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Core polarization in inelastic scattering and effective charges
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A perturbation theory treatment is made of core-polarization effects in electromagnetic and
inelastic scattering transitions due to high-lying collective excitations. Formulas are pre-
sented which make the connection between core-polarization parameters in inelastic scatter-
ing and effective charges from electromagnetic transitions. These relationships show that
there is a natural disparity in neutron and proton polarizations, which arises from the depar-
ture (due to the neutron excess) of these high-lying collective excitations from pure isoscalar
or isovector character. The resulting isospin-polarization matrix is calculated both from a
schematic model and by making a connection with Bohr-Mottelson parametrization of isosca-
lar and isovector effective charges. The effects of spreading of the isoscalar giant resonance
are taken into account in an approximate way which results in a formulation with one param-
eter free to be determined from empirical electromagnetic effective charges. Numerical re-
sults which show the effects of core polarization in electromagnetic transitions, (a, n'),
(p, p'), and (n, n') are presented for 118Sn and 207Pb.

NUCLEAR REACTIONS Inelastic scattering of n, P, n on YPb, ~ Sn, core
polarization effect calculated from electromagnetic effective charges as

examples of method developed.

I. INTRODUCTION

Isoscalar and isovector effective charges are
convenient parameters for including core-polariza-
tion effects in electromagnetic transitions in nu-
clei. They have also been applied' directly to the
isovector and isosealar amplitudes in inelastic
scattering processes. In this paper we examine
the connection between core-polarization effects
in electromagnetic transitions and in inelastic
scattering with special attention paid to the effects
of the neutron excess.

In Sec. II, perturbation theory is used to account
for the effect of core polarization in a transition
calculated with shell-model states. If the giant
resonance states are assumed to be pure isoscalar
and isovector excitations, it is shown that the re-
sulting effective-charge parameters give equal
enhancement for neutron and proton valence tran-
sitions in spite of the neutron excess. Lack of
purity of these excitations results in a core po-
larization which is conveniently expressed in terms
of an effective-charge matrix &. In See. III it is
shown that a simple generalization of Brown's'
schematic model gives rise naturally to impure
core excitations for nuclei with a neutron excess.
In Sec. IV the parameters of the model are eval-

ulated, connection is made with Bohr and Mottel-
son' s' electromagnetic effective charges, a re-
formulation is made to take into account deficien-
cies in the model by allowing one free parameter,
and numerical examples are presented.

II. DERIVATION OF CORE-POLARIZATION

PARAMETERS

In this section. , perturbation theory is used to
include the effects of core excitations on transition
rates. The Hilbert space of the nucleus is sepa-
rated into a model space (the shell model) and the
core-excitation space. The model space includes
all nucleons but not. particle-hole excitations; the
core space as well as the model space is assumed
already to include the effects of the nuclear two-
body interaction, so that giant-resonance particle-
hole excitations, which should be nearly indepen-
dent of shell-model details, are already present
in the unperturbed Hamiltonian. Perturbation
theory is used to connect the shelL-model space
with the high-lying core excitations. There is no
need at this point to assume that there are only a
single isovector and isoscalar giant resonance;
the strength of these levels may be spread over
many states t. The initial wave function is written
using perturbation theory as a shell-model part
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plus an excited-core part,

~(o) ~ &~I&& vI f& ~t~(o) (1)
f t

where other shell-model states than g/' are in-
cluded in perturbation terms not explicitly shown
because they do not contribute in first order. In
the TDA approximation4

TABLE I.

External field

Electromagnetic

(e, n')
(P P')
(n.n')

ap

Vp

Vp

Vp

1
2

0
—V(

V(

(2t = Q 'I i/2 ''-x/2~)+ g 'I. + -x/a~'i/2~y

(2)

of Eq. (1) is an operator which creates a collective
neutron and proton particle (m)-hole (i) core ex-
citation of angular momentum ~ on a model state.

The amplitude for a multipole transition opera-
tor is represented by the three diagrams of Fig.
1, parts (b) and (c) representing the core-polariza-
tion effects. If the particle-hole components in

Eq. (2) are high in energy compared to the final
model state, the reduced amplitude can be written
approximately as

&y, Ils~ll 0,) =&a/("II 6~II 0("&

2 ~ &ol8~+,'I0&
&((o)ll(2 V

t t

the (b) and (c) terms of Fig. 1 giving nearly equal
contributions. In Eq. (3) IO) represents the par-
ticle-hole vacuum. The collective particle-hole
excitations are gross features of nuclei and are
not expected to be affected much by the valence
wave functions; we have therefore assumed that
their matrix elements are equal in initial and
final shell-model states

I
((') ) and

I
g/(0) ). Further,

these have each been set to the particle-hole
vacuum matrix element of Eq. (3). Although it
is not essential to the argument, the rest of the
derivation proceeds most easily with the use of
a separable two-body interaction, which we take

of the form

V(1, 2) = Q Q),(1}.Qy(2)[Vo+V, v(1) w(2)].

The multipole operator of Eq. (3) with explicit
isospin dependence is given by

8),„=Q),„(ao+a,~, ) .

