Observation of a 1⁺ ($\pi h_{11/2}$, $\nu h_{9/2}$) state in ¹⁴⁸Tb populated in the decay of a new isotope, ¹⁴⁸Dy [†]

K. S. Toth and E. Newman Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

C. R. Bingham University of Tennessee, Knoxville, Tennessee 37916

A. E. Rainis University of West Virginia, Morgantown, West Virginia 26506

> W.-D. Schmidt-Ott* UNISOR,[‡] Oak Ridge, Tennessee 37830 (Received 16 December 1974)

A new activity with a half-life of 3.1 ± 0.1 min was observed in bombardments of ¹⁴²Nd with ¹²C ions accelerated in the Oak Ridge isochronous cyclotron. A gas-jet-capillary system was used to transport product nuclei to a shielded area so that singles and coincidence γ -ray measurements could be made. Only one transition, 620.2 ± 0.1 keV, was found to be associated with this new activity. It was assigned to ¹⁴⁸Dy because (1) the variation of its yield as a function of bombarding energy was the same as for ¹⁴⁸Tb γ rays, indicating that an equal number of nucleons were evaporated from the compound system, and (2) it was found to be in coincidence with terbium K x rays. No γ rays were observed in its coincidence spectrum, and no initial growth period was seen for transitions that follow the decay of the ¹⁴⁸Tb high-spin isomer. For these reasons the transition very probably proceeds directly to the low-spin isomeric state in ¹⁴⁸Tb and establishes an intermediate level at ${\sim}620$ keV. The spin and parity of this level has to be 1^{+} because the transition from the 0^{+} ^{148}Dy ground state has a log/t value of 3.9. Our suggestion is that this allowed β decay connects states with the following characters: 0^+ $(\pi h_{11/2}, \pi h_{11/2}) \rightarrow 1^+$ $(\pi h_{11/2}, \nu h_{9/2})$. γ -ray data were also obtained for ¹⁴⁹Dy and ¹⁴⁹Tb^m. From this information the half-life of ¹⁴⁹Dy was determined to be 4.1 ± 0.2 min, a value which agrees with recent half-lives reported for this isotope.

RADIOACTIVITY 148 Dy, 149 Dy, 149 Tb^m; measured $T_{1/2}$, E_{γ} , I_{γ} , $\gamma\gamma$ coin;discovered new isotope 148 Dy; 148 Tb, 149 Gd deduced levels, J, π .

I. INTRODUCTION

The impetus behind the present study was the investigation of the decay of the so-far unreported nuclide ¹⁴⁷Dy to levels in ¹⁴⁷Tb, an N=82 nucleus. The level structure of 82-neutron odd-A nuclei is of interest because the assumption of a doubly magic N = 82, Z = 50 core allows detailed microscopic calculations¹ to be made concerning their nuclear properties. Up to now, however, the (EC/β^{+}) decay modes of dysprosium isotopes with A < 152 have not been extensively studied. In particular, before this investigation was begun, ¹⁴⁸Dy had not been observed and the only information available for ¹⁴⁹Dy was its half-life (see Ref. 2 for the most recent values). As part of a search for ¹⁴⁷Dy it was therefore imperative to: (1) discover 148 Dy, (2) study its decay characteristics, and (3) ascertain the main γ rays following the decay of ¹⁴⁹Dy.

The dysprosium nuclides were produced by bombarding ¹⁴²Nd with ¹²C, even though published data³ indicated that the maximum incident energy available from the Oak Ridge isochronous cyclotron (ORIC) was insufficient to reach the peak of the ¹⁴²Nd(¹²C, 7*n*)¹⁴⁷Dy excitation function. Given the ORIC parameters, two other projectile-target combinations, i.e. 160-MeV ¹⁴N + ¹⁴¹Pr and 202-MeV ¹⁶O + ¹⁴⁰Ce, could provide the needed compound-nuclear excitation energy. The intensities, however, of these ¹⁴N⁵⁺ and ¹⁶O⁶⁺ beams are much less than that of the ¹²C⁴⁺ beam. Thus, for this "survey" experiment the more intense ¹²C beam was chosen.

