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Simple concepts which can be directly applied to measurements of resonances and the accompanying
continua have been studied. Pickup reaction spectra leading to hole states in the continuum were found
to give an understanding of the excitation energy dependence of resonance damping and the concurrent
rise of “background” continuum states. When these hole resonances are parametrized in terms of the
shell model, they can be used to predict the energy dependence of the damping of more complex
resonances, such as collective particle-hole excitations in the inelastic scattering spectra. Furthermore, it
is proposed that part of the background continuum in pickup spectra is the semidirect excitation of the
2h-1p states, the density of which determines both the nuclear damping width and the continuum cross

section.

NUCLEAR REACTIONS 2®pb(He, o), E =75 MeV, ¥Bi(p, d), E =62 MeV;
calculated continuum cross sections in a direct reaction.

I. INTRODUCTION

In recent publications two new aspects of direct
nuclear reaction spectra have come to light.
First,! a study of the '2°Sn(p, d) reaction at E, =57
MeV has shown that deep-lying hole states in the
nuclear continuum of medium-weight nuclei are
sufficiently “narrow” (I'~ 4 MeV) that they can be
directly measured. Second,? a study of the (p, p’)
reaction at E, =62 MeV, as well as other scatter-
ing reactions, has shown that high-energy collec-
tive excitations (probably strong quadrupole ex-
citations) can be directly observed in the nuclear
reaction continuum. From the viewpoint of nu-
clear spectroscopy, these observations may be
said to complement well-established properties
of low-lying discrete states of the nucleus. For
example, we know that the '*°Sn(p, d) reaction pre-
ferentially excites the states 3s,,,, 2d,,,, 1h,,,,
2d;,,, and g,,, in the N=50-82 valence shell so
that the new observation' of the g,,, hole in the
N=28-50 inner shell represents the complement
of expected sum rule strength for deep-lying hole
states in ''°Sn. In the case of collective quadru-
pole excitations, only 10-20% of the energy-
weighted sum rule strength is exhausted by low-
lying discrete states in nuclei®; thus, the obser-
vation of a strong collective quadrupole resonance
in the continuum is again the spectroscopic com-
plement of the bound states and a fulfillment of
well-known sum rules. However, the resonances
in a direct reaction continuum are generally diffi-
cult to observe. This results from the fact that
the resonances are broad and coexist with a large
reaction background continuum. In this paper, we
will attempt to understand more quantitatively the
degree of spreading of spectroscopic strength and
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the formation of a background continuum.

The general features of a reaction spectrum at
moderate bombarding energies (=100 MeV) is
schematically illustrated in Fig. 1. With typical
particle resolution (5100 keV), the spectrum can
be dissected into discrete, continuum, and evapor-
ation components. It is useful in the discussions
that follow to make a further qualitative dissection
of the continuum into two components. The low ex-
citation (E,) region of the continuum will be re-
ferred to as the direct reaction continuum (DRC)
region, while the low particle-energy (E,) region
will be the equilibrium region of the continuum.
Each region is typically characterized by a pro-
nounced variation in the cross section o(E,). In
the DRC region, the variation is due to “giant”
resonances in the general sense, i.e., further de-
pletion of the same sum rules which applied to the
discrete region [for example, the excitation of
deep-lying hole states as discussed in the *°Sn-
(p, d) reaction above]. In the equilibrium region
of the continuum, the variation (if not suppressed
by Coulomb effects) is an accumulation of low-en-
ergy particles from the (complete or incomplete)
thermalization and evaporation of the nucleus.

The study of the lower particle-energy region
of the continuum is sometimes referred to as the
“precompound” or “preequilibrium” region.* In
the preequilibrium model the incident projectile
energy is dissipated through the compound system
by the generation of successively more complex
states of the projectile-plus-target system (e.g.,
1p—2p-1h—=3p-2h - ‘- to equilibrium). The treat-
ment is statistical, and the direct angular momen-
tum transfer is not calculated. These approxima-
tions are reasonable for the low (particle) energy
region of the continuum, but not reasonable for
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the higher (particle) energy region where nuclear
structure could be important and where the angu-
lar distribution [0(f)] of the nonresonant continu-
um is not isotropic or even symmetric about 90°.
In the following discussion, we show more
specifically the various quantitative aspects of
the DRC region of the nuclear reaction spectrum.
We propose that the continuum cross section in
the DRC region can be estimated by the Born-ap-
proximation approach in which most of the specific
angular momentum effects are taken into account
by the usual partial wave expansion. Although this
approach to continuum phenomena is meant to be
a general one, we focus our attention upon the
neutron pickup reaction since the basic princi-
ples are most simply illustrated and the relevant
data have been published.