(4)

(5)

Table I gives ao and a, for various transitions of
interest. In inelastic scattering the projectile is
thought of as producing an external field on the
nucleus analogous to the electromagnetic field.
For such cases Eq. (5) represents the nuclear part
of a multipole expansion of the two-body interac-
tion. The separable potential results in g-indepen-
dent effective charges, which make the electro-
magnetic and inelastic scattering polarization
proportional. This correspondence between inelas-
tic scattering and electromagnetic transitions has
been tested by Bernstein' for the (o.', n' ) and by
Schmittroth' for nucleon scattering. The nature
of the distorted wave functions for the projectile
emphasizes the nuclear surface as does &' in Q,
for quadrupole transitions; the proportionality of
electromagnetic and inelastic single-particle
transitions is probably close enough that for col-
lective states the use of approximations such as
Eq. (5) is meaningful, although not necessarily
very accurate. In principle particle-exchange
effects should be included in the parameters, but,
for spatially even nuclear interactions, exchange
produces no alteration of Table I. If we were to
assume that the important core excitations induced
by the interaction with the shell-model space are
pure isoscalar and isovector resonances of multi-
polarity )(, we would get for Eq. (3)

&0/IIQ~(&, +sF. )lle;& =g ((,&(I/" IIQ~&, Ilgwu"&

(c)
FIG. 1. Diagrams representing core-polarization

effects. (a) is a pure shell-model transition due to
some external field; (b) and (c) are the core-polariza-
tion contributions to the shell-model transition.

x 1- E'I&01& Q~~ 10&l'
T

the quantity in the bracket is e, the effective
charge for isospin transfer 7 with S,=1 and &,
=qg ~

The difficulty with Eq. (6} is that the effective

(6)
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charge is independent of whether the nucleons in
the model space are neutrons or protons. For the
case of & scattering, a pure isoscalar external
field, the amplitude enhancement factor due to
core polarization is eo whether the valence par-
ticle in the model space is a neutron or a proton.
However, for a nucleus with a large neutron ex-
cess there should be a larger enhancement for
valence protons than neutrons, because the neu-
tron-proton force is stronger than neutron-nthu-
tron or proton-proton forces and because there
are more neutrons than protons to polarize. Thus,
Eq. (6) is inadequate to describe the effects of
core polarization on transition rates.

To display the inadequacy of our assumptions,
let us consider the properties of the collective
particle-hole excitations Eq. (2). In nuclei with
a large neutron excess the neutron and proton
particle-hole terms have few if any common par-
ticle-hole indices mi. Thus on a microscopic
scale the isospin purity of the particle-hole excita-
tions breaks down completely. However, as
pointed out by Bohr and Mottelson, ' on a macro-
scopic scale the isospin of the giant resonance
states is still expected to be fairly pure. The
charge-independent interaction IEq. (4) in our

case], when diagonalized among particle-hole
states, will give normal modes that are nearly
purely isoscalar, in whichneutrons and protons
vibrate in phase, and isovector, in which they
vibrate out of phase. Such an effect is seen in

the calculations of Veje' on 3 states, and further,
it can be demonstrated explicitly in terms of the
schematic model generalized slightly to account
for the neutron excess (see Sec. III and Appendix
A).

Since isospin breaks down for these excitations
on a microscopic scale, the isospin character of
the excitations is not conveniently discussed in
terms of the wave functions but rather in terms of
transition amplitudes. Accordingly we define the
multipole matrix element

s', =&fly„r, lo} =(ol ct, q &,I o),
where

~
t) is the collective excitation Q~t~o). If

the excitation is pure in isospin, say t =0 or t =1
for isoscalar and isovector states, respectively,
then ~', =&«~'„, but generally, as shown in Sec. III
and Appendix A, S', will be nonzero for t7. In
terms of these matrix elements S', the reduced
transition matrix element generalized from Eq.

(6) is

(», lie, (o.+~p. &II» & = go, (»,"'lie, r, ii»"& —2 g (»,',."lie,all&!'& v, , o.. .,
I,

,
T Tl

(8)

where

gt St
&v'' v. =

If the excitations t are pure in isospin, we get

(9)

It is also convenient to define a column matrix of
the strength parameters from Table I

(13)

[s"[2
(10)

and an effective-strength column matrix

a'" =Ca . (14)

and we have Eq. (6), but if they are not pure we
have a different effect. As we see from Eq. (8}
an external field transferring 7 to the nucleus can
transfer &'47 to the model state due to the im-
purity in the collective excitation.

The form Eq. (9}can be written very convenient-
ly in terms of an effective-charge matrix

TABLE II. Effective strength parameters calculated
from Eq. (15) and Table I including the effects of core
polarization in a nucleus with a neutron excess. The
parameters eT. T are generalizations of the isoscalar
(&=0) and isovector (v =1) effective charges; 7' gives
+1 operating on neutron and proton shell-model states,
respectively. In the absence of any polarization effects
67.I g —67 1 g ~

c =1-2VO-=l+ eI'"
Transition

Effective strength parameter
&eff jeffap Og

where v is defined by its elements in Eq. (9), 1 is
a unit matrix, and V is the diagonal matrix

~8Electromagnetic 2(Epp —cog) = —2(Egg —cgp) = —28'2

(12)

(n, n')
(n n')
(p p')

&ooVp

~ooVo+~oP ~

po 0 01

&soVo

eioVo+ e(iVg
&gpVp —Eg(V
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TABLE III. Alternate representation of polarization parameters.

Type of core
polarization

Shell- model
target nucleon Polarization parameter

Isosc alar
Isoscalar

n

p
n

p

p

n

p
p

= ~Op+ ~10
On

= ~oo —~1O
op

1 +~ 2 (Cop + 610+ 611 +co1)
l5 = 2 (E'PP + E'10 —611 —co1)

= 2(EPP E'10 E'11 + CP1)

1 I5 2 OI0 10 11 01

In terms of a"'", Eq. (8) can be written

& 4g IIQ ~(~, +np. )ll 0; & =&0,"'
IIQ ~(a,""'+~,'" r,')11(I")

=& yy"'ll Q~l(e..~, +~„~,)+(e,p. +e„s,)T!111qI &0, (15)

where in the (z', g,.
' matrix elements &,' oper-

ates only on valence or shell-model wave func-
tions. The matrix & is a generalization of iso-
scalar and isovector effective charges to nuclei
with a neutron excess. In the absence of the neu-
tron excess, & is diagonal.