II. EXPERIMENTAL METHOD

The experimental assembly utilized the helium gas-jet technique⁴, the basis for which is that

11

1370

product nuclei ejected from thin targets by the incident beam are stopped in helium gas and then swept out together with the gas through an orifice. In the present investigation, a capillary transport system was used to extract the products from the gas-jet reaction chamber (see Ref. 5 for a schematic drawing) to a shielded area where γ ray counting could be made. The recoils were collected on a catcher foil located inside a 500-cm³ chamber (described in Ref. 6). Preliminary measurements were made by rotating the catcher foil to a position in front of a Ge(Li) detector. Once it was determined that the half-lives of the observed activities were long enough the following procedure was put into effect. After a suitable bombardment time, the cyclotron beam was turned off, the collection chamber was opened, the catcher foil was removed and placed close to two Ge(Li) detectors in a geometry optimum for $\gamma - \gamma$ coincidence measurements. While the counting was being done, the bombardment and collection cycle was repeated with a fresh catcher foil.

Singles and coincidence γ -ray spectra were measured simultaneously. The coincidence data were digitized with the ORIC analog-to-digitalconverter system which has a 9000-channel resolution capability and is interfaced to an in-house computer. The data were stored in a three-word $(\gamma - \gamma - \tau)$ list mode on discs with million-word capacities. Singles spectra were taken at the same time with another smaller computer system which could be programmed in a spectrum multiscale mode. In this way repeated cycles of singles spectra were accumulated in a number of time bins to provide half-life information. All data were transferred onto magnetic tapes for permanent storage. These were later scanned and the data analyzed with computer codes to determine energies, intensities and half-lives, and spectra in coincidence with prominent γ -ray peaks.

The target consisted of a ~250- μ g/cm² neodymium oxide layer (enriched in ¹⁴²Nd to 97.7%) electrodeposited onto a 25- μ m beryllium foil. The ¹²C beam deflected out of the ORIC had an energy of ~118 MeV. However, the beryllium backing foil served as the entrance window to the gas-jet reaction chamber so that it intercepted the beam first. The maximum energy on target was, therefore, ~111 MeV. This energy was selected for the half-life and coincidence measurements because (on the basis of published data³) it should correspond closely to the peak of the ¹⁴²Nd- $(^{12}C, 6n)^{148}$ Dy excitation function. In addition, at the same energy, the $^{142}Nd(^{12}C, 5n)^{149}Dy$ reaction cross section³ is down by only a factor of 2 from its peak value. To aid in mass assignments, relative γ -ray yields were measured as a function of bombarding energy with the use of beryllium degrader foils.

III. ¹⁴⁸Dy

In an earlier study⁷ we had bombarded ¹⁴¹Pr with ¹²C ions to investigate the light terbium isotopes, ^{146–148}Tb. That information provided us with use-ful cross-bombardment data. Most of the new γ rays observed in the present study were event-ually assigned, either tentatively or with certain-ty to ¹⁴⁹Dy. (These will be discussed in Sec. IV.) One intense γ ray, 620.2±0.1 keV, that had not been seen previously⁷ was found to have a half-life of 3.1 ± 0.1 min. On the basis of evidence to be described below, it became clear that this new activity was ¹⁴⁸Dy.

Figure 1 shows yields measured as a function of bombarding energy for the 620.2-keV γ ray and for two of the strong transitions known⁷ to follow the decay of 2.3-min ¹⁴⁸Tb. The three sets of yield curves are very similar in shape, indicating that the 620.2-keV γ ray belongs to a nuclide with A = 148. For comparison we have included the yield curve for the most intense (see e.g. Ref. 8) ¹⁴⁹Tb^{*m*} γ ray. Excitation functions measured³ for $({}^{12}C, 3n)$, $({}^{12}C, 4n)$, and $({}^{12}C, 5n)$ reactions induced on ¹⁴²Nd peak at 67, 80, and 95 MeV, respectively. As can be noted in Fig. 1 the yield curve for the 620.2-keV γ ray appears to be turning over at 111 MeV; in light of the previous data³ this information is consistent with the γ ray being due to the 142 Nd(12 C, 6*n*) product.

The spectrum in coincidence with the 620.2-keV

FIG. 1. Yields as a function of bombarding energy for the following γ rays: (1) 394.6 keV (¹⁴⁸Tb); (2) 882.4 keV (¹⁴⁸Tb); (3) 796.0 keV (¹⁴⁹Tb^m); and (4) 620.2 keV (assigned to the new isotope ¹⁴⁸Dy).