II. GENERAL FEATURES OF THE PICKUP REACTION

A. 2%Pb(*He, a)**"Pb reaction at Ey,=75 MeV

A forward-angle reaction spectrum (for E,< 14
MeV) is shown in Fig. 2. These data® were taken
with a solid-state counter telescope with energy
resolution =200 keV so that various particles in
the reaction could be distinguished. The authors
made special efforts in the experiment to exclude
from the data possible spurious effects due to slit
scattering, target impurities, etc. The spectrum
in Fig. 2 is plotted in 0.5-MeV bins for conven-
ience and the “peaks” for excitation below 4 MeV
are merely sketched in, since they have already
been studied in detail in a previous work® at slight-
ly lower bombarding energy. The peaks essential-
ly exhaust the available sum rule strength for the
N=82-126 valence shell. The cross section
strength for E,>4 MeV may be due in part to the
excitation of more deeply lying (inner shell) hole
states.
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FIG. 1. Schematic illustration of the various regions
of a typical reaction spectrum taken at medium bom-
barding energies.

In Fig. 3 the quasidiscrete region of Fig. 2 is
enhanced by expanding the cross section scale
and contracting the energy scale. Uncertainties
are given in Ref. 5. It is clear from Fig. 3 that
the enhanced region of the continuum is finite in
extent (E, = 20 MeV) so that it may be possible to
distinguish between resonant and nonresonant com-
ponents of the continuum. Another feature of Fig.
3 is that the enhanced region is not symmetric but
manifests an extended high excitation tail. A fur-
ther property of the resonance is that it is seen
only in the spectra at forward angles where direct
reaction amplitudes are expected to be large.

The above remarks imply that at least two re-
action mechanisms are pertinent to the spectrum:
(1) the direct reaction which accounts for the dis-
crete states and the enhanced region of the con-
tinuum and (2) the indirect reaction which explains
the large “background” under the resonance and at
“excitation” energies beyond the resonance (i.e.,
E,. =20 MeV). While we assume that the direct
component can be estimated by the usual distorted-
wave Born approximation (DWBA), it is less clear
how to understand the indirect component. It can
be seen in Fig. 3 that, while the direct component
appears to become damped out in the region £,
~10-20 MeV, the indirect component, which was
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FIG. 2. Spectrum of the 2®Ph(r, a) reaction. Data
are from Ref. 5. Neutron hole states in the N =82-126
shell are identified as the valence shell while the broad
resonance structure above 5 MeV includes inner shell
states.
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negligible in the low excitation or discrete region,
apparently increases so as to compensate partial-
ly the continuum cross section. This fact sug-
gests a correlation between the mechanism which
damps or broadens the resonant hole state and
that which generates the nonresonant continuum.

B. Damping mechanism for the resonance

In the shell or particle-hole model of nuclear
states, it is clear that a single particle or hole
with sufficiently high energy will be nearly de-
generate with a more complex configuration com-
posed of particles and holes of lesser energy.’
The implication of this condition for inner shell-
hole states is given in Fig. 4. The hole state at
E =~ 6 MeV could be nearly degenerate with var-
ious 2h-1p states (center of Fig. 4) since the neu-
tron shell gap in 2°®Ph(N = 126) is only about 3
MeV. Furthermore, the density of such 2h-1p
states must increase rapidly with increasing ex-
citation energy (discussed below). Many of the
2h-1p levels in the quasidiscrete continuum are
particle unbound (the neutron threshold for 2°"Pb
is 6.7 MeV). However, the centrifugal barrier for
the unbound particle,
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FIG. 3. Details of the inner shell region of Fig. 2.
Data and uncertainties are from Ref. 5. The solid
curve is a prediction for direct reaction pickup from
inner shell states while the background represents
indirect reaction mechanisms. Examples of the 1k},
and 18 4/, components are shown, and the positions of
other N < 82 states are indicated.

where 7 = nuclear radius (in fm), is several MeV
for most particle orbits (I> 1) so that particle pen-
etrabilities are generally small.®

