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Accuracy of the unitary pole approximation at positive energies for local potentials
containing a hard core

A. V. Lagu, C. Maheshwari, and V. S. Mathur
Department of Physics, Banaras Hindu University, Uaranasi-221005, India

(Received 18 June 1974; revised manuscript received 2 December 1974)

The accuracy of the unitary poI.e approximation (UPA) to the two-body t matrix at positive
energies has been examined for the case c f a local potential with a hard core. To this
effect the S-wave phase shifts and the half-shell functions (Baranger, Giraud, Mukhopadhyaya,
and Sauer) have been calculated for the Herzfeld potential as well. as for its UPA. The
agreement between the two sets, though satisfactory, is not as good as reported by
Levinger and O'Donoghue, who did similar calculations for various singlet potentials. This
result may be attributed to the existence of a bound-state pole in t matrix in the negative
energy region in the case of the Herzfeld potential.

NUCLEAR STRUCTURE Unitary pole approximation, hard core potential,
positive energies.

In recent years several separable expansions
and approximations to the two-body t matrix have
been proposed. ' Amongst these the unitary pole
expansion of Harms' and its one term version,
the unitary pole approximation (UPA), ' have been
extensively studied at both negative and positive
energies. The accuracy of the UPA has been
tested through two- and three-body calculations4
and it has proved to be quite useful (for criticism,
see Refs. 5 and 6). As the UPA is based on the
concept of pole dominance, it should, in general,
be a good approximation at negative energies
close to the bound state pole. The interesting
feature, however, is that the UPA has also been
found' to be good at positive energies for the po-
tentials without hard cores. Apart from the cal-
culations of Brady et al. ' for Tabakin's rank-two
separable potential containing hard shell repulsion,
no direct calculations have been reported at posi-
tive energies in the case of local potentials con-
taining hard cores. Since we had already tested
the UPA at negative energies for hard core poten-
tials, v we have now carried through the calcula-
tion for positive energies also and report the re-
sults here. Another motivation to do the present
calculations is that these results are also re-
quired as input parameters in a scheme we are
pursuing in connection with off-shell continuation
of the two-body t matrix with bound states.

Since one can go uniquely from the half-off-shell
t matrix to full-off-shell t matrix through the sub-
tracted Low equation, ' we compare the half-shell
functions defined by Baranger et a&. (BGMS)9 and
the phase shifts rather than the full-off-shell t
matrix elements at positive energies.

For our calculations, we have chosen, the Herz-

feld potential (hard core with square well out-
side)".
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where terms have meanings as given by Laughlin
and Scott." For the Herzfeld potential Eq. (2) can
be written as
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where u, (r) is now the solution of the Lippman-
Schwinger equation in the range x=a to r =b with
appropriate boundary conditions and is given by"

u, (r) = C sinP(r —a), (4)

where C is a constant and I3' = 0'+ V0. This solu-

withparameters V0=1.54 fm 2, a=0.4 fm, b =1.737
fm and where the potential binds the deuteron with
energy B=0.435 MeV. From Laughlin and Scott,"
we know that the half-off-shell (S-wave) i matrix
element for energy 8 = k'+ i0 is given by
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B(k) =—g (k, -B)mk
(25)

It may be noted that Eqs. (22) to (25) are valid for
UPA for any potential. For Herzfeld potential,
we have substituted (17) wherever required. It
can also be easily verified that (22) and (23) are
consistent because for the case k'=k, we again
get the definition (14) with 5o replaced by 5„P„.
For calculation of the principal value integral,
we have followed the method suggested by BGMS.'

We have calculated the values of g„„, yUpA

and 5„p„ for various values of k and k'. In Fig. 1
are plotted the curves for the phase shifts. The
UPA phase shifts are seen to differ from exact
phase shifts by no more than about 10' over a
large range of momenta. However, while the ex-
act phase shift is found to change sign at about
k = 1.6 fm ', i.e. k'=2. 56 fm ', the UPA phase
shift does not. This is to be expected since the
UPA is equivalent to using rank-one separ3ble
potentials. The effective range parameters for
the UPA to the Herzfeld potential are found to be

ro(effective range) = 1.35 fm and Co(scattering
length) = 10.49 fm which compare favorably with
the exact value for this potential viz. ro =1.95 fm
and C, =10.8 fm.

For use in a many-body problem, a comparison
of exact and UPA half-shell functions is more
meaningful. In Fig. 2, we have shown the half-
shell functions for low values of k' for different
choices of k (change in k effectively means change
in energy). At low values of k' as well as k, the
agreement is not very encouraging. However, at
medium and high values of k the agreement appears
to be better. In Figs. 3 and 4 are shown the half-
shell functions for high values of k' and different
values of k. Because at medium values of k it
was difficult to make a proper comparison on the
scale of Fig. 3, the scale in Fig. 4 has been suit-
ably enlarged. It can be seen that at high values
of k', the agreement between exact and UPA half-
shell functions is again better. These results are
not quite the same as those of Levinger and
O'Donoghue4 who find the UPA quite good at low
momenta for singlet potentials. This can be un-
derstood by noting that since Levinger and others
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use singlet potentials, they are not far from the
antibound state pole at low values of momenta and
should expect the UPA to be fairly good. On the
other hand, for the Herzfeld potential, which has
a bound state pole at -0.435 MeV, the UPA would
not be as good at positive energies for low mo-
menta because of the position of the bound state
pole. However, the surprising feature of our re-
sults is that at high momenta, the behavior of the
UPA appears to be much better in regard to half-
shell functions.

After plotting fractional errors for phase shifts
and half-shell functions in Fig. 5, however, it is
seen that the "better" agreement of the UPA at
high energies is only apparent since the fractional
error remains nearly constant over a very large
momentum range (except in the region where phase

shift changes sign). So one can conclude that the

UPA is a workable approximation up to energies
equal to 3.0 fm 2 for potentials with hard cores,
beyond which an at least two term UPE must be
used. " In this context it may be mentioned that
the conclusions of Srivastava and Sirohi, that the
UPA to hard core potentials at positive energies
is altogether a failure, is not exactly consistent
with our findings.
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