11

FIG. 2. K x rays observed in coincidence with the 620.2-keV [part (a)] and 632.0-keV [part (b)] transitions. The 632.0-keV γ ray, known to follow the decay of ¹⁴⁸Tb, is in coincidence with gadolinium x rays, while the new 620.2-keV γ ray is in coincidence with terbium x rays. This Z identification supports the proposal that the 620.2-keV γ ray belongs to the decay of a dysprosium isotope.

 γ ray showed only the annihilation radiation peak and K x rays. In Fig. 2 we display the x-ray regions of spectra in coincidence with the 620.2-keV transition and with a 632.0-keV γ ray which is

 $known^7$ to be due to $^{148}{\rm Tb}.$ The coincidence data were stored with amplifier gains set so that there were ~0.29 keV per channel. For the rare earths under discussion this corresponds to a difference of ~5 and 6 channels between $K \alpha$ and $K \beta$ x rays, respectively, for adjacent elements. Differences of about those magnitudes are indeed observed in the spectra shown in Fig. 2. (Note that for display purposes each point represents two channels.) The 620.2-keV transition, in coincidence with terbium x rays, is therefore due to an isotope of dysprosium. This unequivocal Z identification coupled with the evidence that the activity is produced by the evaporation of six nucleons from the compound system means that the new nuclide is ¹⁴⁸Dy.

Figure 3 shows the proposed decay scheme for ¹⁴⁸Dy, a doubly-even nucleus whose ground state spin assignment is undoubtedly 0^+ . Because no γ rays were seen in coincidence with the 620.2keV transition it cannot be part of a cascade proceeding from a low-spin state (fed directly in the decay of ¹⁴⁸Dy) to the high-spin, probably 9⁺, ¹⁴⁸Tb isomer.^{7,8} Also, during the preliminary experiments to determine half-lives of the observed activities bombardment times were varied from 10 sec to 3 min and counting was started almost immediately after irradiation. None of the 2.3-min ¹⁴⁸Tb γ rays showed any initial growth periods; this is more evidence that the high-spin isomer is not fed in the decay of ¹⁴⁸Dy. For these reasons we have indicated in Fig. 3 the 620.2-keV transition as proceeding directly to the low-spin 66-min ¹⁴⁸Tb isomer. In this instance, however, it is

FIG. 3. Proposed decay scheme for the new isotope ¹⁴⁸Dy. Arguments are presented in the text suggesting that the $0^+ \rightarrow 1^+ \beta$ transition connects states with the following characteristics: $(\pi h_{11/2}, \pi h_{11/2}) \rightarrow (\pi h_{11/2}, \nu h_{9/2})$.

conceivable that a low-energy coincident γ ray was not observed due to a combination of two reasons: (1) the transition would have a high probability for internal conversion, and (2) the timing characteristics of the coincidence circuitry were such that low-energy pulses were found to be attenuated. Thus, a low-lying intermediate state cannot be ruled out. An attempt to establish a parent-daughter relationship between ¹⁴⁸Dy and the low-spin ¹⁴⁸Tb isomer was not made because its two intense γ rays⁹ are also seen in the decay of the high-spin isomer whose production is much more probable in a heavy-ion-induced reaction. Chances of observing an initial growth period for these two γ rays would, therefore, be extremely improbable. Note that in Fig. 3 the excitation energy of the lowspin isomer is indicated by a question mark because it is not known which of the two isomers represents the ground state in ¹⁴⁸Tb.

The spin of 66-min ¹⁴⁸Tb is not certain. An assignment of 2⁻ has been suggested.⁹ The log*ft* value, however, for the β decay to a 4⁺ state in ¹⁴⁸Gd is only 6.9. This number is much too small for a first-forbidden unique transition which according to recently proposed¹⁰ rules must have a log*ft* value of \geq 8.5. On that basis, a spin of 3 seems to be more probable unless the decay scheme reported in Ref. 9 is not completely correct. In either case there should be little or no direct feed to this state from ¹⁴⁸Dy. Instead, one can safely assume that the bulk of ¹⁴⁸Dy decay proceeds through the level deexcited by the 620.2-keV transition and the resultant log*ft* value is ~3.9.

Then according to the selection rules proposed in Ref. 10 the β decay is allowed and the spin assignment for the level must be 1⁺ because a 0⁺ \rightarrow 0⁺ transition is isospin forbidden and would have a log *ft* value \geq 6.5.

