Decays of ²¹¹At, ²¹¹Po, and ²⁰⁷Bi

L. J. Jardine*

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 6 January 1975)

The energies and intensities of γ rays and internal-conversion electrons from the electron-capture decay of ²¹¹At and from the α decays of ²¹¹At and ²¹¹Po have been measured. A new first-forbidden electron-capture branch of ²¹¹At is reported. First-forbidden electron-capture transition rates are discussed with reference to the $2g_{9/2}$ and $1i_{11/2}$ neutron states in ²¹¹Po. γ rays corresponding to the *l*-forbidden *M*1 transitions $\nu(3p_{3/2})^{-1} \rightarrow \nu(2f_{5/2})^{-1}$ in ²⁰⁷Pb and $\nu(1i_{11/2}) \rightarrow \nu(2g_{9/2})$ in ²¹¹Po have been observed. The α spectra of ²¹¹At and ²¹¹Po and the energies and relative intensities of γ rays from the electron-capture decay of ²⁰⁷Bi have been remeasured. A level scheme incorporating all of these decays is given.

RADIOACTIVITY ²¹¹At [from ²⁰⁹Bi(α , 2n)]; measured E_{γ} , I_{γ} , I_{ce} , I_{α} ; deduced logft, EC branching, α branching. ²¹¹Po, ²⁰⁷Bi, ²⁰⁷Pb deduced levels, J, π , ICC, γ multipolarity, γ branching. Ge(Li), Si(Li), Au-Si detectors.

I. INTRODUCTION

Daughter nuclei produced from the electroncapture and α -decay branches of ²¹¹At (7.2 h)¹ both decay directly to the same stable granddaughter (²⁰⁷Pb), but at quite different rates. The ²¹¹Po daughter from the electron-capture branch has a short half-life² (0.56 sec); for sources of ²¹¹At it is in transient equilibrium and decays by α emission to ²⁰⁷Pb with the half-life of ²¹¹At. The ²⁰⁷Bi daughter from the ²¹¹At α branch has a longer half-life^{1,3} (38 yr) so that its electron-capture decay to ²⁰⁷Pb is much slower. In the decay chain of ²¹¹At, excited states of ²¹¹Po, ²⁰⁷Bi, and ²⁰⁷Pb are populated. Since these nuclei are near the doubly closed shell of ²⁰⁸Pb, theoretical wave functions exist for many of their levels, and measurements of decay properties can be compared with theoretical first-forbidden electron-capture decay rates, electromagnetic transition rates, and α -decay rates. ²¹¹At also has a potential for applied use in radiobiological studies^{4, 27} since astatine, like iodine, selectively concentrates in the thyroid gland but emits primarily α particles rather than longer range β particles. Thus it is also of some practical interest to study ²¹¹At.

In this paper measurements of γ rays, internalconversion electrons, and α particles in the ²¹¹At decay chain are reported. Six γ rays were found to follow the ²¹¹At half-life and have been given definite assignments in the decay chain. Energies and intensities of three of the weaker γ rays and multipolarities of two of the stronger transitions have not been reported in previous studies.^{5, 6} From these results a new electron-capture branch of ²¹¹At is deduced. First-forbidden β -decay transitions to states in ²¹¹Po are discussed and two γ -ray transitions in ²¹¹Po and ²⁰⁷Pb of the *l*-forbidden *M*1 type^{7, 8} are identified. In addition, the energies and intensities of γ rays in the electroncapture decay of ²⁰⁷Bi were remeasured.

II. EXPERIMENTAL

²¹¹At was prepared via the ²⁰⁹Bi(α , 2n) reaction by bombarding bismuth metal targets with 27 MeV α particles. At this energy none of the radiations⁹ of ²¹⁰At, produced from an $(\alpha, 3n)$ reaction, were observed. Sources produced for the study⁹ of ²¹⁰At contained appreciable amounts of ²¹¹At and these were also used for some of the present measurements. Chemical separation was achieved by a volatilization procedure previously described.^{9,10} Sources for γ -ray, internal-conversion electron, and α measurements were prepared on aluminum backings, either by evaporation of aqueous solutions, or by evaporation of astatine vapor from a heated target onto a cooled backing. A thin layer ($\approx 4 \ \mu g/cm^2$) of aluminum was vacuum-sublimed from a tungsten filament onto sources for electron and α counting. This reduced the migration of the astatine in the vacuum chambers of these spectrometers. A $^{207}\mathrm{Bi}$ source was prepared (by evaporation) for γ -ray counting from a commercial material.