The expressions for the effective strength pa-
rameters appearing in Eq. (15), listed in Table II,
illustrate an interesting feature of the polariza-
tion parameters in the presence of a neutron ex-
cess. In Eq. (15) it is the second index v on e, ,
which determines whether a particular parameter
contributes to an isoscalar or an isovector transi-
tion of the nucleus, since a, and a, are the strength
parameters connected with the external field of
isospin 7. On the other hand, it is v' which deter-
mines which isospin is transferred to the shell-
model space since it refers to shell-model transi-
tions. For example in & scattering, which is
purely isoscalar, Table II contains a term which
transfers isospin 1 to the model space. Similarly,
we see that in electromagnetic transitions the iso-

scalar effective charge eo contains a term &0,
which is truly isovector for the nucleus as a whole,
and vice versa for e, . This behavior has come
about because of the departure from purity of the
collective particle-hole states.

An alternate representation of the polarization
parameters is given" in Table III. The param-
eters &PP and &P" are the core-proton polarization
parameters for shell-model protons and neutrons,
respectively (they are equal to the proton and neu-
tron electromagnetic polarization charges), 5""

and &"P are the corresponding parameters for
core-neutron polarization, and ~'" and & P are
isoscalar polarization parameters. In Table IV
the effective strengths a"" are given in terms of
these parameters ~.

In order to see what qualitative effects are ex-
pected from Eq. (15) we consider the signs of V,
and 0, , The nuclear central-exchange force has
Vo&0, V, &0. From Eq. (9) it is clear that the
parameter 0', , is positive for v' =v, but v, y Oyo

is also expected to be positive. To see this we

TABLE IV. Effective strengths.

Type of
transition Target nucleon

Effective strength parameter
a' + aeff

0 1 8

(e, n')

(p,p')

(n n')

Electromagnetic

n

p
n

p
n

p
n

p

V Don
0

Vo BOP

(1+gnn) +, V gpn

Vpp(1+5») + Vpnb~

Vnn (1+&"")+ Vnp &

V„,(1+~») + V„„~"P
gpn

1+gPP
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can calculate from Eqs. (2) and (7) that

S', = g C", D"„,. + (- 1)' Q C~, D~„., , (16)

two-body force strength parameters V, and V,.
The only change in our formulation to this point
is that the polarization parameters v, , now con-
tain y';

where D„,. =(miIQ BIO} is the amplitude of a par-
ticle-hole pair mi. D; and C; will tend to have
a simple phase relation; in fact in the schematic
model

C",. = c„'D", ,

(17)

For the isoscalar mode c„and c~ are both positive.
Since, because of the neutron excess, there are
more neutron than proton terms, S,' as well as ~p
will be positive. For the isovector mode c„'+0,
c~ & 0; clearly S,' will be positive but again because
there are more neutron than proton terms S0' will
also be positive. The schematic model (see Sec.
III) results in c'„&c~ to compensate for the neutron
excess and make the t =1 state nearly purely 7 =1,
but the compensation falls short leaving the neu-
tron term of Eq. (16) larger. Thus S', are all posi-
tive and so, therefore, are all v, , Thus we have
from Eq. (11)

00 & 11 ~ 10 01 (18)

The first two of these inequalities are well known
features of the effective charges, the isoscalar
results in enhancement and the isovector, retarda-
tion. The other two give rise to additional dif-
ferences between a shell-model neutron and proton.

The results of Table II and the inequalities (18)
resolve the problem with & scattering mentioned
above. The polarization parameter for target
protons ~00 ~10 is greater than that for neu-
trons, ~00+&10 A similar effect occurs with the
inelastic scattering parameters of Tables III and
Iy gnp g&n Q + Q p gp n and gnn Qpp+

10 Ol 10 01»~~ [the latter relationship follows from Eq. (11)
and the fact that —Vo& V,]. In each case the polar-
ization parameter for core neutrons is greater
than that for protons, due to the neutron excess.
This feature in inelastic scattering has been antici-
pated in Ref. S.

Bohr and Mottelson' have suggested that the form
factors for the interaction of a model-space nu-
cleon with the isoscalar and isovector modes may
be rather different since the former mode is ex-
pected to be a surface vibration and the latter, a
volume vibration. Use of the separable interaction
forces the form factors to be equal. To compen-
sate for this deficiency an extra parameter y' is
now introduced into the matrix element of the two-
body operator. This parameter removes the re-
striction that the coupling to the isovector and
isoscalar states be proportional to the separable

~tgt $t
O'Tr T

——Z (1S)

We will see in Sec. III how we can get information
about y' from the energy shifts of the isoscalar
and isovector modes.

III. SCHEMATIC MODEL

n mi, nj like nucleons
(miIVInj} =D, D„.&&.

P mi, nj unlike nucleons '

(21}
where

& =V0+V, =V„„=V~~&0,

P =V —V, =V„~=V~„&0 . (22)

In the degenerate particle-hole energy limit the
diagonalization of the Hamiltonian with the inter-
action Eq. (22) in the particle-hole states gives
two states instead of one which split off, the rest
remaining degenerate. Of the two states which
split off, the energy shifts are given by"

QE + 0 y [(y y )2~2 4P2y y ]1/2

V,
[+IPI +~]=(y.+y, )

0
(23)

where

(24}

The isoscalar and isovector giant resonances
are core excitations carrying much of the particle-
hole strength. In order to get some information
about expected systematics of the polarization
parameters ~, „we present in this section re-
sults of Brown's schematic model of giant reso-
nances' generalized slightly to include both V0
and V, interactions, Eq. (4). Details of the cal-
culation are in Appendix A.