1373

Similar situations have been reported for ¹⁵²Dy (Ref. 11) and ¹⁵⁰Dy (Ref. 12), i.e., only one transition is associated with each nuclide, leading to the conclusion that their β decays are allowed and proceed entirely through 1⁺ states in their respective terbium daughters. An interesting question has been raised by Devous and Sugihara concerning this 1^+ state in ¹⁵²Tb. Their data indicate the 1^+ state is single particle in character, while earlier work, ¹³ dealing with the decay scheme of the ¹⁵²Tb high-spin isomer, suggests that ¹⁵²Tb levels are best described as being deformed. (The 8^+ isomer itself is proposed¹³ to result from the coupling of $\pi \frac{5}{2}$ [532] and $\nu \frac{11}{2}$ [505] Nilsson orbitals.) The 256.8-keV E1 transition, connecting the 1^+ level with the 2^- ground state, should be strongly hindered if the two states do in fact differ greatly in deformation. Devous and Sugihara,¹¹ however, found no appreciable hindrance for the 256.8-keV transition and concluded that their data were inadequate to explain the nature of the 1⁺ state in ¹⁵²Tb.

¹⁴⁸Dy and ¹⁴⁸Tb, with 82 and 83 neutrons, respectively, can be described as spherical nuclei. The ground state of ¹⁴⁸Dy is likely to be built up mainly of two $h_{11/2}$ protons coupled to a spin of 0 because the neutrons are in a closed-shell configuration and the $d_{5/2}$ proton subshell is filled at

FIG. 4. Portions (100-460 keV) of γ -ray spectra measured at ¹²C bombarding energies of 82.3 and 95.5 MeV. The two spectra were summed to emphasize A = 149 nuclides. Note the 396.9-keV γ ray which is assigned to the electron-capture decay of the well-established α emitter, ¹⁵⁰Dy.

gadolinium (Z = 64). For ¹⁴⁸Tb the available lowlying proton orbitals are $d_{5/2}$, $h_{11/2}$, $g_{7/2}$, $s_{1/2}$, and $d_{3/2}$ (see Ref. 1 for a discussion of proton states of odd-Z N=82 nuclei). The first available 83rd neutron orbital is expected to be $f_{7/2}$, followed in turn by the $h_{9/2}$ and $i_{13/2}$ orbitals. Therefore, to obtain a positive parity state in ¹⁴⁸Tb one must couple the $h_{11/2}$ proton to the odd neutron since the remaining proton states have even lvalues. Indeed, the ¹⁴⁸Tb high-spin isomer is proposed^{7,8} to be $(\pi h_{11/2}, \nu f_{7/2})$ in character. We would like to suggest that the 1^+ state in ¹⁴⁸Tb is the result of coupling the $h_{11/2}$ proton to the next available neutron orbital, i.e., $h_{9/2}$. This accounts for the observed ¹⁴⁸Dy allowed β transition since it would then connect the following two-quasiparticle states: $(\pi h_{11/2}, \pi h_{11/2}) \rightarrow (\pi h_{11/2}, \nu h_{9/2}).$

It seems reasonable to describe the ¹⁵⁰Tb 1⁺ state (see Ref. 12) in the same fashion because: (1) ¹⁵⁰Tb is only 3 neutrons away from the closed shell, and (2) the decay scheme of the high-spin isomer in ¹⁵⁰Tb is such that it also appears¹⁴ to be 9⁺ and ($\pi h_{11/2}$, $\nu f_{7/2}$) in character. One is then tempted to apply the same explanation to the 1⁺ 256.8-keV state in ¹⁵²Tb. The excitation energy of this ($\pi h_{11/2}$, $\nu h_{9/2}$) level would then increase smoothly, from 256.8 to ~397 (see Ref. 12) to ~620 keV, as the N=82 shell is approached. The description, however, still does not answer the

question raised by Devous and Sugihara¹¹ as to why the 256.8-keV E1 transition to the 2⁻ ground state is not hindered. One explanation is that the 1^+ and 2^- levels are both good single-particle states, in contrast to other levels observed¹³ in ¹⁵²Tb. Evidence for shape coexistence of this type has been found¹⁵ in the neighboring odd-Z nucleus ¹⁵¹Eu, where the low-lying states at 0, 22, and 197 keV have the shell-model configurations $d_{5/2}$, $g_{7/2}$, and $h_{11/2}$, respectively. The ¹⁵³Eu(p, t) reaction, however, populates with a large cross section a level at 261 keV which is described¹⁵ as being due to the deformed $\frac{5^+}{2}$ [413] orbital. Without further data, shape coexistence in ¹⁵²Tb is of course only a speculation, but one which does account for the available evidence. We might add that two combinations of single-particle orbitals could give rise to a 2⁻ spin assignment, i.e., $(\pi d_{5/2}, \nu h_{9/2})$ and $(\pi d_{3/2}, \nu f_{7/2})$.