 γ -ray spectra were measured with a 10-cm³ Ge(Li) planer detector and a 35-cm³ Ge(Li) coaxial detector (system resolutions were 2.3 and 2.5 keV full width at half-maximum (FWHM) at 1332 keV, respectively) coupled with a PDP-7 4096-channel data acquisition system.^{9, 10} Energy and relative efficiency calibrations were made using

1385

Channel number (100 channels/division)

FIG. 1. γ -ray spectrum of a ²¹¹At source with ²¹¹Po in equilibrium. Weak peaks at 511 and 1063.63 keV are due to ¹⁸F (impurity) and ²⁰⁷Bi, respectively.

standard techniques previously described.^{11, 12}

Conversion-electron spectra were measured with a 5-mm thick $\times 1$ -cm² Si(Li) detector whose resolution was 2.2 keV (FWHM) at 975 keV. The relative efficiency of the electron detector was calibrated by measurement of standard sources.¹³

Spectra of α particles were measured with a 6-mm diameter Au-Si surface-barrier detector [system resolution 16 keV (FWHM) at 4.8 MeV]. All spectra were analyzed with the shape-fitting program SAMPO on CDC-6600 computers.¹⁴

III. RESULTS

A γ -ray spectrum representation of the data collected for a source of ²¹¹At is shown in Fig. 1.

The measured energies and relative intensities of γ rays originating from the electron-capture and α -decay branches of ²¹¹At, and from the decay of ²¹¹Po in equilibrium, summarized from all our data, are given in Table I. The results for the three strongest transitions in Table I agree with the scintillation measurements of Mihelich, Schart, and Segrè⁵ while the remaining transitions are reported for the first time in this decay. The measured energy for the 687.0-keV transition does not agree with the value of 668 keV reported by Ref. 6. The intensity of the 569.65-keV transition from the decay of ²¹¹Po \rightarrow ²⁰⁷Pb has been corrected for a small contribution from the decay of ²⁰⁷Bi, which grows in slowly. The correction is

Transition energy		Relative ^b photon	Relative conversion- electron		K-conve	rsion co	efficient Theoretic	al ^d	
(keV)	Nuclide ^a	intensity	intensity	Experimental ^c	M1	M2	E1	E2	E3
328.2 ± 0.2	²⁰⁷ Pb	0.6 ± 0.2		assumed					
569.65 ± 0.10 669.6 ± 0.2	²⁰⁷ Pb ²⁰⁷ Bi	$100\\1.1\pm0.2$	100	0.016	0.065	0.174	0.0061	0.016	0.039
687.0 ± 0.1 742.7 ± 0.5	²¹¹ Po ²⁰⁷ Bi	$79 \pm 4 \\ 0.3 \pm 0.1$	213 ± 20	0.043 ± 0.006	0.047	0.117	0.0045	0.012	0.028
897.8 ± 0.1	²⁰⁷ Pb	97 ± 5	97 ± 10	0.016 ± 0.003	0.020	0.048	0.0025	0.0065	0.0145

TABLE I. Measured energies, intensities, and internal-conversion coefficients of transitions from a source of ²¹¹At with ²¹¹Po in equilibrium. Transitions from the decay of ²⁰⁷Bi (daughter) are not included.

^a This refers to the nuclide *in which* the transition occurs.

^b A renormalization to absolute intensities can be made since the 569.65-keV transition has an absolute intensity of 0.31 ± 0.02 photons per 100 decays of ²¹¹At (see text).

^c These conversion coefficients were measured relative to the 569.65-keV E2 transition in ²⁰⁷Pb.

^d Theoretical values were obtained by computer interpolation from the tables of Hager and Seltzer (Ref. 15).