The external-field operator has been given in

Eq. (5}. We write its particle-hole matrix ele-
ment as

neutrons

(mf IQz, (n, +&, &g)l 0& =(~, ~ny)Dmj protons
~

(20)

The schematic model assumption is generalized
for the isospin dependent two-body interaction to
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bEt =y'y, (y„+y, ) . (26)

Of primary interest are the transition amplitudes
Eq, (7). In the schematic model, Eq. (16) gives
(see Appendix A) in terms of y, =—y„+yt,

Since ( p [
&

~

& ~, the energies of one of the states
in increased by the interaction and the other is
lowered. The upper and lower states are tenta-
tively taken as isoveetor and isoscalar giant reso-
nances and labeled t =1 and t = 0, respectively.

As in Sec. II a correction can now be made for
the use of separable potentials which, along with
the dropping of exchange terms, was used to obtain
the schematic-model interaction matrix elements
Eq. (21). It is assumed that the collective eigen-
states are not strongly affected by the use of the
separable interaction. The eigenfunctions give
for quadrupole states approximately

bE, =&(~If~ t) -Za~

(25)

since in the degenerate model the collective eigen-
states of schematic Hamiltonian are also eigen-
states of the one-body part of the Hamiltonian with
eigenvalue 2@&. The var iational principle assures
us that the energy shift Eq. (25) is in error only to
second order in the err or in the eigenstate made
by using the separable interaction. If the separable
interaction for V is used in Eq. (25), one again gets
the result Eq. (23). The finite-range interaction,
as in See. II, introduces the extra factor y'. Thus
Eq. (23) becomes

ment with the argument given in Sec. II.
It is worthwhile noting that the cross section for

excitation of I' by «t is not very large. For ex-
ample, isoscalar excitation of the t =1 state com-
pared to the t =0 is

~
Sp'/SPJ ', which is of order

~
(&-Z)/A~ ', whereas terms which are being re-

tained" in the calculation of polarization are of
order (&-Z)/A .

IV. EVALUATION OF POLARIZATION PARAMETERS

A. Calculation from the schematic model

The energies of the collective states we take
as 60/A'/' and 120/A' ' for isoscalar" and iso-
vector, " respectively. Using the standard value
of 41/A' ' for the shell-model spacing gives us
values for the energy shifts

&Eo 22A y V

&E, =382. ' =y'V p, .
(29a)

(29b)

Using Eqs. (29a) and (29b) and the sum rule Eq.
(B9) we have

—22
yt y — x [ 0 1 37A5/3(Z2/3 ~btp/3)] -1

38

128/A' ', t =0,
221/A'/', t =1 .

The latter result uses (r') = —,
' (1.2A'/')' as in a

uniform matter distribution. The polarization pa-
rameters from Eqs. (11), (27), and (28) are now
evaluated as

QS' = c' y += 1 —— -- Myp n +
2 p

+

S~ =go= 1+—= 2 y, 1+—

S1=e'- 1- —=-. y,

S =c y += 1+— =V&1 1
n +

2 p
+

e ,0", = —2y, g„=—2y, y '(E, ) '(S,')',
'to =- 2yt[&'SoSt/E. +&'S.'S,'/E ]

= V,S', e '/(Vp Spp) + S' e 0" /S'

y y [ 00 11]13'+

v, v,
pt y tp y y [ 00 11]O- 1&+

(31a)

(31b)

(31c)

where

ct (y+)-1/2 1 ~ ( 1 )t
2y+ 2P y+

ep', can be evaluated from Eq. (31a) using Eqs.
(29) and (27)

(bE, ) 1

is a neutron amplitude parameter defined in Eqs.
(17) and (A13). We see from Eq. (27) that the
lower state t=0 is nearly purely isoscalar, and
the upper state is nearly purely isovector; how-
ever, each state is slightly impure, the correc-
tion being proportional to g„—g~, which would
vanish in the limit N = Z. Since So and S,' both
have the same sign, the polarization parameters
o', r, Eqs. (9) and (19) are all positive in agree-

(E, —M~)
(32)

Since E, and @ both are proportional to A ' ',
the diagonal elements &„are simply constants
in this no-parameter model.

From Eq. (B9) we can write

/y+ =
0 (N - Z)/A .
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2 V,
3 Vp —V,

2 Vp
0' 3V —V,

N —Z (c„—e„),
N —Z

(~00

Equations (31b) and (31c) then give

(34)

(35)

polarization amplitude to the state t. Equation
(40) still applies to any external field; to compare
with Bohr and Mottelson's result we use from
Table I electromagnetic strength parameters ap
=-,', a, = —

& and define

(41)

The off-diagonal elements depend on the neutron
excess as they must, since it is the neutron ex-
cess which produces the lack of isospin purity of
the giant-resonance states.

Thus (40) can be written

a'"'- e'"' = —2g S„'„,—(S,'V, +S,'V„v,'). (42)

B. Correspondence with Bohr-Mottelson's

polarization charges

Comparing with Eq. (36) we obtain the identifica-
tion

On the basis of a collective model treatment
Bohr and Mottelson have calculated' electromag-
netic effective charges including the neutron-ex-
cess effect we have discussed above. By making
appropriate identifications we can parametrize our
polarization parameters in terms of theirs, which
are given by

'0 0
2V0

1 1S„„S,/&, — 2 x, ,2V,

(43a)

(43b)

(43c)

e"' = — X.(1+0~.') --'X, (~.'- $),
where

& = (N Z)/A-,

(36)

(37a)

0

From Eqs. (43) it follows that

(43d)

P = V, (/4 V, = V, (/V, . (37b)

In Eq. (37b) V, and V, are the isoscalar and the
I ane-isovector optical-potential strengths. The
first term in Eq. (36) is the polarization term due
to the isoscalar giant resonance, and the second
is due to the isovector giant resonance. As dis-
cussed in Sec. III each of these excitations is im-
pure and contributes a minor term (the P and $

terms) opposite in isospin to its major term.
To compare Eq. (36) with our result Eq. (14) we

rewrite the effective strength parameter from the
latter result

S;/S; = (V./V, )I3,

S,"/S,'=- (V, /V, )(,
and, therefore, that

s;„,-=-,'(s; s;) =-,'s;(( ~"
$),

1

s,'„,
—= —,'($' —$,')= ——,'$', ((+ ' $).