IV. ¹⁴⁹Dy and ¹⁴⁹Tb^m

As mentioned earlier, most of the new γ rays whose nuclidic assignments could be determined with some certainty follow the decay of ¹⁴⁹Dy. Prior to this investigation only its half-life had been reported, the latest values² being 4.6±0.4 min from x-ray decay-curve analyses and 5.1±0.9 min from the initial growth period observed in the

FIG. 5. Portions (460-900 keV) of γ -ray spectra measured at ¹²C bombarding energies of 82.3 and 95.5 MeV. The two spectra were summed to emphasize A = 149 nuclides. Note the 620.2-keV γ ray, assigned to the new isotope, ¹⁴⁸Dy.

Transitie E_{γ} (keV)	on data I _y	Gating 100.8	transition 106.3	ns (keV) 253.4
100.8 ± 0.1	100 ^a		x	x
106.3 ± 0.1	51.1 ± 2.6	х		х
253.4 ± 0.1	49.6± 5.0	Х	х	
653.6 ± 0.1	59.5 ± 6.0			
736.5 ± 0.1	19.2 ± 3.0	х		
741.7 ± 0.1	17.3 ± 2.6	?		
775.3 ± 0.1	34.7 ± 3.5	X	X	
789.4 ± 0.1	65.0 ± 6.5			
1274.2 ± 0.3	18.1 ± 3.9	х	Х	Х
1776.5 ± 0.3	78.6 ± 11.9	X		
1806.2 ± 0.3	64.1 ± 9.6			

TABLE I. Summary of transition and coincidence data for $^{149}\mathrm{Dy}.$

^a Photon intensities normalized to a value of 100 for the 100.8-keV transition.

decay of the ¹⁴⁹Tb 3.967-MeV α group. Several problems were encountered in determining assignments. First, the coincidence and half-life measurements were not made at the optimum bombarding energy for A = 149 isotopes. Second, the half-lives of 149 Dy and 149 Tb^{*m*} are similar. $(^{150}\text{Tb}, \text{ with a half-life of 5.8 min was also a po$ tential problem but in this instance the data reported in Ref. 14 were used to identify its γ rays.) Third, the yield curve measurements covered a photon energy range of only up to ~900 keV because they were directed chiefly toward assigning the 620.2-keV transition. For these reasons many new γ rays, especially those with energies \geq 800 keV, were left unassigned. Since much of the γ -ray data to be discussed below is new it seems appropriate to show a spectrum wherein the A = 149 nuclides are emphasized. For this purpose the spectra observed at 82.3 and 95.5 MeV during the yield measurements were summed and are shown in Figs. 4 and 5. Note the ¹⁵⁰Dy 396.9keV (Fig. 4) γ ray reported in Ref. 12 and the ¹⁴⁸Dy 620.2-keV (Fig. 5) transition discussed in the previous section.

Table I summarizes the energies and photon intensities of γ rays assigned to ¹⁴⁹Dy. Three of these, 100.8, 106.3, and 253.4 keV, were intense enough so that spectra in coincidence with them could be projected out. This information is also included in Table I. The assignment of the three transitions to ¹⁴⁹Dy is based on half-lives, yieldcurve measurements, and coincidence data (in particular the fact that terbium $K \ge rays$ were observed). From the decay of these γ rays the half-life of ¹⁴⁹Dy was found to be 4.1 ± 0.2 min in agreement with the results of Ref. 2. This halflife value was an important criterion for assigning the remaining γ rays listed in Table I for the

TABLE II. Summary of transition and coincidence data for $^{149}\text{Tb}^m$.