It is not the purpose of this work to make de-
tailed calculations of level densities or widths.
However, the expected trends of these quantities
can be brought to light by using statistical approx-
imations. For example, if it is assumed that the
single-particle levels are equally spaced in the
nucleus (equidistant spacing model) with density,
g levels/MeV, then the density of 2h-1p levels is
given® by

p(E)ig E® 2)

where E is the excitation energy of the system.
As a result of the near energy degeneracy be-
tween the initial hole state and some of the 2h-1p
spectrum of levels of density p, the hole state can
readily decay into (or mix with) the 2h-1p continu-
um. This “thermalization” of the hole energy is
indicated by the lower diagram in Fig. 4. The
average decay rate is given by first-order per-
turbation theory, with a width (in MeV) of

r'=2mM?)p(E) , (3)

where (M?) is the average squared matrix ele-
ment in the 1h-2p transition. These matrix ele-
ments are equivalent (by crossing relations'®) to
the more familiar two-body matrix elements used
in shell model calculations in the lead region.
Consequently, the “spreading width” of a hole
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FIG. 4. Schematic illustration of the damping or
spreading of the inner shell hole strength (top of figure)
into the 2h-1p “sea” of levels (middle of figure) by the
inelastic scattering of the hole state (bottom of figure).
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state can be estimated using parameters g and
M, which we already know approximately. From
Eq. (2) and (3)

I'~s'E?, with s'=3mg¥M?) . (4a)

The s will be referred to as the spreading param-
eter. In the scattering diagram in Fig. 4, the
particle-hole excitation may take place in either
the neutron or proton shell. Thus s'=s, +s;, =25’
or

T'~sE? with s=mg¥M?) |, (4b)

where the matrix element is averaged over both
neutrons and protons.

We have referred to the 2h-1p states indepen-
dently of their total angular momentum and parity
which must be the same as the j" of the hole state.
However, it can be demonstrated that for any par-
ticular (2h-1p)J" configuration, the possibility of
coupling to J=j is nearly assured. The parity of
the final 2h;~-1p, configuration is usually the same
as the parity of the initial 1%; state since the two
holes, 2k;, are typically in the same major shell
(my,,=+), while the 1p; is two major shells from
the ; and therefore has usually the same parity
(m, =ﬂ"i)' This argument is less secure at very
high excitation energies, and the spreading widths
become slightly overestimated.

C. Incorporation of the direct reaction (DWBA)

Although the mixing or damping of the hole state
into the 2h-1p continuum modifies the shape of the
reaction spectrum, the sum rules and the validity
of the direct reaction theory are expected to re-
main the same for the resonant part of the quasi-
discrete continuum. Thus, we assume for the
general shape of this part of the continuum,

o(E, 0)=0V(0, E)+ 02 (6, E) +*++ , (5)

where o(1(6, E) is the direct excitation of the giant
resonances. The simple addition of a nondirect
term 0(2)(¢, E) implies the incoherent addition of
direct and nondirect reaction amplitudes. The ap-
proximation follows from the fact that the nonres-
onant term o(®) (6, E) is derived from many states
of various spin and parity, all but one J" of which
is different from that of the resonance.

The direct term is given by the usual resonance
form,

f d
a6, E)= 3 (E _Féffz)f{ﬁ;z)z = S TIOR(E, E)

(6)

J
where the sum is over the hole states j. This res-
onant term is normalized to preserve the usual

shell model sum rules:
f oW(0, EYAE= Y ij.(o)f R(EE;)dE= Y T4(6) ,
0 i 0 j

where I'7(0)=S;0Y(6) is the formation probability
of the state with energy E; and might be deter-
mined by the product of the spectroscopic factor

S; and the DWBA differential cross section, oPV(9),
for particle or hole state j. In general, all the
sum rule strength is assumed to be located in the
resonance region so that we take S; =2j+1, the

full occupancy of the shell model orbit; I'$ = T'*(E;)
is the decay or spreading width of a hole state j as
discussed in Sec. II B.

