Thermal neutron capture gamma rays from neutron capture in ⁵⁹Ni and ⁶³Ni[†]

W. M. Wilson, G. E. Thomas, and H. E. Jackson Argonne National Laboratory, Argonne, Illinois 60439 (Received 9 December 1974)

The thermal neutron capture γ -ray spectra for ⁶⁰Ni and ⁶⁴Ni have been observed from a sample previously irradiated to produce long-lived isotopes of ⁵⁹Ni and ⁶³Ni. New values of the neutron binding energy have been obtained for the compound systems ⁵⁹Ni, ⁶⁰Ni, ⁶¹Ni, ⁶²Ni, and ⁶⁴Ni. The γ -ray spectra for neutron capture by ⁵⁹Ni and ⁶³Ni are not as strongly peaked at high energies as the γ -ray spectra observed for neutron capture by the even-mass target nuclei in the $A \approx 40-64$ mass region.

NUCLEAR REACTIONS ⁵⁸Ni, ⁵⁹Ni, ⁶⁰Ni, ⁶¹Ni, ⁶³Ni(n, γ); E_n = thermal; measured E_{γ} , I_{γ} ; deduced binding energies, energy levels for ⁵⁹Ni, ⁶⁰Ni, ⁶¹Ni, ⁶²Ni, ⁶⁴Ni. Irradiated natural target.

The capture γ -ray spectra for thermal neutron capture by the even-mass target nuclei in the A \approx 40-64 mass region are usually strongly peaked at high energy. In view of the correlations observed between the reduced transition probabilities and the (d, p) single-particle strengths of the final states, this phenomenon has been attributed to channel capture.^{1,2} Since the (d, p) single-particle strengths of the low lying states excited by stripping on odd-mass target nuclei are much smaller than those for stripping on even-mass targets, it is expected that the γ -ray spectra for thermal neutron capture in odd-mass target nuclei will not be as strongly peaked at high energies. This conjecture has been investigated in the present work for capture in ⁵⁹Ni and ⁶³Ni.

Thermal neutron capture γ -ray spectra have been previously measured for neutron capture in the stable isotopes ⁵⁸Ni,^{3,4 60}Ni,^{5,6 61}Ni,^{4 62}Ni,³ and ⁶⁴Ni.³ In the present work we have measured the spectra of capture γ rays (above 7.0 MeV) formed by neutron capture in the long-lived unstable isotopes ⁵⁹Ni $(t_{1/2} \approx 8 \times 10^4 \text{ yr})^7$ and ⁶³Ni $(t_{1/2} \approx 8 \times 10^4 \text{ yr})^7$ $\approx 10^2$ yr).⁷ The ⁵⁹Ni-⁶³Ni sample was prepared by irradiating 25 g of natural nickel in a high neutron flux (~10¹⁵ $n \sec^{-1}$) at the Oak Ridge high flux isotope reactor (HFIR). From the known capture cross sections, half-lives, and neutron flux it was estimated that after two months of irradiation the sample consisted of approximately 2.1% ⁵⁹Ni and 0.5% ^{63}Ni as well as ${\sim}64.6\%$ ${}^{58}Ni,$ ${\sim}26.7\%$ ${}^{60}Ni,$ $\sim 3.1\%$ ⁶²Ni, $\sim 1.9\%$ ⁶¹Ni, and $\sim 1.1\%$ ⁶⁴Ni.

The capture γ -ray spectra were measured with the modified⁸ high resolution annihilation pair spectrometer at the internal target facility⁹ of the Argonne research reactor CP-5. A description of this system is given in Ref. 10 and references therein. The calibration standard for both relative intensities and energies is the ${}^{14}N(n,\gamma)$ - ${}^{15}N$ reaction, which was measured just before the nickel run. The calibration technique is discussed by Thomas, Blatchley, and Bollinger.⁹

Since each peak is fitted with a reference line shape taken from the nickel spectrum, the fits are generally very good and the error in the peak area is mainly statistical.¹¹ The error in the γ -ray energy is a function of the errors in the energies of the nitrogen lines,¹² and the errors in determining the centroids of the nitrogen lines and the unknown line. The error in the excitation energy increases with excitation energy, i.e., as the separation between the binding energy line and final state line increases.

The data are shown in Fig. 1 where the numbers labeling the lines are the same as those in Table I. The results from this experiment are compiled in Table I and compared with the results of previous measurements. The relative intensities have been normalized to the 8999.3-keV ⁵⁹Ni ground state line, the intensity of which is arbitrarily set equal to 100. In general, the agreement between the γ -ray energies and/or excitation energies of the present work and those of previous measurements is very good. The improved precision of the new data results in more accurate estimates of neutron binding energies than was available earlier. The binding energies listed in Table I are the recoil-corrected γ -ray energies of the ground state transitions in each compound nucleus. The relative intensities can be compared with other measurements for only a few cases, but for these the agreement is good except for the weak ⁶²Ni lines, for which the intensity uncertainties are very large.