Transiti E_{γ} (keV)	on data	Gating	transition	us (keV)
	I _y	165.0	632.0 ^a	796.0
$165.0 \pm 0.1 \\ 630.7 \pm 0.3 \\ 796.0 \pm 0.1$	7.5 ± 0.5 ~2.9 100^{b}	Х	Х	

 a Gating peak due mainly to the 632-keV $^{148}\text{Tb}\,\gamma$ ray. b Photon intensities normalized to a value of 100 for the 796.0-keV transition.

following reason. Two γ rays known to belong to $^{149}\mathrm{Tb}^m$ were found to decay with a half-life of $\geq\!6.0$ min in contrast to its previously reported halflives of 4.0 min (Ref. 8), 4.2 min (Ref. 2), and 4.5 min (Ref. 16). This apparent increase in half-life is taken to mean that ¹⁴⁹Dy, with a probable ground state spin of $\frac{7}{2}$ (due to the $f_{7/2}$ 83 neutron), feeds into both the ¹⁴⁹Tb $d_{5/2}$ ground state and its $h_{11/2}$ isomer. (Evidence that the 4-min species is the isomer has been presented in Ref. 17.) The decay scheme of ¹⁴⁹Dy is undoubtedly complex, with many more transitions following its decay than are listed in Table I. We have not attempted to put together a level scheme though on the basis of the coincidence data one could propose levels at 100.8, 207.1, 460.5, 837.3, 982.4, 1734.7, and 1877.3 keV. Additional information is necessary, however, to determine if these levels are superimposed on the ground or isomeric state of ¹⁴⁹Tb.

Table II summarizes the ¹⁴⁹Tb^m transition energies, photon intensities, and coincidence information. The 630.7-keV γ ray, whose presence had earlier¹⁶ only been inferred, was observed in and its energy determined from the spectrum in coincidence with the 165.0-keV γ ray. The 632-keV gate, as indicated in Table II, was due mainly to the ¹⁴⁸Tb γ ray of that energy: nevertheless, the 165.0-keV transition was clearly seen. The 796.0-keV transition was found to be in coincidence only with x rays and annihilation radiation; the γ ray's large intensity and this coincidence information strongly suggest that the 796.0-keV transition proceeds directly to ground. Figure 6 shows the partial decay scheme for $^{149}\text{Tb}^{m}$. Aside from photon intensities it is the same as that proposed by Arlt *et al.*¹⁶ on the basis of singles γ -ray measurements. Much of the decay proceeds through the level at 796.0 keV with an allowed $\log ft$ value of \sim 4.2. The situation is similar to the decay of the high-spin ¹⁴⁷Tb 1.9-min state, where some 84% of the direct decay populates⁷ a level at 1397.7 keV. As in that case we would suggest that the ¹⁴⁹Tb^m decay to the 796.0-keV level con-

FIG. 6. Proposed decay scheme for ¹⁴⁹Tb^m. The allowed β transition to the ¹⁴⁹Gd 796.0-keV level is suggested to proceed between states with the following characteristics: $\pi h_{11/2} \rightarrow \nu h_{9/2}$.

nects the following states, $\pi h_{11/2} \rightarrow \nu h_{9/2}$. The ground state of ¹⁴⁹Gd has been measured¹⁸ to be $\frac{7}{2}$ and is probably due to the odd neutron being in the $f_{7/2}$ orbital. The spin of the 165.0-keV level has been proposed¹⁹ to be $\frac{5}{2}$; the assignment is consistent with the present results. As in the case of ¹⁴⁹Dy, our data indicate that ¹⁴⁹Tb^m has additional γ rays in its decay. None of the possible transitions, however, are intense enough to change appreciably the log *ft* value for the β transition to the 796.0-keV level.

V. CONCLUSION

No strong γ ray was observed that could be ascribed to the expected *M*4 isomer in ¹⁴⁷Dy. (It is seen in other *N*=81 isotones ranging from ¹³³Te to ¹⁴⁵Gd, see e.g. Ref. 20.) Contrastingly, the 721- and 753-keV *M*4 isomeric transitions in ¹⁴⁵Gd and ¹⁴³Sm, respectively, were observed. In ad-