0

(44a)

(44b)

(45a)

(45b)

From Eqs. (10, (43), and (45) it is easy to obtain
the result

a"' =[ (1 —2Voooo)ao —(2V oo, )a, ]

+ [(1 —2V, o»)a, —(2V, o„)a ] 7,'

The polarization part is therefore

a~" = —2([o„a,+o,a, ] V,

+[o„a,+o„a,]V,T,'] .

(36)

(39)
1 1 Z=-(I —&)
' —x

V, A.

X

(46a)

Putting in the definition Eq. (9) of o, i, we rewrite
Eq. (39) as

a'" = —2 Q (a,S,'+a, S,')
11 V I

V y ~ XPP

x(S,'V, +S,'Vp,') . (40)

In this form the first factor is the transition ampli-
tude to the giant state t and the second factor is the

V=- 1+
V

& (X,/2V, ),
0

(46b)
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~l.o ~01 = 1 ~0
so we must include its effect. From Eq. (19)

~tgt S t

pl
t

+ 1+ 1
g

1

= —(&X,/A —X,/2)(5/V, )
isoscalar t

~t$t$t
+

t isovector t

00 y ll

v'(e! )', (~&')
isos«alar t t isovector t

yt($t )2

g

From Eqs. (11) and Eq. (46) it follows that
gO ~00+ g1 ~11 ~

(48)

~'„"' =2(~/A)x. (1 —5) ' =x, , (47a)

11 ~1 + y 0

N —Z V,
10 A V ( 00 11)

0

N-Z (..— „).

(47b)

(47c)

(47d)

These results are very similar to Eqs. (32), (34),
and (35). &,", is a constant, but e,",' varies slowly
with neutron excess. The off-diagonal elements
are somewhat larger than calculated from the
schematic model.

where (&10/$00) and(&01/&,') are average values of
these isoscalar- and isovector-state ratios. If
these are taken from the schematic model, Eqs.
(31b) and (31c) result. As before e~»' is taken from
Eq. (32), but now &00 is left as a free parameter to
be determined empirically. If the Bohr-Mottelson
formulation is used Eqs. (47b)-(47d) are obtained,

&00 again being left as a free parameter.
The determination of the free parameter &pp in

both the schematic and the Bohr-Mottelson treat-
ments can be made by using empirical electro-
magnetic effective charges. From Table II neu-
tron and proton effective charges are given in

terms of 6 by

C. One-parameter formulation

en
= 2 (coo F01) +2 (~11 ~10)

e~
(49)

Having made the connection with Bohr-Mottel-
son's electromagnetic polarization charges we
now have, in principle, in Table II and Eqs. (14)
and (47) a no-parameter formulation of polar-
ization for inelastic scattering. However, in
actual fact the giant resonances are fractionated,
and, because of the energy denominators in the
expressions for effective charges, any part of the
strength split off to lower energies will have an
increased effect on the polarizations. This spread-
ing will be more serious for the isoscalar than
isovector excitation because its center lies at a
much lower energy. As a result, isoscalar polar-
izations are commonly much greater than given

by the Bohr-Mottelson effective charges. We
therefore want to account for the spreading effect
for the isoscalar state byleaving one free param-
eter.

In the perturbation theory result, presented in

Sec. II, the four polarization parameters &„,can
be represented in terms of the three parameters
o, , Since o'» contains only a small effect from
the lower giant state, we take it to be given cor-
rectly by Eq. (32). The other parameters o0, and

o«will be strongly affected by the fractionation,

Using Eq. (31) of the schematic model and Eq.
(49) depending on whether the valence particle is
a neutron or a proton, we obtain

e00-[2e„+~„(1-y /y, )] (1-y /y+) '

and

(50a)

-1
e„=(aee- e„(),(& 6,)(Vee gVe )]]() P+ V„q

~„=[ 2e, —(2Ã/A + V, 5/V0) e„](2&/A —V, &/V0) '.
(51b)

D. Numerical examples

In this section numerical results are presented
for the (p2y2v) '- (p, y21)

' transition in '0'Pb and

(50b)

Again Eq. (33) can be used for y /y+ and Eq. (32)
gives &». Correspondingly in the Bohr-Mottelson
parametrization, using Eqs. (47c) and (47d), we
obtain

e, = [ 2e„+ (2Z/A + V, f /V0)e „](2S /A+ V, $/V0) '

(51a)
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TABLE V. Effective polarization charges calculated for the (P3~2v} —(P& y2~) transition
in 7Pb and for the excitation of the first 2+ state in ~ 8Sn. A comparison is made among the
no-parameter schematic model (NPSM), the one-parameter schematic model (OPSM), the no-
parameter Bohr-Mottelson model (NPBM), and the one-parameter Bohr-Mottelson model
(OPBM). Empirical electromagnetic effective charges of e„=0.85 (Hef. 14) in o~Pb and e„
=0.745 (see text and Ref. 15) in Sn are used in the one-parameter models.

Nucleus Case ~oo eo

207Pb e„=0 85 a

"'Sn e„=0.745'

NPSM
OPSM
NPBM
OPBM
NPSM
OPSM
NPBM
OPBM

1.74
2.34
2.02
2.82
1.74
2.02
2.01
2.27

0.128
0.184
0.361
0.537
0.093
0.113
0.261
0.304

0.366
0.366
0.232
0.232
0.366
0.366
0.274
0.274

-0.064
-0.092
-0.235
-0.349
-0.047
-0.057
-0.170
-0.197

1.61
2.16
1.66
2.28
1.64
1.91
1.75
1.96

0.429
0.458
0.467
0.581
0.413
0.423
0.444
0.472

'See Ref. 14.
b See text and Ref. 15.

for the 0'-2' first excited state transition in '"Sn.
For the no-parameter schematic model (NPSM) Eq.
(30) is used to obtain V, y', the giant-quadrupole
isoscalar" and isovector resonance energies are
taken as 60/A' ' and 120/A'~', S, ' are taken from
Eq. (27), and y„and y~ used in Eq. (30) are taken
from the sum-rule results of Eq. (B9). The Kallio-
Koltveit equivalent one-Fermi- Yukawa effective-
interaction" ratio V, /V, = —0.5 is used. The e,
are all calculated from Eqs. (31).