Channel number (100 channels/division)

FIG. 2. γ -ray spectrum of a pure ²⁰⁷Bi source.

based on the observed intensity of the 1063.63keV transition, which occurs only in the decay of 207 Bi.

Figure 2 shows a γ -ray spectrum of a pure ²⁰⁷Bi source; the measured energies and relative γ -ray intensities from the electron-capture decay of ²⁰⁷Bi are given in Table II.

Figure 3 shows a typical conversion-electron spectrum obtained with a ²¹¹At source. Tailing of the peaks due to the intense α particles of ²¹¹At and ²¹¹Po are the cause of the high flat background observed. Column 4 of Table I contains the measured relative K-conversion electron intensities; column 5 contains the experimental K-conversion coefficients. In order to obtain these conversion coefficients, the electron and γ spectra were normalized by the theoretical¹⁵ K-conversion co-

TABLE II. γ rays observed in decay of ²⁰⁷Bi.

Transition energy (keV)	Relative photon ^a intensity		
(328.2)	••• b		
569.65 ± 0.10	100		
897.8 ± 0.1	0.14 ± 0.02		
1063.63 ± 0.10	75.5 ± 2.3		
1442.2 ± 0.2	0.15 ± 0.02		
1770.27 ± 0.10	6.95 ± 0.20		

 a A renormalization to absolute intensities can be made since the 569.65-keV transition has an absolute intensity of 97.7 photons per 100 decays of 207 Bi (see text).

^b This extremely weak transition was only observed in the alpha decay of ²¹¹Po. It has a calculated relative photon intensity of ≈ 0.00087 (relative to 100 for the 569.65keV transition) based on the branching ratio of the 897.8and 328.2-keV γ rays given in Table I. efficient of the 569.65-keV E2 transition in ²⁰⁷Pb. On the basis of the conversion coefficients, M1multipolarities are assigned to the 897.8- and 687.0-keV transitions. The separation between K and L lines of the 687.0-keV transition is consistent only with the binding energies in polonium, which supports the assignment of this γ ray to the electron-capture decay of ²¹¹At.

Finally, we show in Fig. 4 an α -particle spectrum taken with a source containing ²¹⁰At as well as ²¹¹At. The measured relative α intensities of ²¹¹At and ²¹¹Po are shown in column 4 of Table III. (These intensities are for a source of ²¹¹At with ²¹¹Po in equilibrium and are based on a common relative scale normalized to the ²¹¹At groundstate group.) Energies of the α particles given in Table III were taken from the high-resolution work of Ref. 16. α groups from ²¹¹At populating excited states of ²⁰⁷Bi are known¹⁶ to be approximately four orders of magnitude weaker than those populating the ground state so that the branching ratio of α decay to electron capture for ²¹¹At can be determined from the measured ratio of the ground-state ²¹¹At group to the sum of the three ²¹¹Po α groups. This ratio was found to be 0.7223 ± 0.0144 which implies an α branching for ²¹¹At of $41.94 \pm 0.50\% \alpha$, in good agreement with the value $41.8 \pm 0.2\% \alpha$ (Ref. 16). Column six of Table III gives the intensities of the $^{211}\mathrm{Po}~\alpha$ groups renormalized to α particles per 100 decays of ²¹¹Po.

IV. DECAY CHAIN OF ²¹¹At

The decay chain (or scheme) of ²¹¹At shown in Fig. 5 was constructed from energy sums, intensity balances and previous results^{5, 7, 16-20}; it can

FIG. 3. Internal-conversion electron spectrum of a 211 At source with 211 Po in equilibrium. The 1063.63 K line of the M4 transition from 207 Bi, that has grown in, also appears.

be divided into two different parts with half-lives^{1, 3} of 7.2 h and 38 yr. The 7.2 h half-life includes the electron-capture and α -decay branches of ²¹¹At as well as the subsequent α decay of the short-lived ²¹¹Po to ²⁰⁷Pb. The electron-capture decay of the 38 yr ²⁰⁷Bi to ²⁰⁷Pb, shown separately in the lower-right portion of Fig. 5, is in agreement with previous studies.¹⁷

Placements of the six transitions reported in Table I in various isotopes of the 7.2 h decay chain are shown in Fig. 5. Based on the measured α -group intensities for ²¹¹Po, the absolute intensity of the 569.65-keV γ ray is calculated to be 0.534 ± 0.019 photons per 100 decays of ²¹¹Po (or 0.31 ± 0.02 photons per 100 decays of ²¹¹At). The absolute intensities of the other γ rays, and thus of the electron-capture and α transitions in the decay of ²¹¹At, follow from this normalization.