Seventeen 60 Ni lines (from capture in 59 Ni) and two 64 Ni lines were identified. Another possible

1477

11

compared wi The binding e	th previous me mergies and fi	easurements. The inal state excitatio	e intensities in th on energies are c	le present work al omputed from the	re normalize ; recoil-corr	d to the ⁵⁹ Ni 899 ected γ -ray ene	9.3-keV line which rgies.	is arbitrarily set	equal to 100.0.
Line number	Compound nucleus	$E_{\gamma}^{}$ (keV)	Relative intensity	(n,γ) (other E_{γ} (keV)	work) I _Y ^a	Final state excitation (keV) (present work)	Final state excitation (keV) (others)	Binding energy (keV) (present work)	Binding energy (keV) (others)
- 1 - 0	60 _{Ni}	$11\ 386.7\pm0.7$	22.76 ± 0.06 0 11 ± 0 03			0.0		11 387.9±0.7	11 387 ± 3 ^b
3 00	62 Ni	1054.6 ± 0.3	0.16 ± 0.03	$10597 \pm 3^{\circ}$	3.7 ± 0.8	0.0		10595.6 ± 0.7	10600 ± 3^{d}
4	0 • 0	10490.9 ± 2.0	0.08 ± 0.03			:			. C'T ±7'06C ∩T
ບົນ	••• ⁶⁰ Ni	$10\ 364.5\pm0.7\\10\ 053.6\pm0.5$	0.11 ± 0.03 8.93 ± 0.05			••• 1333.4±0.3	1332.52 ± 0.05^{b} 1332.8 ± 0.2^{c}		
7 8	64 Ni 62 Ni	9655.9 ± 0.4 9422.3 ± 0.5	2.51 ± 0.05 0.19 ± 0.04	9425 ± 3 ^c	5.0 ± 0.5	$\begin{array}{c} 0.0\\ 1172.5\pm0.6\end{array}$	1171.7 ±1.2 ^d	9656.7 ± 0.4	9659.3±2.7 ^f
9 10 11	60 Ni 60 Ni 59 Ni	9227.5 ± 0.4 9102.2 ± 0.4 8999.3 ± 0.4	$1.30 \pm 0.04 \\ 9.77 \pm 0.07 \\ 100.00 \pm 0.17 \\ 100.00 \pm 0.17 \\ 0.17 \\ 0.01 \pm 0.01 \\ 0.0$	8996 ± 5 ^h	36	2159.6 ± 0.5 2284.9 ± 0.5 0.0	2158.9 ± 0.28 2284.8 ± 0.28	9000 0+0 4	9001 + 3 ^b
12 13	62 Ni 59 Ni	8551.3 ± 1.5 8533.6 ± 0.4	0.58 ± 0.08 48.40 ± 0.14	$8545 \pm 3^{\circ}$ $8525 \pm 5^{\circ}$	$\frac{-6}{4.6\pm 0.5}$ 13	2043.7 ± 1.6 465.7 ± 0.1	2047.1 ± 1.9^{d} 466 ± 1^{b}		
14 15 17 18	64Ni 62Ni 60Ni 60Ni 60Ni	8311.7±0.5 8302.5±1.7 8263.2±0.4 8200.5±0.6 8192.7±0.4	$\begin{array}{c} 0.37\pm0.09\\ 0.13\pm0.08\\ 1.95\pm0.09\\ 0.30\pm0.09\\ 2.17\pm0.09\end{array}$	8296 ± 3 °	0.8 ± 0.3	1344.4 ± 0.5 2292.5 ± 1.8 3124.1 ± 0.7 3186.8 ± 0.9 3194.6 ± 0.7	$\begin{array}{c} 1345.9^{f}\\ 2293 & \pm 3.0^{d}\\ 3124.1 & \pm 0.2^{g}\\ 3186.4 & \pm 0.2^{g}\\ 3194.1 & \pm 0.2^{g}\\ \end{array}$		
19 21 22	⁵⁹ Ni ⁶⁰ Ni • •	8119.9±0.4 8069.3±0.4 7993.5±0.5 7973.6±0.8	8.81 ± 0.10 3.77 ± 0.09 0.44 ± 0.09 0.19 ± 0.09	8114 ± 5^{h}	2.5	879.5 ± 0.2 3318.0 ± 0.8 3393.8 ± 0.8	$\begin{array}{rrr} 878 & \pm 1^{b} \\ 3318.3^{i} \\ 3393.6 & \pm 0.2^{g} \end{array}$		
23	⁶¹ Ni	7819.3 ± 0.4	23.63 ± 0.12	7819.7 ± 1.0^{j} 7819.6 ± 0.8^{k}	37.5 39.0	0.0		7819.8 ± 0.4	7817 ± 3^{b}
24 25 27 28 28	60 Ni 60 Ni 62 Ni 59 Ni 60 Ni	7799.4 ± 0.5 7764.4 ± 0.7 7703.4 ± 1.5 7697.0 ± 0.5 7652.2 ± 0.5	0.88 ± 0.09 0.12 ± 0.09 0.16 ± 0.09 2.69 ± 0.09 0.66 ± 0.09	7693 ^h 7693 ±5 ^h	0.79	3587.9 ± 0.9 3622.9 ± 1.0 2891.7 ± 1.7 1302.5 ± 0.3 3735.2 ± 0.9	$\begin{array}{rl} 3588^{b} \\ 3619.7 \pm 0.48 \\ 2890 \pm 2.0^{d} \\ 1303 \pm 1^{b} \\ 3735.5 \pm 0.38 \end{array}$		
29 30	61 Ni 60 Ni	7537.2 ± 0.5 7516.6 ± 0.5	13.61 ± 0.11 2.54 ± 0.09	7536.6 ± 1.0^{j} 7536.7 ± 0.8^{k}	22.9 23.3±1.6	282.1 ± 0.3 3870.8 ± 0.9	282.9 ± 0.2^{b} 3871.4 \pm 0.2^{g}		