In the one-parameter schematic model (OPSM)
the empirical effective charges are taken as e„
=0.85' for ' 'Pb and e„=0.745 for '"Sn The
latter number is calculated by comparison of the
cloud-nucleon results of Yoshida" with the empiri-
cal" &(E2). For "'Pb the (P,~,v) '-(P, ~,v) '
amplitude is expected to be an adequate valence
wave function and the random-phase-approxima-
tion calculations for '"Sn are expected to account
adequately for the 51—82 neutron-shell valence
wave functions. The parameters &„, &„, and &,
are obtained from Eqs. (31) as in the no-param-

eter calculation, but c« is now obtained from Eq.
(50a) using the empirical value of e„.

In the no-parameter Bohr-Mottelson (NPBM)
model we use Eqs. (11) and (46). The parameters
of the model used in Ref. 3 are &p=1.0, Xy 0 64,
and V, /V, = —2.6 (corresponding to a ratio V, /V,
= —0.65 for the two-body interaction). In the one-
parameter formulation (OPBM), e» is still cal-
culated from Eqs. (47), but e« is taken from Eq.
(51a) in terms of the empirical neutron effective
charge. ~» and &„are then determined from

happ

and e„using Eqs. (47c) and (47d).
The results of these sample calculations for

polarization parameters &, „are given in Table V.
The ~pp ~Q] and e„elements are substantially
different in the no-parameter and one-parameter
models, showing the inadequacy of the two isolated
giant resonances to account for polarization. The
results of the schematic model are rather similar
to the Bohr-Mottelson model for the diagonal ele-
ments of &, but the off-diagonal elements are con-
siderably larger in the latter. In spite of this dif-

TABl Z VI. The effective polarization parameters of Table III calculated for the (P3/2 p)

(P&g&v) transition in VPb and the excitation of the first 2 state in ' BSn. A comparison
is made between the one-parameter schematic model (OPSM) and the one-parameter Bohr-
Mottelson model (OPBM). Empirical electromagnetic charges of e„=0.85 {Ref. 14) in YPb

and e„=0.745 (see text and Ref. 15) in Sn are used.

Case 1+gnn gP fl pop

20vpb e 0 85 a

~~ Sn e„=0.745"

OPSM
OPBM
OPSM
OPBM

1.40
1.62
1.22
1.33

1.31
1.43
1.17
1.22

1.12
1.74
0.912
1.25

0.849
0.851
0.742
0.748

2.25
2.47
1.96
2.07

2.43
3.17
2.08
2.47

~ See Hef. 14.
~ See text and Ref. 15.
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ference the electromagnetic effective charges e,
and e, are very nearly the same in both models.
This does not mean that the predictions of the
models will be the same for other kinds of transi-
tions, since different linear combinations of the
E, , are involved.

Table VI gives the polarization parameters of
Tables III and IV for the same two nuclei. The
effects of the neutron excess are evident from
comparisons of &"" with &, &" with & ", and 6 "
with &' . Each of these pairs would be equal in
the absence of a neutron excess.

It is interesting to compare the results of Table
II or Table IV and Table VI for strength param-
eters with the procedure of Ref. 1, multiplying
V, by eo and V, by e, to account for the collective
enhancement. In the latter procedure (n, n') from
a neutron vibration (proton closed shell) or (P, P' )
from a proton vibration involving the same core
have the same strength parameter. On the other
hand, the strength parameter for (n, n') and (P,P')
for neutron and proton nuclei, respectively, with
a, 'O'Pb core have strength parameters which differ
substantially. The values V„~ = 3V» = 3V„„and use
of Table VI and Table IV give V» (1+&»)+V~„6"~
=1.31V»+ 3V»+ 3V» (1.12) =4.6'IV» as the strength
parameter for (P,P') on a proton target and
1.40V„„+3(0.849)V„„=3.95V» as the strength pa-
rameter for (n, n') on a neutron target. This differ-
ence is a result of the greater polarization of neu-
trons than of protons in a neutron excess nucleus.
The difference is even greater when the Bohr-
Mottelson parameters are used. The strength for
(P,P') on a proton nucleus is 1.43V»+3V»(1.74)
=6.65V» and the strength for (I, &') on a neutron
nucleus is 1.62V„„+3(0.851)V„„=4.19V».

For & scattering &'" and & ~ are the amplitude-
enhancement parameters for valence neutrons and
protons, respectively, whereas in the procedure
of Ref. 1 it is eo for both. Anticipation of these
differences was one of the principal motivations
discussed in Sec. II for considering the lack of
purity of the giant-resonance excitations in isospin.

V. SUMMARY AND CONCLUSIONS

We have shown that the lack of purity of iso-
scalar and isovector giant states mixed into the
shell-model states gives rise to complications in
the connection between polarization effects in in-
elastic scattering and electromagnetic transitions.
The terms isoscalar and isovector become am-
biguous; what may, for example, be an isoscalar
transition for the nucleus as a whole will be both
isoscalar and isovector in the shell-model space.
As a result one obtains a different enhancement
factor for & scattering from valence protons than

from valenc e neutrons, as expected from intuitive
arguments. Vfe have tabulated strength param-
eters including the core-polarization effects for
electromagnetic transitions and for inelastic scat-
tering of various projectiles in terms of a 2&&2

polarization matrix with elements &, , The con-
nection is made between these four parameters
and the terms in Bohr-Mottelson electromagnetic
polarization charges, ' which also take into account
the lack of purity of the giant states. A further
approximate formulation is presented which frees
one polarization parameter &«, the off-diagonal
elements being given in terms of &«and &». In
principle any one experimental transition rate can
then be used to determine all four parameters
and, therefore, all polarization and effective-
charge parameters. Numerical results are pre-
sented for '"Pb and '"Sn.