dition, 147 Tb γ rays were also seen. The indication is that sufficient energy was available to produce A = 147 nuclides even though it was estimated to be ~15 MeV below the maximum of the $(^{12}C, 7n)$ excitation function. Aside from the energetics involved two other possibilities exist that could explain why 147 Dy^{*m*} was not seen. First, for nuclei far from stability, the cross section for the $({}^{12}C, 7n)$ reaction could be much less than that of the $({}^{12}C, p6n)$ reaction. The 148 Dy yield was found to be ~30% less than that for the high-spin ¹⁴⁸Tb isomer. The necessity to evaporate an additional neutron could depress the ¹⁴⁷Dy cross section even further vis avis the one for ¹⁴⁷Tb. Second, the ¹⁴⁷Dy isomeric transition is perhaps weaker compared to the direct decay to ¹⁴⁷Tb, via the following β transition, $vh_{11/2} \rightarrow \pi h_{11/2}$. One obviously needs to reach the maximum of the production cross section for A=147 nuclides before the alternatives can be examined further.

[†]Work sponsored by the U.S. Atomic Energy Commission under contract with Union Carbide Corporation.

^{*}Present address: II. Physikalisches Institute der Universitat Gottingen, Germany.

[‡]UNISOR is a consortium of University of Alabama, Emory University, Furman University, Georgia Institute of Technology, University of Kentucky, Louisiana State University, University of Massachusetts, Oak

Ridge National Laboratory, Oak Ridge Associated Universities, University of South Carolina, University of Tennessee, Tennessee Technological University, Vanderbilt University, and Virginia Polytechnic Institute.

¹B. H. Wildenthal, E. Newman, and R. L. Auble, Phys. Rev. C <u>3</u>, 1199 (1971).

²C. R. Bingham, D. U. O'Kain, K. S. Toth, and R. L.

11

- ³J. M. Alexander and G. N. Simonoff, Phys. Rev. <u>133</u>, B93 (1964).
- ⁴R. D. Macfarlane and R. D. Griffioen, Nucl. Instrum. Methods <u>24</u>, 461 (1963).
- ⁵K. S. Toth, R. L. Hahn, M. A. Ijaz, and W. M. Sample, Phys. Rev. C <u>2</u>, 1480 (1970).
- ⁶W.-D. Schmidt-Ott, K. S. Toth, E. Newman, and C. R. Bingham, Phys. Rev. C <u>10</u>, 296 (1974).
- ⁷E. Newman, K. S. Toth, D. C. Hensley, and W.-D. Schmidt-Ott, Phys. Rev. C <u>9</u>, 674 (1974).
- ⁸W. W. Bowman, D. R. Haenni, and T. T. Sugihara, Phys. Rev. C 7, 1686 (1973).
- ⁹Ts. Vylov, K. Ya. Gromov, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, A. V. Potempa, and M. I. Fominikh, Dubna Report No. P6-6512 (unpublished).
- ¹⁰S. Raman and N. B. Gove, Phys. Rev. C 7, 1995 (1973).
- ¹¹M. D. Devous, Sr., and T. T. Sugihara, J. Inorg. Nucl. Chem. <u>36</u>, 1697 (1974).
- ¹²K. S. Toth, C. R. Bingham, and W.-D. Schmidt-Ott,

- Phys. Rev. C 10, 2550 (1974).
- ¹³W. W. Bowman, T. T. Sugihara, and F. R. Hammiter, Phys. Rev. C <u>3</u>, 1275 (1971).
- ¹⁴D. R. Haenni, T. T. Sugihara, and W. W. Bowman, Phys. Rev. C <u>5</u>, 1113 (1972).
- ¹⁵D. G. Burke, G. Løvhøiden, and J. C. Waddington, Phys. Lett. <u>43B</u>, 470 (1973).
- ¹⁶R. Arlt, G. Beyer, V. V. Kuznetsov, V. Neubert, A. V. Potempa, U. Hagemann, and E. Herrmann, Dubna Report No. P6-5681 (unpublished).
- ¹⁷R. D. Macfarlane, Phys. Rev. <u>126</u>, 274 (1962).
- ¹⁸C. Ekstroem, S. Ingelman, M. Olsmats, and
- B. Wannberg, Phys. Scr. <u>6</u>, 181 (1972).
- ¹⁹Ts. Vylov, K. Ya. Gromov, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Ya. Kuznetsova, N. A. Lebedev, and M. I. Fominikh, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>36</u>, 2124 (1972) [Bull. Acad. Sci. USSR—Phys. Ser. <u>36</u>, 1864 (1972)].
- ²⁰G. Jansen, H. Morinaga, and C. Signorini, Nucl. Phys. <u>A128</u>, 247 (1969).