation.
This separation of the electron and nuclear physics
is not unique to the second Born approximation,
and in fact is present in the general DWBA forma-
lism as expressed by Egs. (19) and (15). A partial
wave expansion of the electron wave functions
could, in principle, be used to evaluate the elec-
tron matrix elements X„,„(Q), leading to a DWBA
description which does not require specific models
for the transition current densities (or charge
densities, for longitudinal transitions). To the
best of our knowledge, this has not been utilized
in any of the existing DWBA computer codes.

Helpful discussions with Dr. I. P. Auer are
gratefully acknowledged.
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