It is well known that effective charges are depen-
dent on&, and&, of a single-particle transition,
whereas the separable interaction gives j-indepen-
dent values. This deficiency of our calculation is
compensated for somewhat by the use of an empiri-
cal effective charge, since the j dependence of in-
elastic scattering amplitudes is expected to follow
that of electromagnetic amplitudes to some extent.
Nevertheless, the results we have presented are
not expected to give detailed agreement with ex-
periment, but rather to show expected trends in
the connection between inelastic scattering and
electromagnetic transitions as a function of N and
z.

The use of the factor y' to correct for the defi-
ciency of the schematic model in describing the
expected surface and volume character' of the
isoscalar and isovector giant resonances, respec-
tively, has been slightly inconsistent. It has been
used in Sec. II for the polarization parameter
a, , and in Sec. III for calculating the energy shift,
in both cases giving increased interaction in the
isovector mode. It has not been used to correct
the strength parameters of Table II for interaction
of the core with the external field. This is because
the external field interaction is expected to empha-
s ize the nuclear surf ace region, dim inishing the
difference between its interaction with the two
modes.

In a separate publication the results of this paper
for effective polarization parameters will be ap-
plied to studying the possible differences of the
deformation parameter P in (P,P'), (+, +'), and

electromagnetic transitions.

We acknowledge helpful discussions with Dr. J.
D. Anderson, Dr. S. M. Austin, Dr. A. M. Bern-
stein, Dr. B. R. Mottelson, Dr. J. Davis, and Dr.
L. Wilets. We thank Dr. A. Bohr and Dr. B. R.
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Mottelson for use of material from their forth-
coming book, Nuclear Structure. Qol. Ig, Chap. 6
before publication.

where

xn

Dn Dp
x = b

b b E —6bb

(A8)

APPENDIX A. DETAILS OF THE SCHEMATIC MODEL

We include here some of the details of the sche-
matic model discussed in Sec. III. Equations (V),

(20), (21), and (22) are used for the development
below.

A. Energies of the giant resonances

The collective core-excited states are obtained
by diagonalizing the Hamiltonian in neutron and
proton particle-hole states (TDA). The creation
operator for core state t is

(1 —ox„)(1—o'x~) —P'x~x„=0 . (A9)

From here on we consider the degenerate case
c"b =&, =& for all particle-hole pairs & because it
gives simple solutions which will permit us to
study systematics. Multiplying by (E —e)' gives
two solutions with

~ g —[(y y )&~2 +4p2y y ]i/2

(A10)

are neutron and proton strength parameters. Com-
patibility of the two forms (AV) gives a condition
on the energies

a1' g [cnB n

CRAB

P] (A1) where

where for example

nBa = [ hami/g bi i/2] -z (A2)

(E —e,")C," =D," & Q D", C", + p Q D~~cf
b b

(A3a)

(E —e~)ci' =D~ P g D" C" +n Q Di'Ci,'

(A3b)

where &", and &~ are particle-hole energies, the
D's are given by Eq. (20), and use has been made
of Eqs. (21) and (22). Solving for the coefficients
gives the result

„o.'K" + pK~ ~ ~ pK" + o.'K~
a a @ &n ~ a a E &p

a a

and the index "a" designates a particular particle-
hole state, a = mi. These particle-hole excita-
tions can have isospin T =0 or 1 or a mixture of
both. The Schrodinger equation then yields

y„=x„d= g D",',
b

2

y, =xpd= g D',
b

(A11)

B. Particle-hole amplitudes

Next Eq. (A3) is solved for the coefficients cor-
responding to the energy solutions just obtained.
For the degenerate solutions E=& and

All the other solutions remain degenerate' with
E=e, which from Eqs. (A6) require K"=K~=0.
Since for realistic nuclear forces n, p&0, I o'I&IpI,
one of the solutions, Eq. (A10), is positive and
one is negative. A pure isoscalar interaction Vp
in Eq. (22) gives o.'= p, and we have d =(y„+y~}n
&0 from the lower sign and E =& from the upper
sign of Eq. (A10). Thus the upper and lower signs
are to be identified as the collective isovector
and isoscalar solutions.

where

K" = g D", C", , K' = Q D', C', .

Putting in the solutions for C, we have

(A4)

(A5)

Q Di, ci, = P Di, ci, =0 .

The collective solutions from Eq. (A4) have

Cn
„' =—c„' = constant,
a

(A12)

(A13)

g ( n)2
oK" +PK'
E —eb

(DP )a P

Solving for K" and &P yields the results

(A6}

C.'~=- cp =constant,

and with y, =y„~yp

(A14)

(A15a)

px„Zp
1 —&x„

1 +xp

Pxp
(A7) (A15b)
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c„' —0.57
~c, 0.80 t=O (A16)

for typical values p =2o.' of neutron and proton in-
teraction parameters. This is closely analogous
to the coupled pendulum problem. For equal
masses the normal modes have equal or opposite
amplitudes. The low frequency mode (isoscalar
like) has equal amplitudes for unequal masses,
but for the high frequency mode they are opposite
in sign and inversely proportional to the masses.
A qualitatively similar effect is seen in Eqs. (A15)
and (A16), the strength parameters y„and y~
playing the role of masses.