1478

<u>11</u>

Binding energy (keV) (others)	
Binding energy (ke V) (present work)	
Final state excitation (ke V) (others)	$\begin{array}{rrrr} 4020.4 & \pm 0.2 \ 8\\ 1680 & \pm 1^{\rm b}\\ 4078.7 & \pm 0.2 \ 8\\ 1735 & \pm 1^{\rm b}\\ 4318.9 & \pm 0.3 \ 8\\ 4335.0 & \pm 0.4 \ 8\end{array}$
Final state excitation (ke V) (present work)	4019.5±0.9 1675.8±0.5 4078.3±1.0 1734.5±0.5 4318.3±1.1 4335.1±1.1
vork) I _Y a	0.2
(n, γ) (other $v E_{\gamma}$ (ke V)	7258 ±6 ^h
Relative intensity	$\begin{array}{c} 2.43\pm0.09\\ 0.15\pm0.09\\ 0.25\pm0.09\\ 0.46\pm0.09\\ 0.51\pm0.08\\ 0.26\pm0.08\\ 0.26\pm0.08\end{array}$
$E_{\gamma}^{}$ (keV)	7367.9±0.5 7323.7±0.6 7309.1±0.5 7265.0±0.6 7069.2±0.7 7052.4±0.7
Compound nucleus	60 Ni 59 Ni 60 Ni 59 Ni 60 Ni
Line number	31 32 33 35 35 35 35

TABLE I (Continued)

^a The intensities are absolute intensities per 100 captures in the enriched isotope except those quoted from Ref. 3 for which the intensities are absoluted intensi-ties per 100 captures in a natural sample. ^b Reference 14. ^c Reference 15. ^e Reference 19. ^f Reference 10. ^k Reference 10. ^k Reference 10.

1479

FIG. 1. Thermal neutron capture γ -ray spectrum above 7.0 MeV for irradiated nickel. The percentage abundance for each isotope including ⁵⁹Ni and ⁶³Ni are given in the text. The line numbers are the same as those in Table I. The lead impurity line is the strong ²⁰⁸Pb 7381.1-keV line.

⁶⁴Ni line (decay to the second excited state¹⁶) is obscured by the strong 7381.1-keV ²⁰⁸Pb line. Every other line has been identified from previous (n, γ) measurements except for line numbers 2, 4, 5, and 22. The first three lines are very weak, within a few standard deviations of zero intensity. A survey of (n, γ) measurements¹³ eliminated the possibility that the lines were due to capture by contaminants in the sample. We conclude that lines 2, 4, and 5, if real, are secondary transitions from highly excited states (a few hundred keV below the neutron separation energy) in the compound nuclei ⁶⁰Ni and/or ⁶²Ni. Similarly, we infer that the 7973.6-keV line (number 22) is a secondary transition line.