The intensity of the electron-capture transition to the 687.0-keV state in ²¹¹Po is $0.26 \pm 0.02\%$. Based on the Q value²¹ 793 ± 8 keV, log ft values for decay to the ground and 687-keV states are calculated to be 6.0 and 5.9, respectively. The 669.6- and 742.7-keV transitions in ²⁰⁷Bi are known^{18, 19} from studies of the electron-capture decay of ²⁰⁷Po to be M1 transitions. The intensities of the two weak α groups of ²¹¹At, calculated from the intensities of these transitions, are given in column 4 of Table III. These values are only marginally consistent with the direct measurements¹⁶ of the α -group intensities.

The absolute intensities of electron-capture transitions in the decay of ²⁰⁷Bi (Fig. 5) are in generally good agreement with values compiled by Schmorak and Auble¹⁷ from numerous studies of this decay scheme. The calculated absolute intensity of the 569.65-keV γ ray is 97.7 photons per 100 decays of ²⁰⁷Bi. A Q value²¹ of 2.405 ± 8 MeV was used to calculate the log*ft* values shown in Fig. 5.

V. DISCUSSION

The ground-state spin of ${}^{211}_{85}$ At¹²⁶ has been measured²² as $\frac{9}{2}$. Shell-model ground-state configurations of 211 At and 211 Po are $(\pi(h_{9/2})^3\nu(g_{9/2})^0)_{9/2}$ and $(\pi(h_{9/2})^2\nu(g_{9/2})^1)_{9/2}^+$, respectively. A $\frac{9}{2}^+$ as-

TABLE III. α particle energies and intensities for a source of ²¹¹At with ²¹¹Po in equilibrium.

		Daughter	lpha intensity				
Parent		level energy (keV)	per 100 deca	per 100 decays of ²¹¹ Po			
Nuclide	E_{α}^{a} (keV)		This work ^b	Ref. 16	This work	Ref. 16	
²¹¹ At	5866 ± 2		41.93	41.93			
	5210.0 ± 1.5	669.6	0.0036 ± 0.0008 ^c	0.0054 ± 0.0009			
	5141 ± 2	742.7	0.00097 ± 0.00033 ^c	0.0017 ± 0.0009			
²¹¹ Po	7450 ± 3	0	57.4 ± 1.1		98.917	98.917	
	6892.5 ± 2.5	569,65	0.317 ± 0.010		0.546 ± 0.019	0.56 ± 0.0	
	6570.0 ± 2.5	897.8	0.312 ± 0.010		0.537 ± 0.019	0.58 ± 0.1	

^a Energies measured by Ref. 16.

^b These intensities were arbitrarily normalized to the ²¹¹At ground state group.

^c Not measured directly, but calculated from relative γ -ray intensities as described in text.

FIG. 4. α -particle spectrum of a source containing ²¹¹At and ²¹⁰At. The ²¹¹Po is in equilibrium with the ²¹¹At.

signment for the ²¹¹Po ground state also derives from a study²⁰ of the ²¹⁰Po(d, p)²¹¹Po reaction where only two states below 1 MeV were populated, both intensely. These were the ground state and a state at 685 ± 5 keV with measured²⁰ (tentative) *l* transfers of four and six, respectively. The state at 685 keV is believed to correspond to the 687.0-keV state populated in the electroncapture decay of ²¹¹At and can be assigned the shell-model configuration $(\pi(h_{9/2})^2\nu(i_{11/2})^1)_{11/2^+}$ from these data and by analogy with the ²⁰⁸Pb(d, p)-²⁰⁹Pb reaction.²³ [²⁰⁹Pb has a $\frac{9}{2^+}$ ground state and a $\frac{11}{2^+}$ first-excited state at 778 keV which are due to the neutron single-particle orbitals $2g_{9/2}$ and $1i_{11/2}$ (Ref. 23).] Electron-capture decay of ²¹¹At to these two states of ²¹¹Po can take place by the