C. Transition rates to collective states

where t =1,0 correspond to the upper and lower
signs in Eq. (A10). If p„=g~, then c„'=ac~ (re-
member that P&0) are the coefficients for the
solutions tentatively identified as isovector and
isoscalar, respectively. If there is a large excess
of neutron particle-hole strength, for example
take y„=2y~, then there results

APPENDIX B. SUM RULE FOR QUADRUPOLE

STRENGTHS

The parameters y„, defined in Eq. (23), can be
written as

y„= Q (D„";)' = g & [mi ]»~ Q), „~ 0) ', (B1)
mj mi

which, according to the Wigner-Eckart theorem,
is independent of p, . Equation (B1) can be re-
written as

pure proton), but the nuclear interaction puts to-
gether collective excitations consisting of linear
combinations of the states having nearly pure iso-
spin. & =0 or 1." A large neutron excess is com-
pensated by a large proton amplitude in the iso-
vector-type state, and the transitions to the collec-
tive states depart from being pure isoscalar or
isovector by a term of order (y„—p~)/(y„+X~),
where y„.and yt, are neutron and proton strength
parameters. This qualitative feature has been
anticipated by Bohr and Mottelson. '

Unambiguous identification of the nature of the
solutions Eq. (A10) is obtained by calculating iso-
scalar and isovector transition rates. We obtain
pure isoscalar and isovector transition amplitudes
from Eq. (7) and Eq. (16) mmm~~ m .

(q.m.
~ Q,„(q,. m, &

~ .

x„= P (i IIQ II&;&'& '

(B2)

S', = Q C,"D,"+(-1)'Q C~ D~, (Al 7)

We see that the degenerate solutions, Eq. (A12),
have zero transition rates. For the collective
states Eq. (A17) gives

S', =c„' y„+ (-1)'c,' y~

= .'fl .[ +(- )'"]
+-.'~ [1—(- I)'(~/P)]],

where

(A18)

c„' = (y') ' 1 — +(-1)'—
y+ P y+

(A19)

We see from Eq. (A18) that our identification was
essentially correct, but that the collective core
modes are impure in isospin for y„@y~. The tran-
sition amplitude S', is zero for t+& only when y„
=y~, which would be expected to be the case for
N=Z nuclei. This result has been obtained in
numerical calculations by Veje. '

The results of this Appendix can be summarized
by stating that in the case of a nucleus with a large
neutron excess the individual particle-hole excita-
tions are totally mixed in isospin (pure neutron or

Q' = — — (x+iy)z,
8m

(BS)

At this point we use a harmonic-oscillator model
and assume all states below this Fermi level are
filled. Then closure can be used to help carry out
the sums. For ~=1, the only single-particle states
i which can contribute substantially to the particle-
hole pair are those within @ below the top of the
Fermi sea; the j,~; sum is therefore confined
to those values. Correspondingly the only par-
ticle states that can contribute are those within
@ above the Fermi sea. If, instead of using the
coordinate x; in Q» we use (h/2p~)' 'C~ where
C, creates a harmonic-oscillator quantum then,
to the extent that a harmonic-oscillator picture
is accurate, only the upward transitions from,
states of energies E~-@&E&E& to states of en-
ergy E~&E & E~+@(d can take place even when the
sum over j m is extended over all single-par-
ticle states, where E~ is the Fermi energy.

For quadrupole transitions, to which the following
development is confined, the same arguments apply
except that two major shells above and below the
Fermi sea contribute. Since Eq. (B1) is indepen-
dent of p, consider the case p. =1. The quadrupole
operator is
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which will be replaced by the form as follows:

8m 2p

The operator Eq. (84) has only upward transitions
of 25&. In terms of the C operators Eq. (81) can
be written

(85)

—,'(q+1)(q+2)'(q+3) .Ng~,
Furthermore, the total number of particles is

iV P-(q'+1)(q'+2) — (q +1)(q+2)(q P3)
3

ql 0

(87)

(89)
the& m sum having been done using closure. The

p, m; sum is now restricted to two major shells
below the Fermi level. For calculation simplicity
we go to a rectangular representation. It is as-
sumed that the sum over J; m; represents a spheri-
cally symmetric ground state, as in the case of
closed shells, so all rectangular quantum numbers
take on the same sets of values in the sum. Evalu-
ation of Eq. (85) gives

15
y„=— QQ (n, 1+)(n„1++n,+1)

n„n nz

q +3
7|

1 h
-', (n+1)(n+2)'(@+3), (85)

where q is the principle harmonic-oscillator quan-
tum number of the last shell, E„=h~(q+ —,'). Al-
though strictly speaking, Eq. (86) applies only for
a closed-shell nucleus, we will apply the results
to other cases allowing q to be a fraction deter-
mined by the number of nucleons.

Since differences p„-g~ play an important role
in the transition strengths &, in Eq. (24), it is im-
portant that they be treated carefully. It is not
appropriate to take the same @+ for neutrons and

protons, since these would give considerable dif-
ferences in the neutron and proton radii. The rms
radius for the harmonic oscillator can be calculated

These three equations involve p„, &,„„., N, g, 5;
from them g and @+ can be eliminated to give, for
example,

10 ~g2 2/3
(89)

Similarly p~ can be calculated using Z instead of
Ã. In the last form of Eq. (89) we can easily im-
pose the constraint that neutron and proton rms
radii are the same. By comparison, a single
collective state at 2@+ having all the isoscalar
quadrupole sum strength has an energy-zveighted
sum S, from which it follows that

(810)

Equation (810) agrees exactly with Eq. (89)
summed over both neutrons and protons, assuming
common 5&. Of course the use of Eq. (810) gives
up the equality of neutron and proton radii for
equal 8'v. Equation (810) applied to the case of
a double closed shell, for which the only 2' states
are particle-hole states, provides a check of Eq.
(89), which was calculated just summing over par-
ticle-hol. e states. Generally the energy-weighted
sum rule cannot be used because it includes a sum
over all states; in our case we just want to include
particle-hole states.
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