The absolute intensities of the 60 Ni and 64 Ni lines can be calculated from the relative isotopic abundances in our sample, the relative intensities

measured in the present work, the known total capture cross section for each isotope,⁷ and the absolute intensity of the ⁶¹Ni 7819.3-keV line, which has been recently measured by Kopecky, Abrahams, and Stecher-Rasmussen.⁶ The absolute intensity of the ⁶⁰Ni 11386.7-keV line is ~15% (i.e., 15 photons per 100 captures in ⁵⁹Ni); the absolute intensity of the ⁶⁴Ni 9655.9-keV line is ~27%. The absolute intensities of the other ⁶⁰Ni and ⁶⁴Ni lines can be inferred from these numbers. As a check on the internal consistency of our data and of this method for determining absolute intensities, we have calculated the absolute intensity of the ⁵⁹Ni 8999.3-keV line. Our value of 28% (28 photons per 100 captures in natural nickel) compares well with the values ranging from 26 to 32% given in Ref. 3.

We note here that, as expected, the transitions to the ground and first excited states account for ~20% of the total capture cross section in ⁵⁹Ni and ~31% in ⁶³Ni. This is in contrast to the much stronger high-energy peaking of the γ -ray spectra for capture in even nuclei. For example, Kopecky *et al.*⁶ have observed that the transitions to the ground and first excited states account for ~62.3% of the total capture cross section in ⁶⁰Ni, ~77.3% in ⁶²Ni,

- [†]Work performed under the auspices of the U.S. Atomic Energy Commission.
- ¹A. M. Lane, Nucl. Phys. <u>11</u>, 625 (1959); in *Statistical Properties of Nuclei*, edited by J. B. Garg (Plenum, New York, 1972), p. 271.
- ²J. E. Lynn, *The Theory of Neutron Resonance Reactions* (Clarendon, Oxford, 1968).
- ³G. A. Bartholomew, A. Doveika, K. M. Eastwood, and S. Monaro; and L. V. Groshev, A. M. Demidov, V. I. Pelekhov, and L. L. Sokolovskii, Nucl. Data <u>A3</u>, 367 (1967).
- ⁴U. Fanger, D. Heck, W. Michaels, H. Ottmar, H. Schmidt, and R. Gaeta, Nucl. Phys. <u>A146</u>, 549 (1970).
- ⁵R. Samama, J. Girard, R. Babinet, A. Audias, and J. J. Gondren, in Proceedings of the Conference on Neutron Capture Gamma-Ray Spectroscopy, Studsvik, Sweden, 11-15 August 1969 (IAEA, Vienna, 1969), p. 267.
- ⁶J. Kopecky, K. Abrahams, and F. Stecher-Rasmussen, Nucl. Phys. A188, 535 (1972).
- ¹Resonance Parameters, compiled by S. F. Mughabghab and D. I. Garber, Brookhaven National Laboratory Report No. 325 (National Technical Information Ser-

65.4% in $^{52}Cr,$ and 78.3% in $^{54}Fe.$

The authors would like to thank Mr. James Specht for assistance in the experimental setup and data reduction, and Dr. R. J. Holt and Dr. L. M. Bollinger for their ideas and suggestions concerning the analysis.

- vice, Springfield, Virginia, 1973).
- ⁸G. E. Thomas and R. H. Pehl, Nucl. Instrum. <u>121</u>, 65 (1974).
- ⁹G. E. Thomas, D. E. Blatchley, and L. M. Bollinger, Nucl. Instrum. <u>56</u>, 325 (1967).
- ¹⁰L. M. Bollinger and G. E. Thomas, Phys. Rev. C <u>2</u>, 1951 (1970).
- ¹¹P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 247.
- ¹²R. C. Greenwood, Phys. Lett. <u>27B</u>, 274 (1968).
- ¹³L. V. Groshev, V. N. Lutsenko, A. M. Demidov, and V. I. Pelekhov, Atlas of γ -Ray Spectra from Radiative Capture of Thermal Neutrons (Pergamon, New York, 1959).
- ¹⁴Nucl. Data <u>B2</u>, 11, 52, 98 (1968).
- ¹⁵Nucl. Data $\overline{B2}$, 1, 65 (1967).
- ¹⁶Nucl. Data <u>B12</u>, 305 (1974).
- ¹⁷D. M. Van Patter and F. Rauch, Nucl. Phys. <u>A191</u>, 245 (1972).
- ¹⁸C. Moazed, T. Becker, P. A. Assinakopoulos, and D. M. Van Patter, Nucl. Phys. A169, 651 (1971).
- ¹⁹E. Huenges, H. Rösler, and H. Vonach, Phys. Lett. <u>46B</u>, 361 (1973).