FIG. 5. Decay chain of ²¹¹At. Photon intensities from the electron-capture decay of ²¹¹At and the α decays of ²¹¹At and ²¹¹Po are shown on the same relative scale, whereas those shown for the ²⁰⁷Bi electron-capture decay are on a different scale. Calculated (Ref. 25) log*ft* values and α -hindrance factors are shown in italics next to the absolute feedings.

first-forbidden single-particle transitions $\pi(1h_{9/2}) \underset{\nu}{\Vdash} \nu(2g_{9/2})$ and $\pi(1h_{9/2}) \underset{\nu}{\Vdash} \nu(1i_{11/2})$. The log *ft* values of 6.0 and 5.9 ± 0.1, in addition to the *M*1 multipolarity assignment for the 687.0-keV transition, are consistent with these assignments. This value of the log *ft* is also comparable to that observed^{9, 24} for the same transition $(\pi(1h_{9/2}) - \nu(2g_{9/2}))$ seen in the electron-capture decays of ²¹⁰At and ²⁰⁹At. It is also of interest to note that for these pure shell-model configurations the 687.0-keV *M*1 transition is another of the *l*-forbidden $(1i_{11/2} + 2g_{9/2})$ type recently summarized for the lead region by Häusser *et al.*⁸

The Q value²¹ for the electron-capture decay of ²¹¹At is 793 ± 8 keV. The energy of the capture transition to the 687.0-keV state of ²¹¹Po is only 106 ± 8 keV, which implies a value of $8.5^{+40.3}_{-4.7}$ for the ratio of L to K capture.²⁵ This low Kcapture probability explains the fact that the 687keV γ ray was not observed⁵ in coincidence with polonium $K \ge rays$. (If K capture is energetically allowed, as the present Q value indicates, this sensitivity of the theoretical L/K electron-capture ratio might be used to determine the ²¹¹At electron-capture Q value more accurately through x-ray/ γ -ray coincidence measurements. Such measurements would also determine a more accurate value for the ²⁰⁷Bi electron-capture Q value.)

The three states of ²⁰⁷Pb populated by the α decay of ²¹¹Po have been assigned¹⁷ the single-

- *Present address: Argonne National Laboratory, Chemical Engineering Division, Argonne, Illinois 60439.
- ¹E. H. Appelman, Phys. Rev. <u>121</u>, 253 (1961).
- ²P. A. Tove, Ark. Fys. 13, 549 (1958).
- ³T. Rutnik, Phys. Rev. C 6, 1433 (1972).
- ⁴V. D. Nefedov, Yu. V. Norseev, M. A. Toropova, and V. A. Khalkin, Russ. Chem. Rev. 37, No. 2, 87 (1968).
- ⁵J. W. Mihelich, A. W. Schart, and E. Segrè, Phys. Rev. 95, 1508 (1954).
- ⁶S. Guetkh, B. S. Dzhelepov, Yu. V. Norseev, and V. A. Sergienko, in *Proceedings of the Eighteenth Annual Conference on Nuclear Spectroscopy and Structure* of Atomic Nuclei (Riga U.P., Riga, USSR, 1968), p. 96.
- ⁷O. Häusser, D. B. Fossan, A. Olin, D. Ward,
- W. Witthuhn, and R. E. Warner, Nucl. Phys. <u>A225</u>, 425 (1974).
- ⁸O. Häusser, A. Olin, D. Ward, and W. Witthuhn, Phys. Lett. 45B, 247 (1973).
- ⁹L. J. Jardine, S. G. Prussin, and J. M. Hollander, Nucl. Phys. A190, 261 (1972).
- ¹⁰L. J. Jardine, University of California Lawrence Berkeley Laboratory Report No. LBL-246, 1971 (unpublished).