D. Semidirect reaction components

The second term, o (6, E), in Eq. (5) repre-
sents a semidirect (e.g., two-step) reaction cross
section, the magnitude of which is not governed
by the sum rules in Sec. IIC. It is reasonable to
assume that the 2h-1p states themselves can be
excited in other ways also. The mechanism would
be a two-step process; i.e., particle-hole excita-
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FIG. 5. Scattering diagrams for second-order pro-
cesses—direct reaction followed by damping, and two-
step (semidirect reaction) mechanisms in the (p, d)
and (p, p) reactions initiated by medium energy
projectiles (heavy lines).
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tion followed by, or following, pickup as shown in
the diagram in Fig. 5. This two-step process
would be analogous to the one-step plus damping
process discussed above (i.e., second order). Al-
though the excitation probability of any one of these
more complex states is much smaller than the di-
rect excitation of the hole states, the level density
is much larger. Furthermore, since the level
density of 2h-1p states increases as a function of
excitation energy, the damping of the hole strength
will become more severe while the total excitation
of the 2h-1p components will increase. Thus, the
decrease in 0(1)(6, E) is qualitatively compensated
by an increase in 0‘®)(6, E) which tends to make

the continuum more uniform in energy, in agree-
ment with experimental results.

To illustrate how the semidirect reaction con-
tinuum might be calculated, let us assume we
have estimated the cross section 0}(6, E}) for the
two-step (e.g., inelastic scattering plus pickup)
excitation in which a 2h-1p state (i) is excited
with excitation energy region E; at scattering an-
gle 6.

We now proceed to apply the same statistical
formalism to the damping width I" of these states
with density p as in the case of the hole states in

TABLE 1. Shell model (N =126) states for neutrons
in 2%Ph, Col. 1: configuration; col. 2: calculated ex-
citation from Ref, 11; col. 3: measured energies from
Ref. 6; col. 4: energies assumed in this work to esti-
mate continuum resonance structure; col. 5: level
widths calculated assuming E; in col. 4.

I“? MeV)
nlj Ec (MeV) Ene,s (MeV) E; (MeV) s=0.05 MeVv™t
3P 0.6 0.0
25,2 1.7 0.6
3p3,2 1.5 0.9
liy3, 3.4 1.6
2 1 4.2 2.3
1hg)e 4.8 3.4
3519 8.9 5.7 1.8
2ds3 9 9.2 oo 5.7 1.8
1hyyp 9.9 8.3x1.0 3.1
2ds,s 11.0 6.8 2.5
1gv,2 12.1 cee 10.7 5.8
1892 15.7 ce 14 10
2D 17 16.2 I 15 11
2p3,2 17.3 16 13
1fsp 18.7 17 14
1f1 21.0 19 18
281y 23.1 23 26
lds e 24.5 25 31
lds, 25.7 ce 26 34
1P, 29.3 cee 29 42
1p3,2 29.9 30 45
18y 33.3 ce 33 54

Sec, IIC. The equivalent of Eq. (6) becomes

o®(0, B =) 0(0, E))R(E, E)) . (72)

1

In the continuum this becomes
o6, B)= [ ('(6, EVR(E, E")p(E"E"

(Tb)

Or, for convenience of the computation for the re-
action A(a, b)B,

o6, E) ~ (0’(9)>f (ky/ko)""*R(E, E")p(E")dE’

(Tc)

where the usual phase-space (momentum) depen-
dence (k,/k,)'/2 on the reaction cross section is
shown explicitly, and the remaining cross section
has been averaged over various 2h-1p final state
configurations. The integration range is over the
excitation region of the nucleus B. The approxi-
mation [Eq. (7c)] is valid only in the E, energy
range where Coulomb and angular momentum bar-
rier effects are small, i.e., in the lower excita-
tion (higher E,) energy region of the continuum.
In this paper we are only interested in the excita-
tion region E, <30 MeV.

I1I. APPLICATION OF THE MODEL
TO PICKUP REACTIONS

A. Resonance region

In order to apply the above prescription to the
measurements of the continuum spectra in a pick-
up reaction, it is first necessary to know the ap-
proximate locations or separation energies for
deeply lying particle shells. We chose for these
energies those recently estimated by Cusson,
Kolb, and Trivedi,' since these predictions give
binding energies for the valence shells in reason-
able agreement with experiment. These values
are given in Table I. The 3p,,, to 1k,,, shells are
the valence shells which give rise to the well-
known discrete hole states in 2°"Pb. Thus, what
we refer to as inner shell states which give rise
to the resonances in the quasidiscrete continuum
begin with the 3s,,, shell, i.e., E . =8.9 MeV.