neutron hole configurations $3p_{1/2}$, $2f_{5/2}$, and $3p_{3/2}$. The lower hindrance factor for α decay to the $\nu(3p_{3/2})^{-1}$ state is due to the fact that the spin of the odd particle does not change directions (no "spin-flip"), which results in a larger contribution from partial waves of minimum allowed orbital angular momentum. This α -decay selection rule has been reviewed in more detail by Rasmussen.²⁶

The predominant γ -ray decay of the 897.8-keV state in 207 Pb is to the ground state by the M1single-particle transition $\nu(3p_{3/2})^{-1} \rightarrow \nu(3p_{1/2})^{-1}$. A less intense 328.2-keV γ ray was recently observed to compete with the 897.8-keV transition in a Coulomb-excitation experiment.⁷ This weaker transition involves the l-forbidden M1 singleparticle transition $\nu(3p_{3/2})^{-1} \rightarrow \nu(2f_{5/2})^{-1}$. We have also observed this transition in our γ spectra from the α decay of ²¹¹Po. Our γ -ray branching ratio is less accurate, but consistent with the Coulomb excitation value. Häusser et al.⁷ have given a detailed discussion of the significance of the disagreement of present theoretical calculations with the experimental $B(M1, 3p_{3/2} - 2f_{5/2})$ calculated from this branching ratio.

The electron-capture decay of 207 Bi has been the subject of numerous studies and discussions, as summarized in Ref. 17.

It is a pleasure to acknowledge helpful discussions with Dr.R.E.Doebler and Dr.C.M.Lederer.

- ¹¹L. J. Jardine, University of California Radiation Laboratory Report No. UCRL-20476, 1971 (unpublished).
- ¹²L. J. Jardine, Nucl. Instrum. Methods 96, 259 (1971).
- ¹³L. J. Jardine and C. M. Lederer, Nucl. Instrum.
- Methods <u>120</u>, 515 (1974).
- ¹⁴J. R. Routti and S. G. Prussin, Nucl. Instrum. Methods <u>72</u>, 125 (1969).
- ¹⁵R. S. Hager and E. C. Seltzer, Nucl. Data <u>A4</u>, 1 (1968).
 ¹⁶N. A. Golovkov, Sh. Guetkh, B. S. Dzhelepov, Yu. V.
 Norseev, V. A. Khalkin, and V. G. Chumin, Izv. Akad.
 Nauk. SSSR Ser. Fiz. <u>33</u>, 1622 (1969) [Bull. Acad. Sci.
 USSR, Phys. Ser. <u>33</u>, 1489 (1969)].
- ¹⁷M. R. Schmorak and R. L. Auble, Nucl. Data <u>B5</u>, 207 (1971).
- ¹⁸G. Astner and M. Alpsten, Nucl. Phys. <u>A140</u>, 643 (1970).
- ¹⁹E. Arbman, J. Brude, and T. R. Gerholm, Ark. Fys. 13, 501 (1958).
- ²⁰E. Romberg, C. Ellegaard, R. A. Eisenstein, J. Miller, P. D. Barnes, T. S. Bhatia, and T. R. Canada, Bull. Am. Phys. Soc. <u>16</u>, 1147 (1971); and private communication.
- ²¹A. H. Wapstra and N. B. Gove, Nucl. Data <u>A9</u>, 267 (1971).

- $^{22}\mbox{H.}$ L. Garvin, T. M. Green, E. Lipworth, and W. A. Nierenberg, Phys. Rev. Lett. 1, 74 (1958).
- ²³M. J. Martin, Nucl. Data <u>B5</u>, 287 (1971). ²⁴L. J. Jardine, S. G. Prussin, and J. M. Hollander, Nucl. Phys. <u>A233</u>, 25 (1974).
- ²⁵C. M. Lederer, University of California Lawrence Berkeley Laboratory Report No. LBL-1996, 1973

(unpublished).

- ²⁶J. O. Rasmussen, in Alpha-, Beta- and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland, Amsterdam, 1965), Vol. 1, p. 701.
- ²⁷C. Borras, Ph.D. thesis, University of Barcelona, 1974 (unpublished).