However, it is clear from Fig. 2 and the (p, d)
spectra discussed below that the calculated ener-
gies (E.. ) are slightly too high to explain the
threshold (£, =~ 5 MeV) of the inner shell reso-
nance. Thus, we have assumed slightly lower
energies E; for the inner shell states as shown
in Table I. The reduced direct reaction cross
sections, oP¥(6), were computed with the code'?
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DWUCK; the optical model parameters for the
*He, @, p, and d used are from Refs. 6, 13-15.
The spreading parameter could then be adjusted
to reproduce the over-all shape of the resonances
in both the (®°He, «) and (p, d) spectra. Finally, a
background continuum representing the indirect
reaction components was determined as the differ-
ence between the total measured cross section and

o(mb/sr MeV)

o'(mb/sr MeV)

the prediction for the direct component.

The results of these calculations are given by
the curves in Fig. 3 for (*He, @) and Fig. 6 for
typical (p, d) spectra.'® The comparison between
the 20 and 40° (p, d) spectra illustrates the idea
that the direct reaction components in the spectra
become less significant with increasing reaction
angle. For angles as large as 60°, the direct com-
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FIG. 6. Data (Ref. 16) and calculations (see text) for the resonance region of the deuteron continuum in the 2%Bi(p, d)

reaction.
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ponents are nearly imperceptible. In Fig. 3 the
large contribution to the total resonance from the
1%,,,, hole component is shown. Part of the asym-
metry of the total resonance, as well as its finite
extent, can be understood by the energy depen-
dence of the spreading width (or level density).
Note, for example, the 1g,,, hole component also
shown in Fig. 3. The large spreading width (due
to higher excitation energy) of this hole component
makes it almost invisible in the experimental
spectrum, forming only a shoulder on the dom-
inant %,,,, component. The still higher energy-
hole components are not discernible against the
strong background (indirect reaction) continuum.

The empirically determined spreading param-
eter required to fit the data is s =0.05 MeV ™ with
an uncertainty judged to be +0.02 MeV ™. The sin-
gle-particle j-state density in 2°®Pb, based upon
known neutron particle and hole states (N=82-126)
with 3-MeV shell gaps, is g=1.2 MeV™'. Thus,
from g and s one can derive from Eq. (4) the ef-
fective interaction M ~100 keV, a value typical'’
of two-body matrix elements in the lead region.
The uncertainty in the individual E; in Table I is
difficult to estimate except for the E,,m2 which is
probably accurate to +1 MeV.

B. Continuum region

In Sec. I A it was found that the direct neutron
pickup reaction estimates fell far short of explain-
ing continuum cross section. The difference be-
tween the measured and direct cross sections are
shown in Fig. 6 for the (p, d) reaction. In Sec. IID
we assumed an average cross section (o(6)) for
the semidirect (i.e., two-step) excitation of a
2h-1p state and then proceeded to estimate [Eq.
(7c)] the differential continuum, o(? (6, E), implied
by the same density of states which determine the
damping of the hole states. From Eq. (7c) it would
appear that the o{®(6, E) would diverge with in-
creasing excitation energy. However, the diver-
gence of the p(E’) in the numerator of Eq. (7c) is
checked by the divergence of the spreading width
I'(E’) implied in the denominator of the R(E, E')
function [see Eq. (6)]. To see this we make the
plausible assumption that the damping of an # -
particle-ny-hole state is simply the incoherent
sum of the individual particle and hole damping,
each nucleon sharing 1/(n, +ny) fraction of the
total excitation energy. In other words, if Eq.
(4b) is valid for the damping of a 1h or 1p state,
then we have the general expression for an nyh
+ n,p system,

T(E)=sny+ny)[E/(n, +ny)P=s,E? | (8)

where s, =s/(np+nh). It is clear from Eq. (8) that

not only will resonances disappear at very large
excitation energies, but at a given excitation ener-
gy, they will become sharp as the complexity of
nucleon participation in the state increases. These
properties, of course, were expected from gener-
al observation of nuclear spectra.

We can now understand why the high excitation
reaction continuum spectra are expected to be a
slowly varying function of energy: the variation
in the density of states is mostly compensated by
the damping of the same states. Applying the same
parameters, g=1.2 MeV ™' and s =0.05 MeV ™,
from the damping of the hole states in Sec. III A
to Eq. (7c), we get the semidirect continuum curve
shown in Fig. 6. This background curve can be
seen to be similar to the one deduced from taking
the difference between the measured cross section
and the direct (DWBA) curve. We have here arbi-
trarily adjusted the average two-step cross sec-
tion:

(0’(20°))=0.0050 mb/sr.

It is encouraging that relatively large differential
continuum cross sections can be generated from
very small two-step reaction cross sections. In
a later publication we hope to present an estimate
of ¢’ (9) based upon coupled-channel calculations
in order to determine a realistic quantitative es-
timate for o(® (9, E).

1V. INELASTIC SCATTERING SPECTRA

In general, sum rules in nuclear reactions im-
ply transition rates associated with certain regions
of the total configuration space. From this view-
point, all types of reactions have sum rules which
apply to various configurations reached in the pro-
duct nucleus. In the previous sections we dis-
cussed the hole state configurations. It is well
known that the energy-weighted sum rules for
collective excitations are far from being ex-
hausted by discrete levels in an excited nucleus.
Therefore, it is feasible that the excitation of
many collective states (or resonances) are an
important, if not dominant, mode by which the
high particle-energy inelastic scattering continu-
um is formed. If this is true, the experimental
inelastic scattering continuum will not necessarily
be smooth, but it could have resonance-like struc-
ture whose shape is in part determined by the
same damping mechanism which determined the
shape of the pickup spectra discussed previously.
A closer analogy results if we consider a specific
1p-1h component of the quadrupole vibration as is
shown in Fig. 7. It can be seen that the inner shell
2d,,, hole state is a component to the (2g,,,2d7%;,,)
configuration vector of the 2* vibration. Thus, a
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FIG. 7. Single-particle level diagram for 2%Phb; the
inner shell hole states such as 2d;/, are seen to be
components in the particle-hole vibration, such as the
11-MeV quadrupole resonance in *®Pb (Ref. 2).

damping of the 1p-1h vibration into 2p-2h states
is expected (in this example) to take place via the
spreading of the hole state previously discussed.
Only those 2p-2h states which can be reached by
scattering diagrams like those in Fig. 4 are im-
portant to the damping process, and the density of

these states are, of course, the same as the densi-

ty of 2h-1p or 2p-1h states, each of which has the
energy dependence in the equidistant spacing mod-
el given in Eq. (2). Thus, the energy dependence

of the spreading width of giant vibrations is simi-

lar to that for the hole states. Applying Eq. (8) to
the 1p-1h system, we get

[(E)=s,E2=3sE? | (9)

where s is the same spreading parameter empiri-
cally determined in Sec. III: s=0.05 MeV~™', From
Eq. (9) one gets I'=4.6 MeV for the well-known
giant dipole resonance (E =13.4 MeV) in 2°®Pb;

this estimate is consistent with the measured
value, I'=4.1 MeV.'® Since there is little infor-
mation on the actual energies of most of the ex-
pected collective excitations in the continuum, no
attempt will be made to calculate the direct or
semidirect spectral components suggested in Fig.
5. We merely make the qualitative point that the
strong energy dependence of the spreading width
is nearly independent of J". Therefore, the ob-
servation of resonance structure at excitation en-
ergies far above the well-known electric dipole
state would be precluded in a simple inelastic
scattering experiment.

V. SUMMARY

We have attempted to show that one can better
understand experimental reaction spectra by as-
suming that the high (particle) energy or lower
excitation region of the nuclear continuum in a
given reaction consists of at least two elements
related to the nuclear spectroscopy of the more
familiar discrete region of reaction spectra;
namely, (1) simple configurations absorbing the
complement of the same sum rules appropriate
to well-known configurations in the discrete
spectra and (2) configurations degenerate with
(1) but having one degree higher complexity. The
existence of configurations of type (2) distorts the
reaction spectra by: (a) damping; i.e., mixing
with and spreading states with configuration type
(1) over several MeV excitation energy, and (b)
indirect excitation; i.e., being semidirectly ex-
cited by two-step reaction mechanisms, thus
forming a nonisotropic and energy-dependent con-
tinuum, 0(2)(9,]5), background. Finally, we have
compared in a meaningful way the damping width
of a “hole” resonance in a pickup reaction with the
width of a giant dipole resonance which might be
excited in an inelastic scattering reaction.

The author is indebted to G. R. Satchler and R. L.
Becker for many helpful discussions.
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